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Abstract: The infinite volume limit of the thermodyngmic functions of an ideal
Bose gas with respect to a grand-canonical equilibrium is taken such that the
mean energy density is fixed. Above the critical mean energy density the macro-
scopically occupied ground state contributes to the mean entropy density while
the mean density of the particle number has an infrared divergence. A thermo-
dynamic stability resuit is derived; for a photon gas it means that, if conden-—
sation can be achieved, the condensed state should persist in the presence

of ‘a black perturbation.

1. Introduction

In calculating the infinite volume limit of thermodynamical systems it is
common to assign the mean particle number density p a fixed value. This amounts
to take p as an independent variable of the infinite system. For an infinite
free boson gas in the grand-canonical equilibrium, with p and inverse
temperature B as independent variables, it turns out that the macroscopically
occupied ground state does not contribute to the mean energy density u and

the mean entropy density s [1]. However this is no longer true if the mean

energy density itself is selected as an independent thermodynamical variable.

It is the aim of this note to describe the infinite free boson gas in terms

of B and u, thereby demonstrating the difference, in the condensation region,
to the familiar description in terms of § and p [1,2]. We show that there
exists a critical mean energy density uC(B), such that for u > uC(B) the ground
state is macroscopically occupied. Above uC(B) the pressure p is a constant
with respect to u, p(B,u) = pc(B). while the mean particle number density p
diverges. By this latter fact, a description of Bose-Einstein condensation

in terms of B and u is only relevant for relativistic particles.

We will refer to a free photon gas [3] assuming that conditions can be achieved
where the mean energy density and the frequency distribution are manipulated
independently - for example by lasers of different frequencies focussing into

a reflecting cavity. An infinity of "soft" photons, i.e. photons of an
infinitesimally small energy each, giving rise to a finite total energy density

integral, seems physically reasonable.



The non-zero contribution of the macroscopically occupied ground state to the
entropy density, for u > uC(B), provides a thermodynamical stability argument:
A grand-canonical state (u,B) with u > uC(B) has a higher entropy density than
an unconstrained canonical state with R' where uC(B) <u o= uC(B'). For

u < uC(B), the canonical state for B', with uC(B) >u = uC(B'), is thermo-

dynamically preferred.

Hence a photon gas should be described by a grand-canonical ensemble with py =0
which, because of the phase transition, is mathematically not equivalent to

the unconstrained canonical ensemble. - In the usual textbook treatment this
subtlety is not taken into account. Either the unconstrained canonical ensemble
is used a priori such that u is not defined [4], or u is introduced and set
equal to zero, but the infinite volume limit is incorrectly calculated (see

e.g. [51).

However, strictly speaking, a satisfactory discussion of thermodynamical
stability of photon condensation needs a mathematically reliable theory of
Finstein condensation of interacting bosons which, up to date, does not yet
exist except for some extreme jdealizations [6]. So a complete theoretical

analysis appears at this stage more difficult than a possible empirical

approach.

Let hR be a sequence of self-adjoint operators on Lz(QR,UR) where, for each R,
-h

(QR,UR) is a bounded measure space with UR(QR) =: VR’ and assume e to be

trace classe. Hence
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multiplicity. Introducing the energy differences AE 1= EE - E? we will use

the normalized partition function ®R(B), and its Laplace transformed FR(X):
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where g counts the multiplicity of the ground state. This covers the non-

relativistic Dirichlet hamiltonian of a massive particle [71,
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as well as the single photon hamiltonian for Dirichlet data [3],
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where we refer to a smooth region QRC‘RB, sphere or cube say, with
characteristic length R (radius, edge length), and surface area AR' The index
@ = 41,-1 in (6.a) denotes the two-fold helicity degeneracy of the eigenvalues

of the photon hamiltonian.

2. Infinite volume limit of the thermodynamic functions

In this section we compute the infinite volume limit of the thermodynamic
functions. For an ideal gas of bosons with single particle hamiltonian hR'
confined in a bounded region QR' the grand-canonical expectation values for
particle number density, energy density, pressure, and entropy density are,

respectively, given as
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The functions fR represent the contribution of the ground state, and the
functions fi the contribution of the excited states. The following lemma
implies the infinite volume limit of the functions fz. It is based on the

assumptions (3), (4).

Lemma 1: Given B,-u 2z 0; let r+q > -1, r+q > -1, r+gq+s > O, r+q)+s > 0. Then
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Since AE > 0 for k > g,
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By means of the spectral density (3) we rewrite the summation as an integral:
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In the last equation we used lim XR Nh 0, from (4).
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qed.

To state the limit results we choose the notation
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Corollary 2: For B,-u 2 0, we have
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The infinite volume limit of the thermodynamic functions (7)-(10) can be

obtained by the following lemma.
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For fR 1= ff + fz, and any fz 0, let uR(f) be the unique root of
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is the unique root of
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The proof of Lemma 3 is an exercise in elementary analysis.
Now we observe in (12)-(14) that for fixed B the functions
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Therefore the infinite volume limit of the thermodynamic functions is an
immediate consequence of Lemma 3. We choose the mean energy density u as an

independent variable.

Theorem 4: Let u,B 2 0. Define
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The pressure behaviour is obtained as follows: For U < uC(B), u(B,u) <0,

Then we have hence lim PR(B,UR(Baﬁ)) - 0. For T > UC(B),
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3. Thermodynamic stability

Let us assume that we control an ideal boson gas by two independent
restrictions giving rise to a grand-canonical distribution with an inverse
temperature value B, and a mean energy value T. Now we go on to fix the value
@ of the mean energy density, but we remove the B-restriction. The state which
maximizes the entropy subject to one restriction only is the canonical state.
For the infinite boson gas the inverse temperature B' of the canonical state

corresponding to a mean energy density U is defined as
(28) w, (R) =

This suggests to compare the value

(29)  S(B|) := _> s¥s, 1B T))

of the entropy of the grand-canonical state with the value

(30 5(f) = 5. (f,0)

of the canonical state.

Proposition:
(31.a) S.() > S(A T), u <uU(f),

(31.b) S.(B) < s, m), U > u (f).
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qed.
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4, Application to a photon gas

We spell out Theorem 4 for a gas of free photons in a reflecting cavity. The
single particle hamiltonian has to refer to Dirichlet data and is given by (6);

assumptions (3) and (4) are satisfied. We have

(32) a = L1y =2 . = 1. = N
Trl<t’lC) s 7 ’ 71 1,- 7& 1;' ?’ 2.

The parameter R stands for the edge length of a cube, or the radius of a sphere
etc., and VR for the volume. The involved values of the gamma function are

T(q+2)=6, T(q+1)=2.
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Bose-Einstein condensation in the sense of macroscopic occupation of the ground
state is given by equation (37). The infrared-divergence of the mean particle
number density for over—critical mean energy density is given by (38).

(39) expresses the equation of state of the photon gas. Beyond the critical
density an increase in energy leaves the pressure invariant. The excess energy

is absorbed in the ground state which does not contribute to the pressure.

To assess the thermodynamic stability of a grand-canonical state of a photon
gas we introduce, in line with the common approach [8], a perturbation by a
black body which shall not affect the value U of the mean energy density.
However, by absorption and emission of photons in the course of time, this
perturbation removes the B-restriction. In this situation Proposition 6 states
that, below the critical density, the unconstrained canonical state is thermo-
dynamically preferred while, above the critical density the grand-canonical
state is preferred. This means that the photon gas is properly described by

a grand-canonical state with inverse temperature B and chemical potential u=0.
Because of the phase transition the grand-canonical state with p=0 is not

equivalent to the unconstrained canonical state.
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5. Discussion

1." In this note we have described an infinite ideal boson gas in terms of
the inverse temperature B and the mean energy density u, in contrast to the
traditional description which uses the mean particle number density P instead
of u [1=6]. In the normal regime both descriptions are equivalent. Equally
any two other variables could have been singled out, including the pressure.
The differences emerge in the condensation regime. For De(B,O) < p <o the
ground state neither contributes to the energy density, nor to the pressure,
nor to the entropy density. For uC(B) < y < o, the particle number density
diverges, and the ground state contributes to the entropy density, but not

to the pressure (Theorem 4). For pe(B,O) < p < =, a similar calculation implies
divergences in the particle number density, in the energy density, and in the
entropy density; this is just another way of saying that the pressure cannot

exceed the critical value pe(B,O).

2. In the limit where the mean particle number density is fixed the spectral
requirement for Bose-Einstein condensation is q > 0. In the mean energy density
limit it can be weakened to q > -1 which coincides with the requirement for

the existence of the Laplace transformed of dF(A)/dA.

3. ‘Under a Lorentz transformation with velocity v the mean energy density

/2B

transforms as u > (1—(v/c)2)_1u, the inverse temperature as B * (1—(v/c)2)_1

. . -4 . .
[9]. Since uC(B) is proportional to B ~, the condensed density u—uC(B) is not
invariant under Lorentz transformations. This indicates a spontaneous break

down of Lorentz invariance.
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4. The hypothesis of a Bose-Einstein condensation of photons is not unknown
in the literature. In [10], admittedly speculatively, P.T. Landsberg suggests
the photon condensate to be matter. In [11] some aspects of the problem are
exposed. The same suggestion was advocated by P. Roman and C.F. v. Weizsdcker
[12]; J.D. Becker and L. Castell [13] discuss it in a cosmological framework,
but the basic assumption of a finite radius of the universe is mathematically

incompatible with a phase transition.

From a mathematical point of view a finite cavity can be taken as an element

in an increasing sequence of enclosures to spell out the meaning of the thermo-—
dynamic limit. Equally the thermodynamic limit can be held as a mean to extract
the dominating behaviour of a finite system. In this view the apparently para-
doxical fact that a state with non-vanishing energy is built up by photons

of limit zero energy is resolved. At the same time a physical meaning for the
condensate is provided: The lowest energy state in any finite reflecting cavity
is given by a non-vanishing electromagnetic wave. In the case of macroscopic
occupation of the ground state, a monochromatic, necessarily coherent wave

is formed in this state [3]. - A priori, this view, on a cosmological scale,
appears not to be in conflict with the above mentioned condensation hypothesis

of matter.
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