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1. Introduction

The discovery of the complete set of finite-action solutions ' to the
static 4~dimensional self-dual Yang-Mills equations (instantons) has revived
interest in the problem of finding finite energy solutions to the static 3=

dimensional Yang-Mills-Higgs equations (monopoles). So far, only the

spherically symmetric solution with unit magnetic charge has been found
explieitly ? , but recently multi-monopole solutions have been shows to exist s
The existence is shown for the first-order (Rogomolny) field equations which are
obtained in the Prasad-Sommerfield limit in which (for the gauge-group $3{3) and
the Higgs field in the adjoint representation) the Higgs potential is set equal
to zero., So far the proof is valid also only in the case the magnetic charges ave
isolated and of equal strength unity. (The charges should be expected to have the
same sign in any case since otherwise even the long-range forces between them do
not vanish " ).

L In the present paper we wish to study axially-symmetric configurations
for the gauge~group SO(3) and the Higgs field in the adjoint represcatation, beoth

from the point of view of the topology and of the field equations. To aveid the

problems of gauge freedom we introduce fields which are gsuge invariant and use

thege throughout { such fields will in general have string singularities

).

Our results come under two headings. First we rederive a result conceraning

the charge distribution which we have already reported elsswhere ° ', using the

gauge-invariant fields to strengthen and generalize it. The present result is that

any regular axially symmetric charge distribution can be located only at isolated
points situatad on the axis of symmetry, with equal and opposite vaiues of the

charge at alteraate points. TIa particular, if only one sign of the charge is

allowed, then all the charge must be concentrated at a single point. This resuli

is suprising since we should expect any colinear charge configurations, in

particular the 2-monopole configuration, te be symmectric about the axis of colinearity
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Apparently, the axial symmetry of the topological charge does not necessarily
imply the axial symmetry of the fields. The result may, perhaps, be understood

by considering the standard example of a 2-monopole system §

, where the Higgs
field breaks the axial symmetry by rotating about an orthogonal axis as one
proceeds from one monopole to the other.

The second set of results concern the field equations. These will now,
of course, be equations for single monopoles with charge located at the origin.
They are derived from the static Hamiltonian

= ({5(2.8)+2(DE,08) + &) Jdx, a1

where § is the Higgs field, § the static magnetic Yang-Mills field

Bl= YA A+ AxA ‘ (1.2)

v thé potential, and the imner product is in isospace. In the case that G = 50(3),
§ is in the adjoint representation and \/(§ ) is zero (and is replaced by the’
boundary 'condition { @_ @) — -c” » @s T % ) the Hamiltonian (1.1) can te

re—written ’ as

i 2 t '
H o= J2(B - 03) dx + 4T Q, b (1.3)
where Q is the topological charge, and hence the field equations which minimize H

are the first-order 'self-dual' equations

8 =02, (1.4)
which we shall refer to as the Bogsmolny—Prasad—Sommérfield (BPS) equations. This
is the system of equations for which the multi-monopole solutions have been shown
to exist and which we shall study in the axiélly-symme;ric case.

In general the BPS equations (1.4) constitute nirne equations for twelve
functions (three functions corresponding to the gauge freedom). By introducing
the gauge-iﬂvarian: fields we reduce (1.4) to nine equations for nine functions.

Axial symmetry removes the azimuthal dependence of these nine functions, but,

being an abelian group, does not reduce their number. Nevertheless, in terms of
the gauge-invariant functions the equations take quite a simple intuitive form and

split naturally into two quartets and a single elliptic equation of the form

AR = o(h)h , : 1.s)

for the norm h of the Higgs field , where ¢ 1is a positive functional of h .
These equations are presented inksection 5. ‘

The nine equations fﬁr nine unknown functions of section 5 can be reduced
to five equations for five unknown functions by imposing a further symmetry, namely,
symmetry with respect to ;eflexions in any plane through the axis of axial symmetry.
A remarkable result is that four of the nine equations (one of the quartets
mentioned above) remain completely unchanged by the imposition of this reflexion
symetry, and these four can be solved completely in terms of a single functiom,
which we call the master-potential. The solution is given in section 9.

In the reflexion symme&ric case theré is only one further equation to
solve, namely (1.1), and this can be considered as an equation for the master-
potential. As it may be difficult to obtain exact solutions to this equation we
concentrate for the rest of the paper og the asymptotic form of the fields at
spatial infinity and at the origin, where the charge is located. At infirnity it
is shown that most of the fields fall-off exponentially, and we obtain exact
solutions for the remaining fields when these fields are neglected. These exact sol-
utions are singular at the origin but serve as asymptotic values for the fields
in question, and they can even be used to improve the estimate for thg fields which
fall-off exponentially. At the origin the behaviour of all the fields is shown to
he determined by a set of Legendre and associated Legendre functions and a number
of free parameters are permitted. These parameters probably correspond to those
predicted by Weinberg ? on general grounds (index-theorem).

Finally, in view of the central role (1.5) plays , this equation is

derived in section 2 for arbitrary gauge-groups , arbitrary representations of
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the Higgs field , and arbitrary ( not necessarily axially symmetric ) field con=

figurations . The functiomal o is given , in general , by the equation

o = (D4,0¢) + 2V

and prime denotes differentiation . It is shown for certain classes of

, -where & = 'h.;S . (1.5) . ,

potentials, including non-decreasing functions of h? and renormalizable pot-

entials, that (1.6) implies the bound
R =) ¢ ¢?

, where }\f(f)-—‘r 61 as T o> 0 1.7)

In conclusicn it should be mentioned that not all of the results

presented here are new. The existence of a master-potential was noted in ref. 9, .

the boundary conditions on the axis of symmetry were discussed in ref. 10, and
£inally, the béun@ary conditions we obtain have been derived independently for
the mirror—symmekrié case by S. Adler and P. Rossi 11 | ye are grateful to
prof. Adler for communicating his results to us and for discussions concerning
then.

Note added : After this paper was completed an explicit Q = 2 .mono-=
pole solution was constructed by R. wArd'l using the self-duality aspect of the

Bogomolny equations: The solution describes a single monopole of charge 2 |

which is located at the origin and is axially symmetric.

2. Ecuation and Bound for the Norm of the Higgs Field.

We begin by obtaining eqns. (1.6) and (1.7) for the norm of the Higgs

field é for any gauge group and any representation of the Higgs field. Writing

® = h¢ ., where hm = (@,é), (¢.¢) =1 N (2.1)

the Hamiltonian (1.1) becomes
Ho=fax (5(B,8) « Hoh) + £ (D8, D¢)+ V(W) 5. e

Note that the cross-term in <h and D@  drops out because of the mormalization
of ¢ . On varying (2.2) with respect to h we obtain (1.6) as required.

Equation (1.6) implies that

SR = (RS + 2R (09, 08 ) + & WVW) 2.3
and this equation can be used to obtain the bound (1.7) for certain classes of
potentials. Let us consider three classes. x

€3] o V(h?) non-decreasing. Then (2.3) shows that h? i{s a subharmonic function,
and hence automatically satisfies (1.7). However, unless V = O this resulc
means that for such potentials the finite emergy solutions must be trivial
since finite energy requires that V =» 0 as W -+« .

{ii) V(h?) = 0.In this case (2.3) still implies that h? is subharmoniec and
the finite energy imposes no conditiom. Accordingly h? satisfies (1.7)
with any boundary value c2.

(iii) | V(h?) renormalizable and bounded below: Then V(h?) must be quadratic in

h?, and assuming that it is not monotonically increasing as in {i) it

must be of the form

V(R = M}{“-&)a‘ , NYO0, (2.4)

This will be recognized as a spontanecusly broken poteatial. The comstant ¢ has

* %
been chosen so that N =v ¢~ as V-0 at r=e . Inthis case W is

[
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1
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not subharmonic, but, nevertheless, if h% is sufficiently smooth, it can be
shown that (1.7) still holds. For suppose not. Then the maximum of h? would be
at %} > Cz , and since at ché maximum AN - is negative, the two sides of
{2.3) would have opposite signs at this point. Thus (1.7) holds also for
renormalizable, spontaneously broken, potentials. Note that by substituting
eq. (2.3) in (2.2) one sees that G'}J is integrable.

In the case that we shall be concerned with in this .paper, namely
G = SO(B) and § in the adjoint rapresentation we can obtain an insight into
the meaning of ¢ by linking it to the current J which appears in the second~

order field equations

Yy 2V
D o= 2¢

u
o

9"@ ==-7 Q‘El ’ (2.5)

.
btecause in that case J is given by

z:: @AE@ = h":}-_ , | where % = @A \2?5 " ; (2.6)

the wedge ‘denoting the usual S0(3) outer product. Hence -
.2 4 LFREY]
: $ = (Dp, D) emd T = 3"+ 2V(NW), 2.7
Thus for G = SO(3) and ® in the adjoint representation & consists of a

potential term and the square of the normalized current.

In the case when SO(3) is spontaneously broken the only long-range fields,

ave the electromagnetic field (belonging to the unbroken S0(2) subgroup) and
(if V = 0) a neutral Higgs field , 'and for both these fields there is no current.
Since the remaining fields are massive and hence may be expected to fall-off

exponentially we should therefore expect j and hence (@ to fall-off exponentially

as ¥ ~» o0 and we now give a heuristic proof that such is the case, at least in

the Bogomolny limit (1.4). In this limit , (2.6) can'be written in the form

I=29%.5, (2.8)
and hence from (2.5) and (1.4) we have
DT = BxB - 3.7 . (2.9

At first sight it might appear that the first term on the right-hand-side of
(2.9) should dominate since B has a long-range component and we are expecting
J to decay exponentially. However, the long-range part of § is abelian and drops

out in the wedge. product, as can be seen explicitly from the identity
2
Rexb = TxT + 2(3,B)xT , (2.10)

which follows from (2.8). This identity shows that not only is § X % not dominant,
2

. - 3 13 . 3
but it may even be neglected, because the finite-energy conditions h —C , J =% O

. and ((,?,l'é) -> O  show that each of the terms in (2.10) is dominated by é Ai(the

s 2 .Y
fizst becauselgl << |J]and the second becausel(l' ,6_)_ )‘ <«< {?{ )+« Thus we have

‘the asymptotic equation

Dx E v -2 A l

(2.11)
a5 r ~»od . Taking the covariant curl of this equation, using the identities

(3,3) =0 , D.I =0, (2.12)

. which follow from the definition of J and the Bianchi identity im (2.5) respectively,

and again meglecting terms of order |B[|J |compared with W8, we obtain the

covariant Helmholtz equation

DI = R*T = *

1e4

. o (2.13)



in the asymptotic region. This equation exhibits the exponential decay of J and
&
hence of T =h ({.I)
In section 12 we verify the exponential:decay in more detail for the

axizlly symmetric case.

3. Axially Symmetric Gauge-Invariant Fields for ~S0(3) .

For the rest of this paper we limit ourselves to the case in which the
gauge—group is S0(3) and the Higgs field is in the adjoint representation .
There are then twelve fields altogether ( nine 5 's and three @_'s j and three
of these correspond to the gauge freedom .

We wish to impose axial symmetry ( around the z-axis } , and to avoid
the usual complications due to gauge freedom we shall introduce imstead of
the twelve fields ( ﬁ . & ) nine gauge~invariant fields ( %% » ) . The
proceedure is as follows : We introduce an orthonormal triad W, o,an- 1,2,3
with ufl « ¢ , and \J& , 1&5 = hfl A\Jé arbitrary ,‘but related to the
covariant fields J . The base vector LJ& is well defined except st the zerves
of é and in appendix B it is shown that for any real analytic fieids satisfying
the field equations these zeroes can be only at isolated points on the z-axis
( and possibly isolated rings around the axis ). Since ( @ y ; ) = 0, the
base veétcrs urz R xdé are well defined everywhere except at the zeroes of {_
and in appendix B it is shown that these zeros can only be the whole z-axis (
and possibly isolated rings around the axis ). Thus in principle the space can be

W, )

2' 73

constructed from the fields except on the z-axis ( and possibly rings sround it ).

covered by an overlapping set of such non-degenerate triads ( Mfl,

Note that although the region where the triads are well-defined way not be
simply connected,the vectors Vfl = @/l@\, 1~5 o I{/‘J&L etc. are single~valued
because they are quotients of functions which are single~valued throughout the
whole space . '

In practice , however , to obtaim the field equatioms it will be

couvenient to chose the single triad defined by

wyz g, w, = D/ I0p], Wy = wLW,, (.1

because of its relationship with the axial symmetry . Although in principle the
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triad  (3.1) could become degenerate on some 2-surface, this does not appear to happ-

en and in any case should not affect the content of the field equations,which
are salf~consistent even at points where D\},sfm 0.

From the orthogonality of the \A’a-basis in (3.1) we have
(W, D) + (09, D) = Slw,w,) =0, 6
from which we see that the D‘._LJ“have the expansions
L S 4
D;\JJ'Q. = ehb( AL wc » where A{(E‘:) = 2 éqbc(w’b. D;wc) \ (3.3)
There are actually only eight .é) ~fields because from (3.1) we have
: 3.4
Ay, =0, (3.4)

where the subscrip:~y’) denoted azimuthal component . The eight u_%; ~fields are

gauge~ invariant by construction , and are single valued wherever they are

defined because they are quotients of single-valued functions . Together with h

these eight fields constitute the required nine gauge-invariant fields (Jf} ,lr‘\a Yy .
Because of their gauge invariance , axial symmetry is trivially.implem-

ented on (\ﬁﬁ ,11\. ) as

Ay = hy =0, _ | 3.5

vhere Y is the azimuthal angle . Thus axizl symmetry is simply the statement -

that A end h are independent of P .

4. Topological Charge Density, Hamiltonian Density and EPS Equations

for the Fields (A, W)

In order to express the topological charge and Hamiltonian derivatives

in terms of(\é,k) it is convenient tc introduce the formal curvature tensor

o ' pok b 4 ek o
¥ = ~e. (VA + liec.tcvéﬁ*v&c ). (4.1)

If the topological charge density Q{X) is then defined in the usual way as .

L
Qx) = Cflx) ,  where $x)=(4,8)-2(4,0¢50¢), .2
is the Maxwellian magnetic field, a short calculation (appendix A) shows that

F(x) is simply
L
50x) = e VAT : _ (4.3)

Thus the Maxwell field can be written as the curl of an SOkB)-invariant. Of course,

the fact that _f_ is a curl means that, just as in the Dirac monopole theory, we can

have a monopole only if \é (and hence the triad W, )has a string singularity.

From ( 2.2 ) one finds that the Hamiltonian density takes the form
O B3 PRLS
2 (4.4
2H(2) = (Th) + WL A + L) + V(W) )
This Hamiltonian exhibits the Higgs mechanism explicitly, with'mass' h. (The
apparent 'gauge-freedom' corresponding to rotations around the ;é -axis is
forbidden by (3.4) ) . The second-order field equations can be obtained from
(4.4) in the usual way, but we shall not consider them here (especially as they
correspond only to extrema which are constrained by axial symmetry). Instead we
consider the limit V = O, when the absolute minimum can be obtained by the
Bogomolny trick. For (4.4) the trick consists of writing it in the equivalent

form

e = (The 3 L (F-ne™ L) - o (gh T - he™ 1), ws
1 wh |



Using the Bianchi identity

v.§w+ 6w‘hg3"‘:A¢ =0 (4.5)
the last term in (4.5) is seen to be a'pure divergence, and using (4.3) its
integrél is identified with the topological charge. Thus the energy is
minimal when the squared-terms in (4.5) are zero, and so we obtain the BPS

equations

%
T =-Yh, T=he™A bet (4.7)

‘Clearly (4.7) contains nine equations for the nine unknown fields (u,W),
Finite Energy Bounds on the seperate fields are obtained by noting that (4.4)

is a sum of positive terms .

: 3; = (é&%(t'ﬁ? + U"OLVP) » E"P(uh“? t«{vp>, eu?(vi,? + t‘d u'?))

5. - Separation of the Azimuthal Components. Explicit Field Equations.

For practical purposes it will be convenient to separate the azimuthal

and non—azimuthal components of cheg%-fields,by setting

K= (5, 0,-0) | AT = (= b, we -V ) | (5.2)

L3 v

where %, = (Z,9),«=1,2. From the axially symmetric condition (3.5) the formal

o .
curvature tensor & separates correspondingly into

(5.2)
S T I D R D) I

and the Maxwell field 4(x)into

L (5.3)

§‘ = é*Fb'F R fy = Eﬂ?t%x.
The Hamiltonian density takes the form |
W al g o
PG = (I R Z0E o)« 5o )+ ZIZET - BEY), 6w

where the g 's are given by (5.2), and the nine BPS field equations can be

written as

By t féﬂphap = \"u’d. 4

b + fhégpuy = ~Ryu , (5.5)
XE.‘F(‘Q"P + v“t?) = "R ) . (5.6)
and

eﬁF(tMp U V) = 0,

e“?(v,‘,F, *teWy) = O, 5.7

bv,grlnhe.‘{,vf‘ - Rty =0, .

The nine equations have been separated into the sets (5.5)(5.6)(5.7) for the

following reason: The first quartet of equations (5.5) are independent of the

N
i
i



four fields ’V,‘_,'\-r,,- in (5.1) and the last quartat '(5.7) are 'lineaxll in these
fields. Hence if. we set "%, = Vig = O we obtain a consistent subset of five
eqns. (5.5)(5.6) for ;he five variables ( v, b, R, ®, ) and the first four
of these equations will remain unchanged. Thus any solution of the BPS
equations will be an extension of the simpler set (5.5) (5.6) with ‘t.‘ = VU = 0,
This circumstance is not accidental, but due to the fact that %wx and Vi

can be eliminated by imposing a further symmetry, namely the reflexion symmetry
discussed in the next section. What is remarkable, however, is that the quartet

(5.5) remains unchanged, even when the reflexion-symmetry is not imposed. Im the’

mirror-symmetric case the full set of equations for the five functions ( hv,d, &, W)

are just (5.5) and

‘\'\‘,h = j 6‘?‘\&“? N (5.8)

and the Hamiltonian density (5.4) reduces to

2

2B (2) = (g r WL Ul + )+ (e )+ PELRRUY -

k. + bw,) ). (5.9)

.The fact that the quartet of eqns. (5.5) are common to both the mirraf-symmetric
and non~reflexion-symmetric cases is fortunate because, as we shall see, this

quartet can be solved explicitly.

§. Geometrical Interpretation of {k,b) and Relationship with Conventional

Axial Symmetry.

-
A geometrical interpretation of the azimuthal components véb\/, = (’b.% "k>
may be obtained as follows: First, from the )b -invariance of the inner-

are orthogonal and then from

product (é,é) we see that @ and D),Jé

the definition of Wz we have

D,& = Wkt . ' " (6.1)

Similarly from the Y =invariance of the inner-product (D‘},§_ ’ D\P@ ) we sce

that D;p @ and D;’,{Q are orthogonal. Hence D;,é lies in the

( 44.)“ . '\.Ja )-plane and it is easy to check that the expansion coefficients are
L3 = hWR(b R, ) -
D\# Q - LJS - v/ . ¢ (6.2)

Furthermore, from the definition of hws as 75'\ D)”zs we find that

D;(D{,@) = - (b + ) (Dfé) , h#o, (6.3

kN
Thus the 2-space spanned by Dyd and D;: o} is an eigenspace of Dy
2 41 . .
with eigenvalue —(’b *‘1&) . Since for each = , (Wa, Df,w,_) is a
real antisymmetric matrix , it follows that Dn' , and hence D;J, , must be

\/J

zero on che orthogonal l-space i.e. we must also have

D\PU’ =Q , where W= bW kw; A, ’ (6.4)

and this is easily verified dirxectly . Thus finally we have that the vectors W
2 .
and D\Pé both lie in the ('h)",'LJ,)- plane ( perpendicular to '\J,.) and are

orthogonal to each other . Note that W 1is related to % and © by

(wow) = b +k*, (w,g)=b. ©.5)



To cennect these results with the standard formulaticn of axial symmetTy

we first note from (6.1)~(6.4) that

D\]n Wy = W, W ., (6.6}

In other words, W implements the covariant derivative t3¢ . On the other

hand the conventional definition of axial symmetry is that

Welz, g, vre) = R(Z,4,¥,€). Walayg, ¥), (6.7)

wheref{(f.e)is an & -independent orthogonal matrix in isospace , which is 2 smooth’

deformation of a constant matrix R{€). Hence on differentiation , we have

o -1
VW, = AR W, , vhere A = (V%R.R )e=o , (6.8)

and is a smooth deformation of a constant vector . Comparing (6.8) with (6.6) we
see that
wo= A+ P\)b , (6.9)

which is the required relationship . For future reference we note that , from

equation (6.6) , we have

f B\.Awo, = eii#[DisDﬁ] wo, = EL;‘P(QD:.(JA wc,)"’ MADQ'{JW) v -
= e DU, 6-10).
and hence
: i
£ BL = €y Dyw, (6.11)

which includes (6.4) as a special case .
In view of the importance of the vector W , it is worth remarking that

W can be defined directly using any non-degenerate basis by writing

wom o= T € (Wi, Dpwy ) W, (6.12)

It is easy to verify that 4 .is independent of the basis chosen and has the

required property
D\/,- =W, . (6.13)

if all inner products of covariant quantities are j'-independent. Since W is
independent of the basis it is well defined everywhere that a basis exists

which we have seen to be the compliment of the z-axis ( and possibly some rings
around it ). We shall see in the next section that the limit as wa approach the

z-axis presents no real problem.



7. Topological Charge Distributions. :

It has been shown by Taubes that in at least one gauge solution to the
BPS field equations (1.4) are real analytic and hence that the zeros of the.
norm h can be located only at isolated points or on isolated curves and surfezces.
Furthermore, since hWeye as © > o0 , the curves and surfaces must Ye clused,
and then, since h is subharmonic, the surfaces are ruled out. Thus the zerss of

'h, and hence the possible locations of the topological charge, are at isolated
points or on isolated closed curves.

In the axially symmetric case such distributions would include a priori
horizontal rings centred on the z-axis and isolated charges of arbitrary strength
or the z~axis itself. However, it seems that not all such solutions are allowed.
Indead tha only peiﬁissible ones seem to be isolated charges of uniform strength
and alternating sign on the z-axis. In particular, if the charge has only o
sign (as required by the BPS equations) then it would seem to be concantfated at
a single point, corresponding to superimposed monopoles at that poinc .

These results follow essentially from the expression (5.3) for the
Maxwell current. For let V be smooth volume of revolution either not intersecting
the z-axis (torus) or intersecting the z-axis at two points (Z, ,21), let S be the
surface of V, L the projection of S on the (xz)-plane and t any smooth parameter

for L. Then from (5.3) we have for the charge A (@ contained in V
- ' 1 e 1 X ~ 41 .
pa = drfdpleg) = fnfasin.g) = 4§40 o) =41B1 0D
. S X )

where [b] denotes the values of b at the end-points of L. Now suppose first

that there is a ring of charges. Since the triad W, 1is assumed to be well=
defined except on the z=axis and on isolated rings we can surround the ring of
charges with a torus on whose surface ﬁ&» , and hence b, is well-defined.

Letting the volume in (7.1) be such a torus the curve L becomes a closed ring,

and hence [b] is zero provided that b is single-valued. But we recalltfrom
section 3 that b is single-valued wherever it is defined because it is the
quotient of single-valued functions. Thus the term [b]L in (7.1) is indeed
zero aud we conclude that there cannot be a ring of charges.

Consider next the points on the z-axis (9 = 0 ). For regular i& and

h we have

szxﬂﬁ-gi\,g-—»o_D;.é—arvy,?@»o,for g—ro. (?-2)
Rence by taking the limit of (6.1), as & 0 we obtain

Who=0 ,for =0, (7.3)

Furthermore, since § must be periodic in Y and the eigenvalues of Yy on
periodic functions are + in where n is an integer, we see’from (7.2) and the

limit ¢f£ (6.3) that
T
bPr R=n, for p =0, ' (7.4

The crucial point now is that n2 is the same integer, for all =z , because,
as shown in apperndix C , equation (6.11) implies that in the limit § —* O

bz + kz is finite and independent of =z . If we now let the smooth volume of
revolution V above be simply connected and intersect the z-axis at two points
z, and 2, ( where h ¢ 0 ) the line L 1is no longer closed, buﬁ is a curve

1

joining z and z

we have from (7.1)

2 and so for the topological charge inside such & volume

AQ = R (b)Y - blz)) . 7.5

Since h(za) % 0, a=1,2, we see from (7.3) and (7.4) that



2
Rlza) = 0, B(20) =n*, [ -6
and hence that
AQ=0,In . . (7.7

Since the volume V. may contain any number of isolated charges , it follows at
once that these charges must all have the same magnitude n and must alternate
in sign . In particular , if only one sign is allowed , the total charge =n must
be located at a single point . Thus the BPS field equations -(4.7) must:actually
describe a system with the charge located at the origin , and for the rest of
this paper we shall work under this assumption .

Alternative derivations of the result of this section , using somewhat
different assumptions have been given elsewhere . In reference 5 the result is
proved assuming the existance of an W which is regular everywhere , and
satisfies '(6.6) , and in reference 13 the existance of a regular W is
established using the Bogomolny field equations and the fact that the fields

are real analytic .

8. - Reflexion and Vertical Symmetry.

The reflexion symmetry referred to in sect. 5 is symmetry with
respect to the group of reflexions in the planes through the z-axis, and
the reduction in the number of fields occurs because the combination of
this group with the axial symnetry group is non-abelian (it is a semi-
direct product). In’practice, on account of the axial symmetry, it .
suffices to consider reflexions in any single-plane (the xz-plane say) and
the reduction in the number of A-fields occurs because four of them are odd

under the reflexions R, in this plane.

1
To determine which of the.b-fields are odd, we need to détermine

first the Rj-parities of the base-vectors W, . From the original BPS

equation (1.4) we see that @ 1is a psuedo-scalar with respect to any

reflexion., Since XD? is odd with respect to Rx&ic follows that the

EL% -parities of ( W, , W, , Wy ) are (-1, 1, -1) respectively, and since

the D, are even with respect to ELj , it then follows from (3.3) that

the R -parities of the A-fields are as follows

3
(A;,At,ﬁq;) even ; (ﬁl,A;=0,Ai) odd , {8.1)

Thus reflexion symmetry eliminates four fields by imposing the condition

[} 3
A, = AL =0, (8.2)
and in terms of the separated fields this condition is just

tq.= ¢.=°,O'C A:’:(”b’oa-RB) 'ﬁq\.‘:(olu‘ﬂao)t (8’3)

as stated in sectiom 5.
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A second symmetry which is admitted by the BPS equations of
section 5 is the 'vertical’ symmetry Z -» -2 , with the parity

assignments

'(h,,*R-,W:) éven , (b’u'f) odd; (tf: VZ) opposite to (fz;\f:>, (8.4)

The vertical symmetry completely commutes with axial and reflexion symmetry
and fixes the origin on the z-axis (Note that without vertical symmetry
the BPS equations are invariant with respect to translations in the z-
direction).

Finally, to make contact with standard results we remark that in the
spherically symmetric case the fields (8.3) and the norﬁ h of the Higgs
fields become

K Hr)

» L3

Z
b=-, == v Exf,?rra,h=%1{w),h= E=I G

where 1t is the polar radius and Wr) and H(v) the original tﬁo'

independent spherical symmetric fields 2,

“explicitly for W

9. - Solutions of the First Quartet. Existence of a Master~Potential.

As pointed out in section 5, the quartet of equations (5.5) is
common to both the axial and axial + reflexion symmetric cases, and we
now wish to solve these equations explicitly. First, we note that (5.5)
contains W, . linearly and without derivatives, and hence can be solved

. to give

%k, + fke"P}h"E ~ - —bhm + SG.‘P(\'\«R)‘P

U Y S,:.hz. = O+ RE + g:.h:. . (9.1)

.

Reinserting this result for 1, in the remaining two equations we obtain

(B +2),« + 2] Eup(hb),y = P, : BCR))

To solve equations (9.2) we note that they are almost of Cauchy-
Riemann type and it is then easy to see that they imply the existence of a

scalar function W , unique up to a comstant, such that

oW ‘O\Af %r 2 2 a

T e el 2
32,——}\.13,23’1)}’—3’}\,—5—%,3-\'\/:}». (9.3)

Thus W acts as a master potential from which the functions W, b, R (and W)
are obtained by differentiation. The existence of W with the propertics
'(9.3) is the full content of the quartet (5.5).

In practice it is sometimes convenient to replace W by the related

family
%, 2 2 '
W, =W = LCf tmitegf, (9.4)
where m is an integer, and then the analogue of (9.3) is

Sy '~
TEV=h, xy%:[ = (m--k*) + j‘"(h"-c") ,A\J,.‘_=(h"-€-")_ (9.5)



From (9.5) and the bound (1.7) we see that the W/, are superharmonic
functions, and that W, 'is non-increasing in ¢ . On the other hand,
we shall see that W, ~ where n is the topological charge, has the best
‘behaviour on the z-axis.

In the spherically symmetric case, the known solution ® is

generated by
W, = ?.c%K(r} = ""’3(5‘”“ v~c,), ~ (9.6)
and (9.5) implies the well-known algebraic relation
r 2 2% ‘ '
(H) + 1) = ®m™ + O™ ‘ (9.7

. R 1

between the two spherically symmetric functions H(v)and R(w),

The existance of the master potential W , and the fact that it is

independent ¢f reflexion symmetry can be seen from the following alternativa

and more direct derivation of equation (9.2). 1In the conditiom of axial
synmetry (6.11) of section 6 we insert the BPS-equations (1.4), giving
D,w = —§€u¢,Di§ . (5.8)

Eence we can write

T (W) = 2{w, D, w) = -z_few(w,bﬁ&j), -
T (w.d) = (D3, &) + (wr,Ded) |
= =296V (2,8) + (w,D.d), . (9.9)

Eliminating the factor (W, D&§ ) by combining these expressions we

obtain
b -
Volw,w) + 23 &V (W, ) = p %(@,8), (9.10)

which, from (6.5), is the required result.

10. The Second Quartet

It might be asked whether the second quartet of equations (5.7}
for the four non-reflexion-symmetric functions %,,V, could be
solved in a similar manner. We have not studied this question in detail,
but one sees by inspection that the variables V. can b; eliminated
algebraically to give k

e = (bv&«kfhe.ﬁg,vp)/‘g,, (10,1)

Inserting (10.1) in the remaining two equations and using the first quartet

we then obtain the following two equations for the V,

ex?((h’\h)vp + Z%V“LLP) =0, ‘ ! (10.2)

h(fv“/h),‘+2f(h,x*hb““/k,)(v“/k) =0, . {10.3)

These equations will be useful later for studying the behaviour of "%, and

V, in the asymptotic regions W-—+ew and Wwep O .



11. Elliptic Equations.

9 !
If we compute \bi,f , and W from (9.1) and insert the result

in the remaining equation of section 5 namely (5.6) we obtain the - !

elliptic equation

2
Al = (%ﬁ PETIFSRVASE VI . (11.1)
where : »
2 ol i o ' o
g,:(%bl Cvve EE L dattrgthn a2

for the norm of the Higgs field h. Eq. (11.1) is easily identified as the
explicit form of the eqn. for h discussed in section 2. In the reflexion
symmetric case Yo = V=0 and (11.1)(11.2) and the master-potential
aquations (9.3) form a complete set of equations for the three unknown . !
functions (h,b,k). Without reflexion symmetry the four extra equations of ; !
section 10 must be included. o ‘ ; . !
‘It will be convenient, especially in considering boundary conditions,
e

to obtain similar elliptic equations for hb, hk and k. From (9.3) we see

by inspection that ;

alht) = (W), (11.3)

and from (11.1) and (5.5)(5.7) we obtain after some computation

Cfphdig — b Eands (d o 2 1.4
e A S S
and

o2k dek? 2, g%, 2Y
Al S (k) (B e T B R, s
where

2 2 2 : \ 2 ’
Xg‘: TI‘\‘<?"\‘),K '”h'b egF.(fk ))P s Y = exp(hb)ﬂ&(fk )'P - (11;6)
It should be stressed, however, that equations (11.3)=-(11.6) are derived from
previous ones and contain no new information. In the mirror-symmetric case

they simplify slightly on setting buzVu=0.

S

12,

Exponential Fall-off of 0" at Large Distances.

In section 2 we saw that the coefficient ¢ in eq.(1.5) may be

expected to decay exponentially as r-»e -, on account of the Kiggs

mechanism.

In our case O

is given by (11:1) and hence we shall have

the predicted asymptotic behaviour,provided that R, W, and Vi fall-off

exponentiallﬁ.

In this section we wish

decay exponentially as ™-+® .

terms of k (and V, ) by (8.1)
the above asymptotic behaviour

consider the elliptic equation

to show that R, Wy - and Vg

do indeed

Since Wy and Vg are given in

and (10.1) we need only show that k has
(and that'ﬂ*;é 0). For this purpose we

(11.4) for k. For simplicity, and because

a2 .
the term ¥  on the right-hand side of (11.4) can at most decrease k  as

¥ —» o , we shall consider in this section only the reflexion-symmetric

conditions and finite-energy (sge 5.4) we have

i
ho o- B, b= -nE, ut o 0(w), k=0

as ¥ =~ o0

1

AR

3

n + :l Col

and inserting these values in (11.4) we obtain

2

2;_"1'.@( e )5}‘:2 +()2;_§—1%Tc")k,f+ (& Dg)k,

]

’ * . z .
case £°= 0, leaving the case U # 0 to section 15. From the boundary

(12.1)

(12.2)

Although (12.2) is a linear equation for k, it is not easily solved in

general, and so it is convenient to consider the two overlapping sectors

(a) ¢

finite, X1 —» 0 (b) p=rSind 2=1losB,r+00,5in8 # 0, fixed. In the

first sector (12.2) reduces to

. 2 2
AR :(3;:..:'3.101) l%l }’u,z + (f\?i’j"’&l z)h.’s-f- (Cz-g- ?‘z)k’

which has the exact solution

*

-
-

Const, S'n'

-ciz]
&

(12.3)

(12.4)



and hence has the required exponential fall-off.  In sector (b) eq. (12.2)

reduces to ’
an z(r+3h) 2 2
AR = T TET R, v TR, FC k.

On making the substitution

—

n 2t
o= oenp (T )R,
eq. (12.5) reduces to the Helmholtz equaﬁion
— 2,-'
AR =R,

which again has the required exponential fall=-off ( P (=cv)).

(12.6)

(12.7)

13.  Asymptotic Behavicur of the Fields as ' —¥ & .

Once k (and Wy, Vw ) are known to fall-off exponentially more

precise information can be obtained concerning the asymptotic behaviour of all

the fields. For simplicity we again consider only the reflexion symmetric case,

leaving the general axially symmetric case to section 15.
First, from (5.5) we see that in the 'exterior® region where k and
W, are neglected completely, the remaining two variables h and b satisfy just

the equations

b tf e*PhJP =0 . (13.1)
It is easy to see that (13.1) implies that h is a harmonic function, and indeed
that there exists a harmonic functionll such that .
AU =0, h=U,g , ad b=-pU.. (13.2)

This is the full solution of the field equations when the exponential rerms are
. . 2 2
neglected. Since the corrections to (13.2) are of order R and Y one may

therefore write for k and b the multipole expansions

, z -aCr
WEo-T e v 0(CT)
. w ot o (13.3)
~2
b= - -%5 e role ).

Note that the dipole moment ps =0 and all the other terms which are odd in z
vanish if we have vertical symmetry 2 — —% .

Using (13.3) in turn we can improve the estimate for k obtained in
the previous section. In the sector (a) it suffices to verify that (13.3) nakes
no difference to the leading-order terms in (12.3) and hence that the estimate

(12.4) is already the best ome to this order.



T
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In the sector (b) on the other hand, if expansions (13.3) are inserted

“in (11.4) they modify. (12.5) to

ens 8 ’a\l
Ak‘—ﬁ'?,[';'-*' r*sin*9 Ja»-"‘lr;:,me B+

and if we now make the substitutions,

R o= e { (@)

N and

2
z e N zg Cos©&
Y FSwe ] . (13.6)

$(e) = s;n”é,%(%)‘ (13.5)

where Y =€0%8 and a_'ué.) is regular for all &, 04 B (T,

x=w, and (1-4)9%) - 2y qly) =@pmey)q . S (3.8)

Thus in sector (b) the asymptotic behaviour of k is given by

=€ Uy,

‘

(13.7)

»

where g satisfies {13.6). Note that when the dipole moment M vanishes (as in

the case of vertical symmetry) the only regular solution of (13.8) is 9 = const.

Then (13.7) and (12.4) coincide and (12.4) gives the asymptotic behaviour at all

angles.

14. Behaviour of the Fields at the Origin,

In section 7 we saw that any axially-symmetric charge distribution

must be concentrated at a single point, which we take to be the origin,

Furthermore, we have the conditions

@«-k" = n? {allz) and R =0 (2%#0) (14.1)

on the z=axis (g=0).

We now wish to determine the behaviour of the fields in the neigh=-
bourhood of the origin r = 0. For simplicity, we consider first only the five
reflexion-symmetric functions( Pb,b,}z,lb‘ )}, leaving the other four functions
(., V. ) to the next section (where we sﬁall see that they do not alter the
results). We shall also use the results of Taubessto Assumé that the functio;s
are regular at r = 0. From (5.9) we see that the finite;energy condition at

£=0 implies that

3
PUe =+ -R,w R~ b, AR~ 0, and f/""z"n. -0, (14.2)

and using these conditions and (14.1) we find that the leading terms in the

elliptic equations (11.3) and (11.5) for hb and hk may be written as

AlhR) = %:. (hk), (14.3)
AlRBY = (W), e W (W)« (WRYY), (1443

_Since eq. (14.3) is just the associated Legendre equation it shows that the

leading behaviour of hk at r = 0 is just

Wk ~ =™ P (Cs6) . moun . (14.5)



and that the special cases s = m = n and s = 1 m = n would appear to be the

(14.4) we see that the leading behaviour of hb is determined either Ly a

v .
where P,.\ is an associated Legendre functiom of the first kind. From eq. *
i ' ' . . . .
' most 'natural'. However, in the case s = m = n vertical symmetry would require

solution of the homogeneous equation A (hb) = O ; or by a special solation that the topological charge n to be odd.

of the form 4~ +%  to one of the equations Using (14.8) the estimate (14.1) for bz*'k" can be improved to

Lt il "-)2') ’ ) an By set . 2 ’
Ay = nty sy = (%= (P vE n (14,6} bR = nt + Sor ¢ S Do(Ces8) | (14.10)

whichever of these three is regular and déminant . But any power-like solutiom Co . .
& < v and whenever s<m , the estimate (14.8) can itself be improved as follows:

of the first equation in (14.6) , which is not harmoryic , is of the form

Y~
204

s .
the second equation is of the form y~r for m 2 n , which implies that

-t

since from (14.8) R ~ ol as r-¥ 0 we obtain from the field equations (5.5)

and hence is not regular . Similarly , any non-homogeneous solution to ,
the estimate

o . » |
((b‘*k’1§>,s t§cuphb (6™ r*) )»§'= O(wk*) = 0™ ) ey

nb < hk , and hence b < k , as T —» 0 , in contradiction to (14.1) . It follows

that the leading term in hb has to be a solution of the homogeneous equation i.e. These equations show that up to the order shown, there exists a harmonic function

Wh o~ r P (ws8) | 1¢s < m (14.7)

? — F

where Ps is a Legendre polynomial. The condition s < m is imposed so that

b %k, in contradiction to (14.1). -
Collecting these results together and using (14.1) we find that the

leading behaviour at the origin is

b — nEr P (Cos8), 1¢s¢Mm,
Tho— nE rm P {Cs8), nem
. (14.8)
W (£ P, S <,
2

W P ((ERP) F (E PR)) s =m

’

where Es and E are constants and n 1is the topological charge. Note that
vertical symmetry {section 8) would require & to be odd and (m-n) to be aven.

Note also that in the specizl casem = n

hh —~ nk yw, ; (14.9)

w such that

-l
(B4k0)* = =g Uyp o bUK) =, , RN ST T

and hence that

.« a K 4m-35-1 §_€1 WL o ¢ 4
(‘b +k,) = 1 + ?;:ls s+ T SnnB Pg((—ose) + 0wk )' (14.13)
,,1;: 4M-3h-1 :
Ro(B+w) " = gls E rf PGy 8) + O(hk*) (14.14)

where the Ec_ are constants. Note that the odd £, wvanish in the case of
vertical symmetry. These equations give the leading behaviour of h.and b in
terms of harmonic function and k. In particular, using the leading behaviour

for k from (14.8) we obtain

M~ =1 £ N

2 ¢ erl . R ‘ Y /nE v (B (Ces8) ¥ 2m=1%
o= Lo LZ;S i ¥ S8 P (s 8)] -('g‘) P (o) )Ty (16.15)
and kR

M=% % ~
. nE" (Bm(6)) m-st .
o~ E.a E v P (cosB) + ZE, 3. (8) . (14.16)



15. Boundary Behaviour Without Reflexion Symmetry.

In the case that reflexion-symmetry is not assumed we must consider the
equations of section 10 for the four non-reflexion symmetric functions Y. and
\J*' . From the finite-energy condition both at r —» e and y—;v 0(see(5.4))

wa have

"bu, = =R, , and Rita = byg . ! (15.1)

.

From the first of these equations we see that eqns. (10.2) and (10.3) for

reduce in these limits to

gy =0, s (9 i) no, a5

respectively. The first of these equations implies the existence of a scalar

function Q of which """/1‘{, is the gradient. FHence for v -»0,® , we have

Ve =+ RO, ,and ta—=> DO, - (15.3)

where
Ly A
(W Q). = 0. (15.4)
]
First, let us consider the asymptotic behaviour as ™—asc . From (15.4) and

(11.5) we find that hk and alk satsify the same asymptotic behaviour, namely,

% 2 -
. AR RRY = AlRRY/(ORR) = e (TR, (15.5)
These equations suggest that both Wk and Qhk fFall-off like exp(-cr) as W—> 0,
and that . behaves at most like a polynomial. Following these suggestions we

make the Ansatze

o . -ct
Q(r8) = 1 Q8) , hk — P f(e) . (15.6)
From {(15.5) we then find that « =0 , and inserting this result in{15.4) we find
that

.2 40.(8) .
on 0.7 (8). 25~ = Consl, .oas.an

But since §(8) and 2(8) are regular , for all © , including sin & = 0 , the

’
. constant must be zero and hence £2(8) must be zero for all & . Thus , subject to

the ansatze (15.6) we have
Q -~ constant , V. ,t, 0 ,a r—>w, (15.8)

and so the four non-reflexion-symmetric functions drop out asymptotically . Note
~that the term !" in l[_)Mz decays at least like exp(~=2cr) ,as r —+ o .
Next let us consider the behaviour at the origin . The only difference that
the four functions V,%, make to the reflexi?én—symetric discussion of section 14
%

is that equation (14.3) is replaced by

1004, Z . .
aler) = {7 +(v) J(hR), (15.9)
wheze {L is the function defined above . By regularity we have
© alr,8) = r (e), (15.10)

2
where Y 20 , and if ¥ » O , the tem(Y—Q) in (15.9) is negligible compared

to '1/5“l L If ¥=0 on the other hand , the same arguement that led from (15.4)
to (15.7) and (15.8) leads again to JL(8) = constant , and hence for V= 0

x
also (YQ) can be neglected . Thus for all ¥ z0.
L4~ constant , Y V,+0,as r— 0, (15.11)

and the four non-reflexion-symmetric functions drop out . In particular , the
_behaviour (14.8) for hb , hk , and h"Z remains unaffected .

In actual fact , we can determine the next to leading behaviour of
L4 , as r ~» 0 by assuming h = loaglanl + V’Y%CG) near the origin . From
(15.9) , (15.4) and the fact that _{\_.),‘—"O , 8 T -+ O we get the following

equation

A(SLWR) = “731(9,1«.) L8 Y=o, . (15.12)



Thus Q. satisfies Appendix A - Maxwell Field as the Curl of an S0(3)-Invariant

" " " .
0 = Constant + Fo¢f PME.(CobU)/P%(Cmae), s v+ =0,  (15.13)
: . Let (Wi, Wy, w,)be any triad of isovectors with W, = ¢ . The choice

where p 1is a positive non zero integer and F is a constant ( the non uniferm of W, 1is not relevant and includes,of course, the possibility W, = D,a¢/lbw¢z

. e . D . . . .
dependgnce on © of the coefficient of = in{) we expect to be duez to the fact of (3.1). Using ¢ =W, , W, and the anti-symmetry of the wedge-product we

that {){re) relates only to xarios of well behaved quantities ). can write the standard formula (4.2) for the Maxwell field 5‘(3_9) in the form
The fact that the four functioms V,, L, play no xole in the equations for .
. Ax) = T EY i_ W, W : + : 4.1
hb ', hk , and hz as -r —» 0 and r~» 00 suggests that the only axially f\(") 2 Syk ( ATV, FA\%) ("‘)3"01 » Da WA Buw, })3 . ’ (4.1)

syametric solutions may be the reflexion symmetric ones . ) Using the usual vector identities

(o, k.0) = (€, b)) , and (a,b,c, d)= (o.,c)(h,d.)-—(o.,d}(b,c'). (D)

we then have

&g(§‘> = eii‘w.{. li—(\‘:}s'ﬁjkhwl,) + (VDS,D;LJ.)(LJL.Dkw,) S\- . (4.3)

i’ ' : .+ But from the orthogonality of the W, -basis we have

H

(Wo, Dy we) * (We, D) = %, W) = 9,50 = 0. (A.4)

Hence the position of the D; in the inner product can be switched and wa

have

N )
f‘(\_e} = e‘jk{.l(w;,FikAwl) ¥ (“JL;DJ L‘}S)(Qtlbhw}.)si {(A.5)
From the definition of Fi;; as the commutator of DJ' and Dk and the anti=-

synmetry of the Levi-Civita symbol we then have

f{(l) = E(i\‘ {(Qx‘ DJ D;‘ "Jz,> + (LJ‘, DJ \Js\( 9, Dk Q:.) § N (4.6)

But now, since &, and W, ave normalized, they are orthogonal to B,\u};, and

D;w, respectively. Hence

(D s, Bewy) = (0], Wa)(Wa, D) = (D0, 03w, Daw)an
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Appendix B The Zero Set of § and I

and thus from (A.6) we then have

. . ' ' Here, we give the arguements which show that the zero set of % and J
G;j\'.{_(.w}l DQDK“)L) + (DQQJDD‘(be)S) . : ? -

, T(%&) and [(7J ) respectively can be at worst isolated points along

Fi(x)

n

€ign § 9500 Do) 3,

the z-axis, or the whole z-axis, or possibly isolated rings around the z-axis.
""el'jk vil \AL i ' .‘ (A.8) Ia addition, in the case of ['( % ) the zeros along the z-axis must be isolated.
Quite generally, it is known that § , and }: are real analytic funct~
as required. R ) o ions 3 ( at least in some gauge ). Thus M (@ ) and (7T ) are real analytic
N ‘varieties and can consist of isolaﬁed points, smooth curves and smooth 2-
surfaces. It is shown below that the 2-surfaces can be eliminated. Then, T (3)
) : : . and ( { ) can be at most isolated points and lines, which for axiallsymxetry
) ‘ ’ . . E is the required result. In addition, for [*( 52 ) we have the boundary condition
i (§ N @ )y - cz, as r =»0d , which only allows isolated points and clesed loops.
}: First, to eliminate 2-surfaces for [ ( $ ) we note that due to the
% bYoundary condition, as r ~¥ @ any surface S on which @ = 0 must be closed.
: ‘ E But, since (&®,3%) is a subharmonic function, @ would then vanish everywhere
i inside S and hence by analyticity, @ would vanish everywhere.
! Next, suppose (‘(1 ) contains a 2-surface. Such a 2-surface will
! P always contain local neighbourhoods for which h # 0 . But from equations (2.9),
(2.10) and (2.12) we see that for any such neighbourhvod the normal derivative
of J is linear in J and its tangential derivatives, with smooth coefficients.
By iteration, the same is true for the normal derivatives, to any order. It then
N follows from real analyticity that J cannot vanish on a neighbourhood of 2=
i T ' : surface ( with h # 0 ) without vanishing in a finite 3-volume containing it.

In that case, the real analyticity will force J to vanish everywhere.



Appendix C The Behaviour of (W ,wW ) on tha z-axis.

In this appendix we show that the limit of (W ,wr) = b2 w1’ » as

p—>0 is bounded and constant all zlong the z-axis. The necessity of proving

this arises from the fact that we have imposed only a ' weak ' form of axial syum=

etry, namely that all inner products of covariant quantities are independent of

the azzimuthal angle. Hitherto , we assumed a strong axial symmetry condit=

ion, i.e. that there existed a continuous «5 such that
D,g' = ny ° . - (C.l)

Both the boundedness and constancy of (W ,W) , along the z-axis

follow from equation (6.11), i.e.

§Be= €& Dyw . (c.2)

Since we know that the following bound is valid
2
0¢ K= sup l®,B) < 0, e
1N .

we have the following sequence

It
i

\Vkiwlzl 2 | (w, Dew)| j’l‘(‘-wp(“j,gg‘ﬂ

< zjlwlk 4 3(&»5!:’*-2&3') . (€.4)
From this it follows since O < K < o0 that
v L
| e toq(Jwl +K7) | < g

for all P> 0. ‘ (€.5)

The boundedness and coanstancy ( and hence continuity ) of log(ILIi2 + Kz) , and

hence thEz along the z-axis are an immediate consequence of equation (C.5).
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