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the gauge group SO(3) with the Higge field in the adjeint representation . To avoid

the corplications duo to gauge freedom gauge invariant fields are intrduceo an used

throughout . From topological and continuity considerations it is argued that

the cr1j regular axially symmetric magnetic charge distributions permitted are iso—

laEed charges of umforn strength ana alternate sign located aoog the aais of c”mm

etry . In particular , if there is only one sign , the magnetic charge mus he bc—

ar.ed at a single point For a zero Higgs potential the minimal energy ( Lies: order

Eagcmaluy ) field equations take a simple form when written in terms of the gauge—

am: fields . In general there are nine equations for nine ( axially ynem—

e:rc ) fields , but these reduce to five equations for five fields if a furcher

sym-.o:ri ( invariance under reflexions in planes through the axis of avrrmetry ) s

lemarkably , four of the equations are the same whecher the reflexion

symmetry is i,iposed or not , and those four equations can be ccoploteiv solced in

of a masar poteatial From these and the remaining equations ( j’c one

:ae of mirror synanatry ) the asymptotic behaviour of the functions at lags

distances and in the neighbourhood of the origin ( the location of the charge ) ic

oi.:ined and studied in some deteil
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Abstract

Axially symmetric finite energy monopole configurations are invesrgatec. fcr

L Introduction

The discovery of the complete set of finite—action solutions to the

static 4—dimensional self—dual Yang—Mills equations (instantons) has revived

interest in the problem of finding finite energy solutions to the etatic 3—

dimensional Yang—Mills—Higgs equations (monopoes). So far, only the

spherically sytneetric solution with unit magnetic charge has been found

explicitly 2 but recently multi—reonopole solutions have been shown to exist

The existence is shown for the first—order (flogomolny) field equations vhch arc

obtained in the Prasad—Sommerficid limit in which (for the gauge—group Sn(3) end

the Higgs field in the adjoint representation) the Higgs potentias is e: equ.l

to zero. So far the proof is valid also only in the case the magnetic charges ae

isolated and of equal strength unity. (The chargen should he expected to have the

same sign in any case since otherwise even the long—ranpe forces between then do

not vanish ‘ ).

• in the present paper we wish Co study axially—symmetric configurations

for the gauge—group SO(3) and the iligga field in the odjoint representation, both

from the point of view of the topology and of the field equations. To avoid the

problems of gauge freedom we introduce fields which are gauge invariant and use

there threugheut ( such fields will in general have string singularities

Our results come under two headings. First we rederive a result concerning

the charge distribution which we have already reported elsewhere , using the

gauge—invariant fields Co strengthen and generalIze it. The present result is coat

any regular axially avarretric charge distribution can be located only at isoleted

points situated on the axis of symmetry, with equal and opposite values of the

charge at alceroate points. In particular, if only one sign of the charge is

allowed, then all th charge must be concentrated at a single point. This result

is suprisivtg since we should expect any colinear chargo configuracons, tn

gicular the 2—seonopole configuration, to be sycric about the axts of colinearity



Apparently, the axial symmetry of the topological charge does not necessarily

imply the axial symmetry of the fields. The result may, perhaps be understood

by considering the standard example of a 2—monopole system 6
, where the Riggs

field breaks the axial symmetry by rotating about an orthogonal axis as one

proceeds from one nionopole to the other.

The second set of results concern the field equations. These will now,

of course, be equations for single monopoles with charge located at the origin.

They are derived from the static Hamiltonian

(1.1)

where is the Riggs field, the static magnetic Yang—Mills field

÷ (1.2)

V the potential, and the inner product is in isospace. In the ease that C SO(3),

is in the ad joint representation and V( ) is zero (and is replaced by the

boundary condition ( , — Sc.’ , as r — ) the Hamiltoniar. (1.1) can be

re—written as

i-i $ — D 4- 4iC. Q • (13)

where Q is the topological charge, and hence the field equations which minimize H

are the first—order ‘self—dual’ equations

= D (1.4)

which we shall refer to as the Bogonolny—Prasad—Sommerfield (BPS) equations. This

is the system of equations for which the multi—monopole solutions have been shown

to exist and which we shall study in the axially—symmetric case.

ifl general the BPS equations (1.4) constitute nine equations for twelve

functions (three functions corresponding to the gauge freedom). By introducing

the gauge—invariant fields we reduce (1.4) to nine equations for nine functions.

Axial symmetry removes the azimuthal dependence of these nine functions, but,

being an abelian group, does not reduce their number. Nevertheless, in terms of

the gauge—invariant functions the equations take quite a simple intuitive form and

split naturally into two quartets and a single elliptic equation of the form

(1.5)

for the norm h of the Riggs field , where O is a positive functional of h

These equations are presented in section 5.

The nine equations for nine unknown functions of section 5 can be reduced

to five equations for five unknown functions by imposing a further symmetry, namely,

symmetry with respect to reflexions in any plane through the axis of axial symmetry.

A remarkable result is that four of the nine equations (one of the quartets

mentioned above) remain completely unchanged by the imposition of this reflexion

symmetry, and these four can be solved completely in terms of a single function,

which we call the master—potential. The solution is given iii section 9.

In the reflexion symmetric case there is only one further equation to

solve, namely (1.1), and this can be considered as an equation for the master—

potential. As it may be difficult to obtain exact solutions to this equation we

concentrate for the rest of the paper on the asymptotic form of the fields at

spatial infinity and at the origin, where the charge is located. At infinity it

is shown that most of the fields fall—off exponentially, and we obtain exact

solutions for the remaining fields when these fields are neglected. These exact sol

utions are singular at the origin but serve as asymptotic values for the fields

in question, and they can even be used to improve the estimate for the fields which

fall—off exponentially. At the origin the behaviour of all the fields is shown to

be determined by a set of Legendre and associated Legendre functions and a number

of free parameters are permitted. These parameters probably correspond to those

predicted by Weinberg on general grounds (index—theorem).

Finally, in view of the central role (1.5) plays , this equation is

derived in section 2 for arbitrary gauge—groups , arbitrary representations of
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the Riggs field , and arbitrary ( not necessarily axially synmotric ) field con—

figurations . The functional 0 is given , in general , by the equation

(Ø, D) + 2Vz) , where -
(l.S)

and prime denotes differentiation . It is shown for certain classes of

potentials, including non—decreasing functions of h2 and renormalizable pot—

cntials, that (1.6) implies the bound

J(x.) < C , where as r — .o . (1.7)

In conclusion it should be mentioned that not all of the reoults

presented hero are new. The existence of a master—potential was noted in ref. 9

the boundary conditions on the axis of synsaetry were discussed in ref. 10, and

finally, the boundary conditions we obtain have been derived independently for

the mirror—syetric case by S. Adler and P. Rossi . We are grateful to

Prof. Adler for communicating his results to us and for discussions concerning

them.

Note added After this paper was completed an explicit Q 2 .ono—

La

pole solution was constructed by R. Ward using the self—duality aspect of the

Bogoaolny equacions The solution describes a single monopole of charge 2

which is located at the. origin and is axially Symmetric.

2. 1ation and Bound for the Norm of the Riggs Field.

We begin by obtaining eçns. (1.6) and (1.7) for the norm of the Riggs

field for any gauge group and any representation of the Riggs field. Writing

where 1., (2.1)

the Hatailtonian (1.1) becomes

(2.2)

Note that the cross—term in vh and D drops out because of the normalization

of . On varying (2.2) with respect to h we obtain (1,6) as reçuired.

Equation (1.6) implies that

+ 2Kz(D, D) + 4VR), (2.3)

and this equation can be used to obtain the bound (1.7) fo certain classes of

potentials. Let us consider three classes.

(i) V(h2) non—decreasing. Then (2.3) shows that h2 is a eubhartoonic function,

and hence automatically satisfies (1.7). flowever, unless V 0 this result

means that for such potentials the finite energy solutions must be trivial

since finite energy requires that V — 0 as Y — 4

(ii) V(h2) O.In this case (2.3) still implies that h2

the finite energy imposes no condition. Accordingly

with any boundary value 2.

(iii) V(h2) renormalizable and bounded below: Then V(h2) must be quadratic in

h2, and assuming Chat it is not inonotonically increasing as in (i) it

must be of the form

V(k) X(-c’j , .
(2.4)

This will be recognized as a spontaneously broken potential. The constant c has

been chosen so that as V 0 at trO • In this case h2 is

is subbarnonic and

h satisfies (1.7)



p,i = —

not subharmonic, but, nevertheless, if h2 is sufficiently smooth, it can be

shown that (1.7) still holds. For suppose not. Then the maximum of h2 would be
,. z

at 1. > C , and since at the macimu!n is negative, the two sides of

(2.3) would have opposite signs at this point. Thus (1.7) holds also for

renormalizable, spontaneously broken, potentials. Note that by substituting

eq. (2.3) in (2.2) one sees that is integrable.

In the case that we shall be concerned with in this paper, namely

C SO(3) and in the adjoint representation we can obtain an insight into

the meaning of 0 by linking it to the current J which appears in the second—

order field equations

(2.5)

because in that case J is given by

‘rd. , where - (2.6)

the wedge denoting the usual SO(3) outer product. Hence

= (D ) and + (2.7)

Thus for C S0(3) and in the adjoint representation 0 consiss of a

potential term and the square of the normalized current.

In the case when SO(3) is spontaneously broken the only long—range fieLds

are the electromagnetic field (belonging to the unbroken SO(2) subgroup) and

(if V 0) a neutral Riggs field , and for both these fields there is no currant.

Since the remaining fields are massive and hence may be expected to fall—off

exponentially we should therefore expect j and hence Q to fall—off exponentially

as r —. ô and we now give a heuristic proof that such is the case, at least in

the Bogomolny limit (1.4). In this limit , (2.6) can be written in the form

(2.8)

and hence from (2.5) and (1.4) we have

(2.9)

At first sight it night appear that the first term on the right—hand—side of

(2.9) should dominate since B has a long—range component and we are expecting

.3 to decay exponentially. However, the long—range part of is abeliañ and drops

out in the wedge, product, as can be seen explicitly from the identity

= + Z(,c’ (2.10)

which follows from (2.8). This identity shows that not only is B B not dominant,

but it may even be neglected, because the finite—energy conditions h —iC , J—.’ Q

and (,B) .-+ Q • show that each of the terms in (2.10) is dominated by J(the

first becausejJl2’<( jJland the second becausej(3
, ) < Thus we have

‘the asymptotic equation

— (2.11)

as r —poG . Taking the covenant curl of this equation, using the identities

(t3) o , (2.12)

which follow from the definition of J and the Eianchi. identity in (2.S) respectively,

and again neglecting terms of order Scompared with ?iI, we obtain the

covariant Helinholtz equation

c
(2.3.3)



in the asymptotic region. This equation exhibits the exponential decay of .3 and

-4
hence of

In section 12 we verify the exponential decay in more detail for the

axially syetrie case.

3. AStricCauae—Invarinnt Fields for SO(3).

For the rest of this paper we limit ourselves to the case in which the

gauge—group is SO(3) and the Miggs field is in the adjoint representation

There are then twelve fields altogether ( nine ‘s and three ‘a ) and three

of these correspond to the gauge freedom

We wish to impose axial symmetry ( around the z—axis ) and to avoid

the usual complications due to gauge freedom we shall introduce instead of

the twelve fields ( , ) nine gauge—invariant fields C A , qfl ) . The

proceedure is as follows : We introduce an orthonortnal triad t , a 1,2.3

with , and
‘2 ‘

‘‘l
arbitrary but related to the

covariant fields .3 . The base vector ..y1 is well defined except at the zeroes

of and in appendix B it is shown that for any real analytic fie1d satisfying

the field equations these zeroes can be only at isolated points on the a—axis

( and possibly isolated rings around the axis ). Since ( , ) 0 , the

base vectors , i.J3 are wall defined everywhere except at the zeroes of .3

and in appendix B it is shown that these zeros can only be the whole z—axis (

and possibly isolated rings around the axis ). Thus in principle the space can be

covered by an overlapping set of such non—degenerate triads C ‘.J,, ‘.X2, .J3 )

constructed from the fields except on the z—axis ( and possibly rings around it ).

Note that although the region where the triads are well—defined cay not be

simply connected, the vectors J1 /1Ij, etc. are single—valued

because they are çuotients of functions which are single—valued throughout the

whole apace

In practice however • to obtain the field equations it will be

convenient to chose the single triad defined by

(3.1)

because of its relationship with the axial symmetry . Although in principle the



cried (3.1) could become degenerate on some 2—surface, this does not appear to happ— 4. pogical Charge Density, Hemiltonian Density aEuations

en and in any case should not affect the content of the field equations,which for the Fields

are self—consistent even at points where 0

From the orthogonality of the —basis in (3.1) we have In order to express the topological charge and Hamiltonian derivativesa

in terms of(,-) it is convenient to introduce the formal curvature tensor
(D) 4(t’..j = o (3.2)

from which we see that the D.5have the expansions (4.1)

If the topological charge density Q,() is then defined in the usual way as

•D y ç i..Y , where A () = 0 ‘ac) . (3.3)

Q() V.f(x) , where (&) (j3)(Ø,Dx Dç) (4.2)

There are actually only eight A —fields because from (3.1) we have — —

is the Maxwellian magnetic field, a short calculation (appendix A) shows that

(3.4) f(x) is simply

where the subscript* denoted azimuthal component . The eight —fields are = . . (4.3)

gauge invariant by construction , and are single valued wherever they are

Thus the Maxwell field can be written as the curl of an SO(3)—invariant. Of course,
defined because they are quotients of single—valued functions . Together with h

the fact that f is a curl means that, just as in the Dirac monopole theory, we can
these eight fields constitute the required nine gauge—invariant fields cA ,‘v )

have a monopole only if A (and hence the triad W )has a string singularity.
Because of their gauge invariance axial symmetry is trivially implem

ented on ( .AL. ) From ( Z.Z) one finds that the Hamiltonian density takes the form

0
- (3.5) 2 b.

v) - ÷ Lc)--vo). (4.4)
—

where S/d is the azimuthal angle . Thus axial symmetry is simply the statement This 1-lamiltonian exhibits the Higgs mechanism explicitly, with’mass’ h. (The

that .A and h arc independent of * apparent ‘gauge—freedom’ corresponding to rotations around the —axis is

forbidden by (3.4) ) . The second—order field equations can be obtained from

(4,4) in the usual way, but we shall not consider them here (especially as chey

correspond only to extrema which are constrained by axial symmetry). Instead we

consider the limit V — 0, when the absolute minimum can be obtained by the

Bogomolny trick. For (4.4) the trick consists of writing it in the equivalent

form

3t)5÷ — (71 ¶),%‘OC. 4C),
(4.5)



5. Se2aration of the Azimuthal Components. Explicit Field Eqons.
Using the Bianchi identity

7.
+
‘‘ ‘3 ‘ (4.6)

the last tern in (4.5) is seen to be a pure divergence, and using (4.3) its

integral is identified with the topological charge. Thus the energy is

minimal when the squared—terms in (4.5) are zero, and so we obtain the EPS

equations

= —1 , (4.7)

Clearly (4.7) contains nine equations for the nine unknown fields

Finite Energy Bounds on the seperate fields are obtained by noting that (4.4)

is a sun of positive terms

For practical purposes it will be convenient to separate the azimuthal

and mon—azimuthal components of theA—fields,by setting

where z (Z,,.i,2. From the axially symmetric condition (3.5)

curvature tensor separates correspondingly into

(‘+tu))

= (ç(-a,÷ kt),

and the Maxwell field ±(x’)into -

(5.1)

= €, E

The ilamiltonian density takes the form

= i.’-) 7) j, (5.4)

where the 3 ‘s are given by (5.2), and the nine EPS field equations can be

written as

r E1n.,? =

(5.5)

+ vt ,

and

4. u.v) 0

r tt’) = 0

‘bv.. + €. V —

(5.6)

(5.7)

The nine equations have been separated into the sets (5.5)(5.6)(5.7) for the

following reason: The first quartet of equations (5.5) are independent of the

the formal

(5.2)



four fields in (5.1) and the last quartet (5.7) are linear in these 6. Geomet cal Interpretation of (k,b) and Relationship with Conventional

fields. Hence if we set 0 we obtain a consistent subset of five ial Symmetry.

eqns. (5.5)(5.6) for the five variables ( ‘h.., ‘b, , t ) and the first four

of these equations will remain unchanged. Thus any solution of the BPS A geometrical interpretation of the azimuthal components A. (b,o,.)

equations will be an extension of the simpler set (5.5)(5.6) with t, — — 0
may be obtained as follows: First, from the >b —invariance àf the inner—

This circumstance is not accidental, but due to the fact that ‘c and product ) we see that and are orthogonal and then from

can be eliminated by imposing a further symmetry, namely the reflexion symmetry the definition of ‘t.J, we have

discussed in the next section. What is remarkable, however, is that the quartet

(5.5) remains unchanged, even when thereflexion—symnetry is not imposed. In the
W.Y . (6.1)

mirror—symmetric case the full set of equations for the five functions ( k. . Similarly from the ‘ye’ —invariance of the inner—product ( D.$ , ) we see

are just (5.5) and that and are orthogonal. Hence lies in the

( tJ )—plane and it is easy to check that the expansion coefficients are

(5.8)

= (6.2)

and the Hamiltonian density (5.4) reduces to

•FurChermore, from the definition of as $ we find that

)(÷ (Ltç + - ÷ (e

I - (÷ )() 0• (6.3)

I. (is. 4.
u,jz) (5.9)

Thus the 2—space spanned by and is an elgenspace of

•The fact that the quartet of eqns. (5.5) are common to both the mirro—symmatric with eigenvaiue —+‘i) . Since for each x. , is a

and non—raflexions)etric cases is fortunate because, as we shall see, this . real antisymmetric matrix it follows that , and hence L5. , must be

quartet can be solved explicitly.
— zero on the orthogonal 1—space i.e. we must also have

where ‘U ‘btJ1 (6.4)

and this is easily verified directly . Thus finally we have that the vectors ¶.J

and both lie in the (‘iJ. ,l.J.)— plane ( perpendicular to ) and are

orthogonal to each other . Note that 1%) is related to ‘ and O by

(x,r) i-, (r,) .
(6.5)



= x. ÷

ard hence

e.;.* D

(6.9)

which includes (6.4) as a special case

In view of the importance of the vector Y , it is worth remarking that

i can be defined directly using any non—degenerate basis by writing

(J -
. cc (6.12)

It is easy to verify that t.is independent of the basis chosen and has the

• required property
To conr.ect these results with the standard formulation of axial symoetry

we first note from (6.l)—(6.4) that o (6.13)

D, tJ, (6 6’ ...f all inner products ot covenant quantities are ‘—irdependent Since w is

It’ other words ..J implements the covariant derivative On the other independent of the basis it z. well defined everywhere that a ba6ls ex aLa

hand the conventional definition of axial syTmuetry is that which we have seen to be the compliment of the s—axis ( and possibly some rings

.
around it ). We shall see in the next section that the limit as we approach the

‘i-) = ) , (6.7)
. a—axis presents no real problem.

where ,Cx,e) is an a’—independent orthogonal matriç in isospace , which is a smooth

defornation o a co’stant matnic RC) Hence o differei iatiom we hve

. where X (VR.. a)6 (68)

rd is a smooth defornation of a constant vector Comparing (6 8) with (6 6) we

see that

whicn is the requirLd relationship For future refe’ence we note that , from

eqution (b o) we have

=

= E (6.10)

(6.11)



7. Topological Charge Distributions.

It has been shown by Taubes Chat in at leabt one gauge solution to the

BPS field equations (1.4) are real analytic and hence that the zeros of the.

norm h can be located only at isolated points or on isolated curves and surfeces.

Furthermore, since h’—-c as .o , the curves and surfaces must be closed,

and then, since h is subharmonic, the surfaces are ruled out. Thus the zerns of

h, and hence the possible locations of the topological charge, are at isolated

points or on isolated closed curves.

In the axially sytmietric case such distributions would include a priori

horizontal rings centred on the z—axis and isolated charges of arbitrary strength

or the a—axis itself. However, it seems that not all such solutions are allowed.

Indeed the only permissible ones seem to be isolated charges of uniform strength

and alternating sign on the z-’axis. In particular, if the charge has only o,tr

sign (as required by the BPS equations) then it would seem to be concentrated at

a single point, corresponding to superimposed monopoles at that poin

These results follow essentially from the expression (5.3) for the

Maxwell current. For let V be smooth volume of revolution either not intersecting

the z-axis (torus) or intersecting the z—axis at two points (Z1,Z), let S be the

surface of V1 L the projection of S on the (xz)—plane and t any smooth parameter

for L. Them from (5.3) we have for the charge Q. contaIned in V

=
LL,

where Eb] denotes the values of b at the end—points of L. Now suppose first

chat there is a ring of charges. Since the triad L) is assumed to be well—

defined except on the z—xis and on isolated rings we can surround the ring of

charges with a torus on whose surface iJ, , and hence b is well—defined.

Letting the volume in (7.1) be such a torus the curve L becomes a closed ring,

and hence Eb] is zero provided that b is single—valued. But we zecall from

section B that b is single—valued wherever it is defined because it is the

quotient of single—valued functions. Thus the term [b]L in (7.1) is indeed

zero and we conclude that there cannot be a ring of charges.

Consider next the points on the z—axis (‘ 0). For regular and

h we have

(7.2)

, for 0 (7.4)

point now is that n2 is the same integer for all a because

apperd.x C , equation (6 11) imp1ie that in the lim C — 0

finite and independent of z . If we now let the smooth volume of

V above be simply connected and intersect the a—axis at two points

z2 ( where h 0 ) the line L is no longer closed, but is a curve

and z2 and so for the topological charge inside such a volume

from (7.1)

= — (75)

Since h(z) 0 a 1 2 we see from (7 3) and (7 4) that

Hence by taking the limit of (6.1), as — 0 we obtain

‘‘O for =.0 (73)

ruitnermore, sin%..e must be periodic in )ta and the eigenvalues of on

periodic functions are + in where n is an integer, we seeS from (7.2) and the

limit of (6.3) that

The crucial

as shown in

2 2.
b +.c is

revolution

z1 and

joining

we have



8. Reflexion and Vertical Symmetry.

and hence that

= o I fl (7.7)

Since the

once that

in sign

be located

describe a

this paper we shall work under this assumption

Alternative derivations of the result of this section , using somewhat

different assumptions have been given elsewhere . In reference 5 the result is

proved assuming the existance of an J which is regular everywhere , and

satisfies (6.6) , and in reference 13 the existance of a regular J is

established using the Bogomolny field equations and the fact that the fields

are real analytic

volume V. may contain any number of isolated charges , it follows at

must all have the same magnitude n and must alternate

if only one sign is allowed the total charge n must

point . Thus the BPS field equations (4.7) must actually

the charge located at the origin and for the rest of

symmetry referned to in sect. S is symmetry with

of reflexions in the planes through the z—axis, and

number of fields occurs because the combination of

axial symmetry group is non—abelian (it is a semi—

practice, on account of the axial symmetry, it

reflexions in any single—plane (the xz—plane say) and

number of A-fields occurs because four of them are odd

R1 in this plane.

To determine which of theA—fields are odd, we need to determine

first the —parities of the base—vectors ‘$.. . From the original BPS

equation (1.4) we see that is a psuedo—scalar with respect to any

reflexion. Since is odd with respect to it follows that the

—parities of ( , ) are (—1, 1, —1) respectively, and since

the O.. are even with respect to , it then follows from (3.3) that

the R. —parities of the.A—fields are as follows

even; odd .

Thus ref lexion symmetry eliminates four fields by imposing the condition

0, (8.2)

and in terms of the separated fields this condition is just

ç O,or 0, ), (0, 0) , (8.3)

0 m2’, (7.6)

these charges

In particular

at a single

system with

The ref lexion

respect to the group

the reduction in the

this group with the

direct product). In

suffices to consider

the reduction in the

under the reflexions

as stated in section 5.
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A second syssnetry which is admitted by the BPS equations of

section 5 is the ‘vertical’ symmetry z , with the parity

assignments

(h,.., u) even , odd; (t1, v2) opposite to () (8.4)

The vertical symmetry completely conrnutes with axial and reflexion symmetry

and fixes the origin on the z—axis (Note that without vertical symmetry

the BIS equations are invariant with respect to translations in the z—

direction).

Finally, to make contact with standard results we remark that in the

spherically syntuetric case the fields (8.3) and the norm h of the Higgs

fields become

z KO)
u,,— (8.5)

where r is the polar radius and Uv) and the original two

independent spherical symmetric fields 1,2

9. Solutions of the First Quartet. Existence of a Naster—Potential.

As pointed out in section 5, the quartet of equations (5.5) is

common to both the axial and axial + reflexion symmetric cases, and we

now wish to solve these equations explicitly. First, we note that (5.5)

contains linearly and without derivatives, and hence can be solved

explicitly for U,, to give

________________

— + 1)
— rh.2

in the remaining two equations we obtain

+ z . (9.2)

To solve equations (9.2) we note that they are almost of Cauchy—

Riemann type and it is then easy to see that they imply the existence of a

scalar function W , unique up to a constant, such that

DW
=Kb, ‘=h,’, (9.3)

Thus W acts as a master potential from which the functions 1,’b’k (and U)

are obtained by differentiation. The existence of W with the properties

(9.3) is the full content of the quartet (5.5).

In practice it is sometimes convenient to replace W by the related

family

W — ÷ &r ‘

where m is an integer, and then the analogue of (9.3) is

(9.4)

z

=

Reinserting this result for



From (9.5) and the bound (1.7) we see that the W,,,, are superharmonic

functions, and that W0 “is non—increasing in . On the other hand,

we shall see that W where n is the topological charge, has the best

behaviour on the z—axis.

In the spherically symmetric case, the known solution is

generated by

and (9.5) implies the well—known algebraic relation

+ = ÷

(9.6)

(9.7)

between the two spherically symmetric functions )-liand X.(r).

The existence of the master potential W , and the fact that it is

independent cE reflexion symmetry can be seen from the following alternative

and more direct derivation of equation (9.2). In the condition of axial

symmetry (6.11) of section 6 we insert the BPS—equations (1.4), giving

Hence we can write

(9. 8)

10. The Second Quartet

It might be asked whether the second quartet of equations (5.7)

for the four non—reflexion—syametric functions could be

solved in a similar manner. We have not studied this question in detail,

but one sees by inspection that the variables can be eliminated

algebraically to give

= (+ Si€pVi/. (10.1)

Inserting (10.1) in the remaining two equations and using the first quaret

w then obtain the following two equations for the V

+ = 0

- o.

(10.2)

These equations will be useful later for studying the beh;viour of

V4 in the asymptotic regions ‘—o and v—?. o

(10.3)

and

= —z

= (_ ) ÷ (, D.()

= + (9.9)

Eliminating the factor (t. , ) by combining these expressions we

obtain

÷ z EV(”,) (9.10)

which, from (6.5), is the required result
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13. Ic Behaviour of the Fields as r—.*o.
and hence has the required exponential fall—off. In sector (b) eq. (12.2)

reduces to
Once k (and V.. ) are known to fall—off exponentially more

- . . . .

= C ÷ s 4— C. precise information can be obtained concerning the asymptotic behaviour o all

the fields. For simplicity we again consider only the reflexion syasnetric case,
On making the substitution

leaving the general axially syrmnetric case to section 15.

e,, ( Ej.) , (12.6) First, from (5.5) we see that in the ‘exterior’ region where k and

are neglected completely, the remaining two variables h and b aatisfy just
eq. (12.5) reduces to the Helmholtz equation

the equations

(12.7)

(13.1)
which again has the required exponential fall—off ( (—cv)).

It is easy to see that (13.1) implies that h is a harmonic function, and indeed

that there exists a harmonic function U. such that

= a , and b , (13.2)

This is the full solution of the field equations when the exponential terms are

neglected. Since the corrections to (13.2) are of order and U. one may

therefore write for k and b the rnultipole expansions

kc,_F+ ra4...+O(e’
(13.3)

+÷Qce

Note that the dipole moment = o and all the other terms which are odd in a

vanish if we have vertical syrmetry z —

Using (13.3) in turn we can improve the estimate for k obtained in

the previous section. In the sector (a) it suffices to verify that (13.3) makes

no difference to the leading—order terms in (12.3) and hence that the estimate

(12.4) is already the best one to this order.



In the sector (b) on the other hand, if expansions (13.3) are inserted

in (11.4) they modify. (12.5) to

‘

(13.4)

.L -•c.r
It = r

‘ and (9)

where CG and is regular for all B, O B Tt

and (1—))—z,q’() . (13.6)

Thus in sector (b) the asymptotic behaviour of k is given by

, (13.7)

where satisfies (13.6). Note that when the dipole moment p. vanishes (as in

the case of vertical symmetry) the only regular solution of (13.6) is const.

Then (13.7) and (12.4) coincide and (12.4) gives the asymptotic behaviour at all

angles.

14. Behaviour of the Fields at the Ori.

In section 7 we saw that any axially—syrmnetric charge distribution

must be concentrated at a single point, which we take to be the origin.

Furthermore, we have the conditions

= lI+ (kIt)

Since eq. (l43) is just the associated Legendre equation it shows that the

leading behaviour of hk at r 0 is just

(14.4)

and if we now make the substitutions,

(13.5)
5. 5..

‘ ‘ (all z) and It = C) ( 2. 0 ) (14.1)

on the z—axis (&O )•

We now wish to determine the behaviour of the fields in the neigh

bourhood of the origin r 0. For simplicity, we consider first only the five

reflexion—symmecric functions( ), leaving the other four functions

( t.. , ) to the next section (where we shall see that they do not alter the
3results). We shall also use the results of Taubes to assume that the functions

are regular at r — 0. From (5.9) we see that the finite—energy condition at

= 0 implies that

b — 0 , and — 0, (14.2)

and using these conditions and (14.1) we find that the leading terms in the

elliptic equations (11.3) and (11.5) for hb and hk may be written as

k) z (5.),
(14.3)

t..- r- ?(Cos6) , (14.5)



w:ere is an associated Legendre function of the first kind. From eq.

(14.4) we see that the leading behaviour of hi) is deternined either 1r a

solution of the homogeneous equation (1o) 0 , or by a special solation

of the form D to one of the equations

= , A = ((ri
whichever of these three is regular and dominant But any power—liko solution

of the first equation in (14.6) which is not harmonic is of the form

and hence is not regular . Similarly , any non—homogeneous solution to

the second equation is of the form — for m n which implies that

hb < hk • and hence b < k , as r — 0 , in contradiction to (14.1) . It follows

that the leading term in hb has to be a solution of the homogeneous equation i.e.

< (14.7)

where P is a Legendre polynomial. The condition $ < m is imposed so that

b k, in contradiction to (14.1).

Collecting these results together and using (14.1) we find that the

leading behaviour at the origin is

.s <i’

r((EP(E p)

where and E are constants and n is the topological charge. Note that

vertical syetry (section 8) would require s to be odd and (rn—n) to be avert.

Note also that in the special case m n

and that the special cases s m n and s 1 m — n would appear to be the

most However, in the case s — m — n vertical symmetry would reguire

that the topological charge n to be odd.

Using (14.8) the estimate (14.1) for can be improved to

= j. P(c0e) (14.10)

and whenever s<m the estimate (14.8) can itself be imrroved as follows:

since from (14.8) 1.— as r—0 we obtain from the field equations (5.5)

the estimate

—

-4.
(14.

÷ r = .O( ),(14.l1)

These equations show that up to the order shown, there exists a harmonic function

U such that

1.
(,. (14.12)

and hence that

b E L41 2.

+ ‘ s. e ?(ce) i- O(k), (14.13)

_1_ ‘-5—I

rt?(cO) ÷ (14.14)
LS

where the E are constants. Note that the odd E vanish in the ease of

vertical symmetry. These equations give the leading behaviour of h and b in

terme of harmonic function and k. In particular, using the leading behaviour

for k from (14.8) we obtain

2. (c8)\
r P(CobO) (14.15)

and
(D.(c.o

L re(co) ÷ If. (14.9) (14 .16)
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and thus from (A.6) we then have Appendix B The Zero Set of and I

(Jr’ Ou2)
Bare, we give the arguements which show that the zero set of and

) and f’( ) respectively can be at worst isolated points along

. ‘
the z—axis, or the whole z—axis, or possibly isolated rings around the z—axis.

—€. v• In addition, in the case of rc ) the zeros along the z—axis must be isolated.

Quite generally, it is known that . , and 3 are real analytic funct—

as required.
ions ( at least in some gauge ). Thus ( ) and rc ) are real analycic

varieties and can consist of isolated points, smooth curves and smooth 2—

surfaces. It is shown below that the 2-surfaces can be eliminated. Then, r C )

and r( T ) can be at most isolated points and lines, which for axial syrmetry

is the required result. In addition, for P( ) we have the boundary condition

C ) .— c2, as r .-o0 , which only allows isolated points and closed loops.

First, to eliminate 2—surfaces for 1( ) we note that due to the

boundary condition, as r — any surface S on which 0 must be closed.

But, since ( ,) is a subharmonic function, would then vanish everywhere

inside S and hence by analyticity, would vanish everywhere.

Next, suppose r ( ) contains a 2—surface. Such a 2—surface will

always contain local meighbourhoods for which h 0 • But from equations (2.9),

(2.10) and (2.12) we see that for any such neighbourhuod the normal derivative

of J is linear in J and its tangential derivatives, with smooth coefficients.

By iteration, the same is true for the normal derivatives, to any order. It then

follows from real analyticity chat J cannot vanish on a neighbourhood of 2—

surface ( with h 0 ) without vanishing in a finite 3—volume containing it.

In that case, the real analyticity will force .1 to vanish everywhere.
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