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1. The partial differential equation.

ON THE VIBRATIONS OF A HETEROGENEOUS STRING

Consider the partial differential equation

by
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Abstract: It is shown that the vibrations of a heterogeneous string can be

represented by an infinite series, each term of which is the result of applying

a linear integral operator to a function of position and time furnished by the

initial data. The method applies also to plane waves of compression or snear

in a heterogeneous elastic solid for which the elastic constants and density

are functions of only one coordinate, and the waves move in the direction of

that coordinate.
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here s is a positive function of x only, s(x) . Let x range from

— to + . The characteristics are given by dx/dt ÷ s , which equations

define two congruences of curves in the (x,t)-plane. The function s (x)

represents the local speed of propagation, and the theory applies to all phycica

systems essentially involving only one space-dimension for which this seod is

Known. Thus

1) For the transverse vibrations of a string, 2 = T/X where T is the

(constant) tension and A the mass per unit length at the position x

2) For the compressional vibrations of en isotropic elastic solid in which

the density and elastic constants are functions of x only (we might call it

laminated), 2
= (A +

3) For the transverse vibrations of such a laminated solid, 2 =

Other applications may occur to the reader; the essential condition is

that (1.1) is applicable, with s(x) a given positive function.

2. Straighteninr the characteristics.

The first step is to straighten the characteristics of (1.1) for geometrico

representation in a space-time plane. To do this we define

y
fX

dz / s(z)
0

(2.1)

giving y as a function of x . Inverting, we get x as a single-valued

function of y , ano this gives

s(x) c(y) (2.2)

we may call c(v) the transformed local speed. Changing the independent

variable from x to y , we transform (1.1) into
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u - u + (c’/c) u = 0 , (2.3)tt yy y

the characteristics are straight and, instead of the partial derivative U as

in (2.3), we flOW have the function V itself.

where the prime means a/ay . In a space-time plane in which y and t

are Cartesian coordinates, the characteristics are now straight lines

inclined to the axes at 45°

Strictly speaking, we should not use the same symbol u in (1.1) and

(2.3), because the function u(x,t) of (1.1) is not the same function as the

u(y,t) of (2.3); but this is not likely to cause confusion if we remember

that u may be regarded as a physical quantity, expressible in terms of (x,t)

or (y,t)

3. Changing the dapondent variable.

Let us see what happens to the equation (2.3) if we change the dependent

variable u to v by the transformation

u(y,t) = v(y..t) (y), (3.1)

where the function 4 is at present unspecified. Then

, u v ÷ v4’ , v ÷ 2vP’ + v’

and when these are substituted in (2.3) we get, an division by •
v -v = 2kv + 2hv,tt ‘l’

(3.2)
2 k 2 ‘/ç - c’/c , 2h “/4 - (q’/p) (c’/c)

/
A / 5

Fig.1

Then

wh are

Choose to make k = 0:

• c , u vc . (3.3)

2h c’S/c — (3/4) (c’/c)
— (34)

y c’/c . (3.5)

Our partial differential equation now reads

4. The integral equation and its solution.

If the right hand side of (3.6) were a given function of (y,tL we would

have the equation for a uniform string acted on by external force, and we would

know how to proceed. This suggests a similar procedure, leading to an integral

equation for V

In Fig. 1, P is a goneral point (y,t) , chosen with t positive for
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t

- = 2hv (3.6)



3 = ff (v - v + 2hv) dy dt
yy tt

flS(vydt+vtdY) + 2ff hvdydt,

VA + AB
v dy - VP + v6 + 2 1! hv dy dt = 0

v (v ÷ V6
+ AB

v dy ) + f! hv dy dt . (4.2)

C(y,t) = {v(y-t),0) + v(y + t,0) + f’ v(z) dz} (4.3)

this may be called the Cauchy function, since it involves only the usual

Cauchy data, viz, the values of v and v, for t=0 it satisfies

C - C = 0.
tt yy

Now deftne the linear integral operator H by the statement that, when

applied to an arbitrary function w(y,t) , we have

H w(y,t) If h(y1) w(y1,t1) dy1 dt1 , (4.5)

—6—
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convenience, and A, B are the points where the characteristics through P

meet the y-axis. Integrating (3.6) over the triangle PAD , we get

(4.1)

the first of these going counterclockwise round PAD . But dt = dy on PA

and dt = - dy on BP . Thus (4.1) gives, in an obvious notation,

or

Notationally, the above argument is defective, in that, although I said

that P was a given point with coordinates (,t) , I have used (y,t)

as current coordinates. To clarify this, let me change the notation for

currant coordinates, aithough I expect that the reader might be satisfied

with the derivation of (4.2).

Let (y,t) be the coordinates of any point in the (y,t)-plana, and

v(y,t) any function which satisfies the p.d.e. (3.6). Define

with integration over the characteristic triangle with vertex at (y,t).

It must be understood that the combination Hw is itself a functional symbol,

and (y,t) indicates the point at which that function Hw is to be evaluated,

With these definitions, it should be clear that (4.2) may be written

v(y,t) = C(y,t) + H v(y,t) (4.6)

the function C being by the Cauchy data, this is an integral equation for

the solution v(y,t)

To solve this integral equation, we write it

(I — H) v = C , (4.7)

where I is the identity operator, multiply by (I - H)1 , and expand this

binomially. Thus

2 3
v = (I - H) C = (I + H + H + H + ...) C . (4.8)

This calls for an infinite sequence of operations on the (given) Cauchy

function C(y,t) . The series converges if C and h are bounded in

absolute value, being, as is easily seen, dominated termwise by the exponential

series with nth term

C hn t2n / (2n!) , (4.9)

where the bars indicate the upper bounds.

The problem of the heterogeneous string is thus solved, and with it

those other problems to which the p.d.e. (1.1) applied. We must however

remember that v as in (4.8) is not the physical displacement u , but is

related to it by u = vc

5. An interesting special case.

So far we have regarded the function s(x) , or equivalently c(y)

as arbitrarily given. If we take s = const., we have the d’Alembart

solution

(4.4)
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end the general solution is

v f(t - y) + g(t + y)

the two functions being arbitrary.

h = 0 demands that y’/y2 = I

and so by (3.5)

c’/c 2-v’ 2/(a - y)

c b / (a - y)2

where b is a positive constant.

also be written

dx c dy b dy / (a - y)2

end so

(5.6) -

by choosing a string for

u = f(t - x/s) + g(t + x/s) , (5.1)

the two functions being arbitrary until determined by Cauchy data. To get v

we simply divide by the constant c2 • which equals s . Can we design a

heterogeneous string (i.e. assign s(x)) so that the general solution of the

p.d.e. (1.1) can be expressed in terms c-F arbitrary functions?

Returning to (3.6), which is nothing but a transform of (1.1) without

involving the initial data, we note that if h = 0 our equation is

v -v = 0, (5.1)tt yy

Now h is given by (3.4) , and so

l/y a
- y where a is a constant,

Now the (x,y) transformation (2.1) may

(5.2)

(5.3)

(5.4)

x K + b / (a - y)

where K is another constant.

c b1 (x - K)2

we are to use (5.5) which gives

y a - b / (x — K) , (5.8)

andso

U = c2v = b(x-k) {f(t - a +b/(x-k)) + g(t + a - b/Cx-k))) (5.93

the functions f and g being arbitrary. It is easy to verify that this

satisfies (1.1) with s(x) as in (5.7).
-

It was said at the outeet that the string was infinite, and so it may

be objected that (5.9) has a singularity at x = K . However the infinite

length of the string was never invoked in the argument, and, even if the

length is finite, all the theory holds good until such time as a local

disturbance reaches an end. For a string of the special construction as

above, a disturbance initiated at or near x 0 would require an infinite

time to reach x = K , because, with local speed as in (5.7), the time taken

- would be
-

b .r (x - K)2 dx

which is infinite.

6. Conclusion.

If the formula (4.8) is regarded am a solution of the problem of the

transverse vibrations of a heterogeneous string, then the problem is solved.

Rayleigh was interested in that problem, but concentrated on the frequencies

of a finite heterogeneous string. Since the final result is so simple, it

would be surprising if no one had obtained it; but, while I have made no

systematic search through the relevant literature, it seems that it has not

been hitherto obtained. The present method evolved after many discussions

with my colleague, Professor J. T. Lewis. and my debt to him is great, for it

was he who recommended (but for different reasons) the transformation u = vc

instead of u = ye which I had been using. Ha has developed a different

approach, which I hope will be published.

I wish to thank also several correspondento: Professor A. fi. Arthurs

a — y b / (x - K) , (5.5)

Thus by (5.3)

8ut as in

which the

(2.2) c(y) = s(x) , and so we make h 0

local speed of propagation is

s(x) = b1 (x - K)2 , (5.7)

where b and K are arbitrary constants with b positive.

For such a string the general solution is as in (5.2): to express the

physical displacement u in terms of the physical distance x From the origin,
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Dr. E. Saibel end Dr. Vincent Hart - not to mention those who have encouraged

me by telling me that they did not know of any solution.


