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Recently, there has been considerabie activity in the study

J. Burzlaff and D.H. Tchrakian* o of gaUNe field theories in more than four dimensions. The more
geometrically motivated approachE) is based on an action density
School of Theoretical Physics that is at Teast quadratic in the curvature 4-form Fa F, and
Dublin Institute for Advanced Studies enjoys two advantageous properties: First, such theories ara
10 Burlington Road expected to have improved ultra-vislet behavicur, and second,
Dublin 4, Ireland they circumvent the theoremZ) that there are no finité-actfjn
Yang-Mills (YM) solutions in more than four dimensions. Indeed,
recently such finite-action solutions were discovered 3541 wnich

satisfy the sel¥-duality eguation of the curvature 4-iform in
eight dimensions, and it was further shown that similar solutions

exist in all 4p dimensions” ). SJDSEPUEPCTy this system was also

We study {generalized) Yang-iills-Higgs theories with studied from a group representational vwewpownTS) The other
higher-order terms. We present topologically nontrivial approachG) retains the YM dynamics, and is based on a linear
finite-action soiutions in a mini-model and discuss a more constraint on the curvature 2-form which in eight dimensions
relevant model later. Although the ansatz we choose is not (only) has an interesting expression in terms. of octonicn
S0{4) symmetric it leads to SO0(4) invariant action densities and structure constants. Henceforth in this paper, we shall be
is compatible with the equations of motion for a wide class of concerned only with the former type of thﬁorJZ), and in
models. particular with the system given in Ref. 4.

However, if we believe in mcre than Tour dimensions at all
we must assume that at some point of the evoluticn of the
universe the extra dimensions are spontaneously compactified.
This makes it natural to study possible dimensionally reduced
models. These models have Higgs Tields in eddition tec gauge

ields and in many cases nontrivial tono1ogy. Because of t
hi ghe -order terms, which can compensate a loss in the action

* Doymanent address:  Department of Maths.. Phys. frem the rescaling of the lower-order terms, one would also
St. Patrick's Coilege, Maynooth, ' expect to find finite-action (generalized) Yang-Mills-Higgs
Co. Kildare, Ireland. (YMH) solurions corresponding to this nontrivial tonology. .In

this paper, we pursue this idea by examining a mini-model for



pedagogical reasons first and then a more relevant model based
on the dimensional reduction of a 8-dimensional theory7). The
Jatter model is especially interesting because it is endowed by
a nontrivial surface integral.

2. A mini-model

In this section, we analyze the model given by the
Lagrangian

OZP: - %a;v Ei;v + ‘zéghﬁfl I%Q(f >

— (z.1)
+ (4&{)%0> —/{)l+4~ff{v€??,s.

in four dimensions (/A,‘V, cooo= 1,2,3,4) which is just YMH
theory plus the square of the 4-form curvature. We examine this
model because it shares most of the technical features of the
models introduced in Ref. 7. Our notation is

’ﬁbw :%\A‘/—DVA/A A[IAY/;"A\]J, (2.2a)
i%ﬁ %7: S%M(f - %&A(f} (2.2b)
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and a doublet
Higgs field ¢ in the fundamental representation of SU(2).

with anti-hermitean SU(2) gauge potentials A
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Assuming the necessary asymptotic and smoothness conditions2)

3 -z

implies first, that there are pairs of smooth Higgs doublets at

the model is seen to be topologically nontrivial. WT3(S

infinity which cannot be continuously deformed into each other,
and second, that the same is true for group elements L which
characterize asymptotic pure gauge potentials. However, without
the fourth-order terms there cannot be any smooth nontrivial
finite-action YMH solutions as already the following simple
scaling argument shows: If we substitute:

pro— gf(ﬂx)) Aul) — M/,(M), (2.3)

we can lower the contribution to the action of the first three
YMH terms by a suitable choice of A . The effect under this
rescaling of the additional fourth-order term is to compensate
and hence to stabilize the configuration at a finite scale. For
this reason we expect to find smooth finite-action solutions.

To construct such a solution we choose the following
ansatz:

(4 hind, A/A = [A—&cr)]%ﬂ@ifj (2.4)

For this field configuration the action reduces to the
1-dimensional integral

A:j dr {2 LR f’?a&?u’m)’“l
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Notice that for k === 0, A is pure gauge at infinity, and
that the winding number for 2. is one. Given the necessary
smoothness conditions, the Pontryagin index is therefore also
one.

The variation equations for (2.5) read

ﬁé(*ﬁ&‘w: %hJZéﬂ-Z@ﬁ{%>K, (2.6a)
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The important feature of the ansatz (2.4) is that any solution to
the equations (2.6) solves the Euler-Lagrange equations for the
Lagrangian (2.1). The latter are just the familiar YMH

equations augmented by a term resulting from the Af” variation

of the fourth-order term:

\},%ADN: 24 (<4 y>-4)

(2.7)
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Since every term in (2.5) is positive definite the boundary
conditions for finite-action fields are

—s> 1; 0, 1k —0. (2.8)

A~y e N=2

The behaviour of k at the origin shows that there are two
topologically inequivalent classes. If the minimum in the

topologically nontrivial sector (kF::b]) is attained, the
minimum configuration is a sclution. Because of the above
scaling argument there is no reason to doubt that a nontrivial
configuration attains the minimum. To give a mathematically
rigorous proof of this statement one would have to adapt the
technique of Tyupkin, Fateev and shvarts8) to our case.
Finally, we extract the asymptotic form of the solution to
(2.6) at the origin: Because k1, the finite-action
condition guarantees that at worst h goes like r=1*€ at the

origin. Hence, the asymptotic solution to (2.6a) must satisfy
2l /
"+ 3= 3L, (2.9)

which yields h~r and guarantees the regularity of the Higgs
field (2.4). To check the regularity of the gauge potentials
(2.4) we need only consider k-1~ r for 0< < < 1. For this
choice of <, only the higher-order terms in (2.6b) contribute
at the origin which leads to the equation

2L (L-2) =0, (2.10)

This equation does not have a solution for 0 < oL < 1.

Therefore, ¥ % 1 holds and A/~ is regular.



3. The properties of the ansatz

To show that the features of the mini-model are not
accidental and apply to a wide class of models we now discuss in
detail the ansatz (2.4) which we rewrite in the form

A2, A AURI K G

Note that the A/Lm of the Belavin-Polyakov-Schwartz-Tyupkin
instanton?) is of the form (3.1). Here we have introduced the
antisymmetric {anti-) self-dual tensors

- 5/” Ly ) M= ﬂf},iéjv—é/;ﬂx(s.z)

The most important feature of this ansatz is that any gauge
invariant action density depends on r only. Equally important,
we can show that for a wide class of models the ansatz is
compatible, i.e., the equations resulting from variations
orthogonal to the ansatz are automatically satisfield.

The properties stated above do not follow directly from the

]O). This is because the

principle of symmetric criticality
field configuration given by our ansatz is not SO0(4) symmetric
in the sense that any S0(4) transformation Xy = M., Xy,

M € S0(4), can be compensated by a SU(2) gauge transformation.
In fact, we can easily calculate the compensating SU(2)
transformation for ¢ and then check whether it compensates the

same S0{4) transforﬁation on A _: For cf the compensating

/A.

transformation G must satisfy

G M. "2\’% gﬁo - Q/” 7, (/40 ) (3.3)

which yields

G x ¥ .
x/AH/WXV + (3.4)

Mopt ot
P T

Since G depends on QF" (Q/MGG‘L contributes to the transformed
A}k, and G cannot compensate the SO0(4) transformation M of %M_for
arbitrary k.

To prove that nevertheless in our case all terms in-an
arbitrary Lagrange density are Qﬁ‘ - independent, we define

o L4

and the real matrices
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3 (‘4’01”]'95B“< ﬁfk ,n?_d)g)/ (3.6)

\/\/ = 3[((})@)72~¢4‘> +<§[3L’n€)'¢o>)'

These matrices are antisymmetric and satisfy the following
multiplication table:

LU v W

U -1g W -y
- -1y U
W Vv ~-U -1

Because of the antisymmetry and this multiplication table, the
vectors %, 0 = UX, V = VX, and W = WX form an orthonormal basis
of R%. In terms of these matrices and vectors we can now
examine every term in any arbitrary gauge invariant action
density.

Any such term is.a product of terms which are either of the
form

11.
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\[{ %\l ) <q€") (;:\""¢a>+<¢x-)7/:v...<;)f)(3'8a)

or of “1e form

™ T
.{D/h v, |

(0 5
f{_ubv (f)'-’ (3.8b)

where T is a product of the gauge fields F and their covariant
derivatives and Diy stands for a product of covariant
derivatives. This means that for the ansatz (3.1) any term in
an action density is a sum of terms f(r) 4‘#;T;Av-»- ¢> with

(i = <f>o or (‘b= qﬂ and with a product T/Au ... of Q . 's and
W{éw's . If we now insert the identity [$,><do) + l&;:>€fﬁ$l
between each pair of 7)'s, each term becomes a product of xﬁl's
and of matrix elements of U,V and W with r-dependent coefficient
functions. Finally we must contract all indices. Using the
antisymmetry of the matrices and the multiplication table (3.7)
to perform all products of the matrices and of the QP_'S, we can
eliminate all Qf‘ - dependence and are left with functions of r
alone.

We have shown that for the ansatz (3.1) the action density
is a function of r, h and k alone. Thus, we are left with
ordinary differential equations from the variation with respect
to h and k. To show that the ansatz is consistent we must show
that the ansatz is an extremum with respect to all variations
orthogonal to §h-and &k as well.  Because in our case we



cannot apply the principle of symmetric critica]ity]O) we must
discuss the full Euler-Lagrange equations and show that they
reduce to differential equations for h and k. So far, we cannot
show this in general but only for a special class of models.

First, we show tnah each term in the variation equation for ¢
is of the form f(r gl . In fact, for each term the scalar
product with <~4O)~§l 15 one of the terms discussed above and
therefore a function of r alone. 0On the other hand, the scalar
product with < QXL ) QF contains an odd number of V's or
W's which, according to the multiplication table (3.7), we
cannot get rid of. Therefore, eventually the antisymmetry of V
and W makes this scalar product vanish.

Secondly, we discuss the variation equatign for A%A: ATl
terms which do not contain Y are products of x, 's and ﬁzﬁg’g
only with one uncontracted index and r-dependent coefficient
function. For these terms we use

. (3.9)
N B LA N L -
=g iy Dy ot e,
and
* F ™
N M, =3Sd,, A,
/ A /Y Up (3.10)

13.

to reduce the number of al's to one. Because all terms are
su{2) elements, the terms in question must be of the form
£r) M Xy

We now discuss the terms (3.8b) restricting our attention
to action densities in which the terms {3.8b) are on1y Tinear.
Linear terms lead to terms of the form Re< é U~g‘ % >'7ﬂ6
in the equation of motion. Using (3.9) and (3. 10) again, we can
reduce the number of wz's in T;Agg‘ to at mos» three. If there
is no n in T, the term is of the form f{r) qud Xv‘

If there is only one ,? , the real part vanishes. For two 'V s,
we use

/QQ, <¢o) /}Z;j\/q?ji’éo

(3.11)
= 3 <¢0 ){/)Z;\VJ 7;6‘37/72{0

e, 7565

(3.12)
{\
%f é;§‘§;6' /uﬁijT J

and the self-duality of 72—.

The only remaining term is
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which can be dealt with using eq. (3.9). .,
The result is again a term of the form f(r) v Xy

Because of technical difficulties with the above (not very
elegant) method we did not check compatibility for other models
including the one discussed below. However, we consider the
class of models covered in this section wide enough to make
(3.1) a very important ansatz. On the other hand, we consider
the dimensionally reduced 4-form gauge theory important enough
to see how far our technique carries before checking
compatibility.

15.

4. The dimensionally reduced 4-form gauge theory

As motivated in Section 1 we are really interested in the
dimensionally reduced versions of the higher-order gatge field
systems in 4p dimensions, which also have nontrivial topology.
Here, we consider the model derived from the 8-dimensional
system on R* x 52 x S2 in Ref. 7:

'73“ 4 2 ot 2 ‘
L= (BN F g d (g <))

VR Byt

e Gt 3 Ty

1< Gl (S0 2pp2)
(4.1)

z

Loy o e
ki @/A«,ﬂ,jw%;w 244, % >
-4 <DF%QDV79>2+<%%)J/A%>“+ <J/AL{) J)pr@v ‘TP/;D/A]W
+ b &Ed)v«f,? Ve des],

Note that for simplicity we have put the U(1) field f,, from
Ref. 7 equal to zero.
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To reduce the action for our ansatz (3.1) we calculated

<'£ID, Lf?z ,Z»Z) Cmf‘%b/“\[o) = i— ﬂll (4.2a)
LT E o2 2. b pay
%T/M =5 L&+ = b (fa-/()&]/ (4.2b)

DT B
=& [k Ul + 0% (1) 1%+ h &Zé‘*(/z%)z‘
G o= B2 prpeg gy
- <¢{ol\/7fj%g> = %;Z AR izéz(/?%)ﬂ)
‘ — 7 L z U 270 N2
IR (R S b LR L R )]
2 hHL7)?
J (612 2, 6°07)°
) %j)kam d, ‘f,b/ﬁkf’ :( 1z %L%Léa)2+% éf‘//éﬁ
v, va> Zu/z[,/m/%z'f"l/m/éz(k’@f

<$v”)§}f“kf7 (lp>:A /QAE/ML L AR ),

17.

Although it is not obvious from (4.1} and (4.2) we know
that the action density is a sum of squares because it stems
from & = tr ngcd in 8 dimensions.  In particular, we know that
the sum of terms in the second to sixth Tine is positive
definite. The submodel we obtain by substituting (4.2) into
(4.1) is therefore topologically nontrivial. In fact, (4.2a)
and (4.2b) shows that

lp —> 0 (4.3)

’ > 60

5

Ai—_:z ”Z;,/J/ ; OAfr—ao
holds. Again the minimum in the topologically nontrivial sector
is a solution which can be stabilized by the higher-order terms.

What is left to do is to check compatibility and to give a

mathematically rigorous proof for the submodel (4.1) and (4.2)
of the Tyupkin-Fateev-Schvarts typeS). This proof should
establish the smoothness of the solution which guarantees that
the Pontryagin index is equal to the winding number of {1 and
therefore equal to one in our case. Knowing the exact
asymptotic behaviour would also make it possible to decide
whether the Pontryagin index is equal to the dimensicnally
reduced fourth Chern-Pontryagin charge from Ref. 7.
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