Non-Commutative Gaussian Processes

A. Frigerio*, J.T. Lewis
Dublin Institute for Advanced Studies,
Dublin 4. Ireland.

O. INTRODUCTION

We follow Accardi [1,2] and define a stochastic process to be a family $\{j_t:t\in R\}$ of *-isomorphisms of one algebra \preceq into another \rightleftarrows , together with a state ϖ on \rightleftarrows ; in this paper we work in the category of W*-algebras and normal morphisms, so that classical stochastic processes are included as a special case (when both \rightleftarrows and \rightleftarrows are commutative). In [3] it was shown that a stochastic process is determined up to equivalence by its family of correlation kernels $\varpi(j_{t_1}(a_1)^*...j_{t_n}(a_n)^*j_{t_n}(b_n)...j_{t_1}(b_1))$, and that a process can be reconstructed from an inductive family of correlation kernels; Markov processes and their associated semigroups were studied, and examples (related to the Hepp-Lieb models [4]) were constructed using the Clifford algebra. In this paper we study non-commutative Gaussian processes; classical Gaussian processes are a special case.

Gaussian processes are generated by Hilbert space processes

(Theorem 1.1), so in {2 we review results about Hilbert space processes.

A Gaussian process is determined up to equivalence by its covariance function (Lemma 3.1); it is Gaussian Markov if and only if its covariance function satisfies an evolution condition (Theorem 3.4).

There is a one-to-one correspondence between stationary Gaussian Markov processes and semigroups of quasi-free completely-positive identity-preserving maps on the CCR algebra leaving invariant a quasi-free state (Theorem 3.5). A stationary Gaussian Markov process is regular if and only if it satisfies a Langevin equation (Theorem 3.7). The Ford-Kac-Mazur process in quantum theory [5] is Gaussian; it is classical Markov at infinite temperature but non-Markov at finite temperatures.

^{*} On leave from Istituto di Scienze Fisiche, Universita di Milano, Milano, Italy.

1. PRELIMINARIES AND DEFINITIONS

We summarize a few results from the theory of cyclic representations of the canonical commutation relations over symplectic spaces [6,7] with possibly degenerate symplectic forms [8,9].

Let H be a Hilbert space, Q a skew-adjoint contraction on H, and let Θ be the symplectic form on H given by

$$\sigma(h,k) = \langle Qh,k \rangle$$
 for all h,k in H. (1.1)

Then there exists a complex Hilbert space ${\cal H}$, with a distinguished normalized vector Ω , and a one-to-one map W of H into ${\cal B}({\cal H})$ such that

$$W(h)W(k) = e^{-i\sigma(h,k)}W(h+k) \quad \text{for all h,k in H,}$$

$$h \mapsto W(h) \quad \text{is continuous in the ultraweak topology,}$$
(1.2)

the set $\{W(h)\Omega : h \in H\}$ is dense in \mathcal{H} ,

$$\langle \Omega, W(h) \Omega \rangle = \exp(-\frac{1}{2} \ln ||^2)$$
 for all h in H. (1.3)

Let A be the ultraweak closure of the set $\{W(h): h \in H\}$; then A is a von Neumann algebra. We denote it by W(H).

Definition: If a von Neumann algebra A is of the form W(H) for some real Hilbert space H, we say that H is a Gaussian space for A. Let ω be the state on A defined by $\omega(a) = \langle \Omega, a \Omega \rangle$ for all a in A.

Example 1 Let Q = 0; then A = W(H) is abelian, and isomorphic as a W*-algebra to some $L^{\infty}(\Sigma, \mathcal{F}, \mathcal{P})$; then H may be identified with a closed subspace of $L^{\infty}_{R}(\Sigma, \mathcal{F}, \mathcal{P})$, and it is then a Gaussian space in the usual sense [10]. The state ω is faithful since a cyclic vector for A is also separating for A if A is abelian.

Example 2 Let $Q^*Q = 1$; then σ is non-degenerate, ω is a Fock state on A and W is an irreducible representation of the canonical commutation relations (CCR) over $(H_2\sigma)$.

Example 3 Let Q be such that $O < Q^*Q < 1$; then σ is non-degenerate, ω is a faithful primary quasi-free state on the algebra of the CCR over (H, σ) .

Remark: The above examples are universal: one can always decompose H as $H_1 \oplus H_2 \oplus H_3$ where $H_1 = \ker Q$, $H_2 = \ker (1 - Q^*Q)$ and $H_3 = H \oplus (H_1 \oplus H_2)$, each H_n , n = 1, 2, 3, is stable under Q and $W(H) = W(H_1) \otimes W(H_2) \otimes W(H_3)$: then $W(H_n)$ corresponds to the situation of Example n for n = 1, 2, 3. Note also that $\omega(W(h_1 \oplus h_2 \oplus h_3) = \omega(W(h_1)) \omega(W(h_2)) \omega(W(h_3))$ for $h_n \in H_n$, n = 1, 2, 3, and that the centre of W(H) is $W(H_4) \otimes 1 \otimes 1$. [8].

In applications one starts from a real vector space V with a symplectic form σ which is either identically zero (classical case) or is nondegenerate (boson case). Then one defines a bilinear form $S(\cdot,\cdot)$ on V satisfying

$$\sigma(h,k)^2 \leq s(h,h)s(k,k)$$
 for all h,k in V (1.4)

(or, equivalently, $\sum \bar{c}_i c_j [S(h_i,h_j)+i\,\sigma(h_i,h_j)]\geqslant 0$ for all finite sequences $\{c_i\}$ in $\mathbb C$, $\{h_i\}$ in V), and uses s to define the inner product. Let H be the completion of V with respect to the norm got from the inner product, then σ can be extended to H by continuity, and it can be degenerate, in general. For example, for the grand-canonical state of the free boson gas in the thermodynamic limit, $H_i = \{0\}$ above the critical temperature and $H_i = \mathbb{R}^2$ below the critical temperature [11].

Definition (Accardi, Frigerio, Lewis [3]): A W*-stochastic process over \mathcal{B} evolving in \mathcal{A} is a pair ($\{j_t:t\in\mathbb{R}\},\omega$), where \mathcal{A} , \mathcal{B} are W*-algebras, $\{j_t:t\in\mathbb{R}\}$ is a family of normal *-isomorphisms of \mathcal{B} into \mathcal{A} with $j_t(\frac{1}{2})=\frac{1}{2}$,

such that A is the W*-algebra generated by $\{j_{\mathbf{t}}(b): \mathbf{t} \in \mathbb{R}, b \in \mathcal{B}\}$, ω is a normal state on A, such that A can be identified with the von Neumann algebra of operators $\pi_{\omega}(A)$ acting on the GNS space \mathcal{X} of ω . Two W*-processes $(\{j_{\mathbf{t}}\}, \omega), (\{j_{\mathbf{t}}\}, \widetilde{\omega})$ over \mathcal{B} evolving in A, \widetilde{A} respectively are equivalent if there is a normal *-isomorphism u of A onto \widetilde{A} such that $\widetilde{J}_{\mathbf{t}} = u \cdot \widetilde{J}_{\mathbf{t}}$ for all \mathbf{t} in \mathbb{R} and $\widetilde{\omega} \cdot u = \omega$. Here we construct W*-stochastic processes determined by families of isometries in real Hilbert spaces.

Definition Let M, H be real Hilbert spaces. A <u>Hilbert space process</u> (or H-process, for the sake of brevity in reference) over M evolving in H is a family $\{X_{t}: t \in \mathbb{R}\}$ of isometries $X_{t}: M \to H$ such that $H = V\{X_{t}m: t \in \mathbb{R}, m \in M\}$, $t \mapsto X_{t}m$ is continuous for all m in M. To construct a stochastic process in our sense from an H-process $\{X_{t}\}$ over M evolving in H, all we require is to be given a pair (Q_{M}, Q) of skew-adjoint contractions, on M and H respectively, which is compatible with $\{X_{t}\}$ in the sense that

$$Q_{M} = \chi_{\pm}^{*} Q \chi_{t} \qquad \text{for all t in R.}$$
 (1.6)

The main result of this section is the following

Theorem 1.1 Let $\{X_t\}$ be an H-process over M evolving in H, and let (Q_M,Q) be a pair of skew-adjoint contractions compatible with $\{X_t\}$. Let $\mathcal B$ be the W*-algebra W(M), with symplectic form $\mathcal C_M$ given by Q_M , and let $\mathcal A$ be the W*-algebra W(H), with symplectic form $\mathcal C_M$ given by $\mathcal Q$. Then there exists a W*-stochastic process $(\{j_t\},\omega)$ over $\mathcal B$ evolving in $\mathcal A$ for which

$$j_{\perp}W(m) = W(X_{c}m)$$
 for all m in M, t in \mathbb{R} , (1.7)

$$\omega(W(h)) = \exp(-\frac{\lambda}{2} \|h\|^2) \quad \text{for all h in H.}$$
 (1.3)

Occasionally we shall write

$$\dot{J}_{t} = \mathcal{W}(\dot{\chi}_{t}) . \tag{1.8}$$

<u>Proof</u> Let $\not \ge 0$, λ_{t}^{0} (t $\in \mathbb{R}$) and λ^{0} be the C*-algebras generated by $\{W(m): m \in M\}$, $\{W(X_{t}^{m}): m \in M\}$ and $\{W(h): h \in H\}$ respectively. By condition (1.6), we have, for all m,m' in M,

$$W(m)W(m') = e^{-i < Q_{M}m, m' > W(m+m')},$$
 (1.9)

$$W(X_{tm})W(X_{tm'}) = e^{-i < QX_{tm}, X_{tm'} > W(X_{t}(m+m'))}$$

$$= e^{-i < QX_{tm}, m' > W(X_{t}(m+m'))},$$
(1.9')

so that, by Slawny's theorem [21], there is a C*-algebra isomorphism j_t^0 of \mathfrak{S}^0 onto λ_t^0 such that $j_t^0(\mathbb{W}(\mathbb{m})) = \mathbb{W}(\mathbb{X}_t \mathbb{m})$ for all \mathbb{m} in \mathbb{M} . In particular, we have $j_t^0(\mathbb{I}_{\geq 0}) = \mathbb{I}_{\lambda^0}$. Let ω_M^0 and ω^0 be the states on \mathfrak{S}^0 and on λ^0 respectively defined by

$$\omega_{M}^{\circ}(W(m)) = e^{-\frac{1}{2}Hm\pi^{2}}, \omega^{\circ}(W(h)) = e^{-\frac{1}{2}fhH^{2}}.$$

Upon identifying \mathcal{B}° and \mathcal{A}° with their respective GNS representations determined by ω_{M}° and ω° , we have $\mathcal{B} = (\mathcal{B}^{\circ})^{\circ}$, $\mathcal{A} = (\mathcal{A}^{\circ})^{\circ}$. The normal extensions of ω_{M}° and of ω° to \mathcal{B} and to \mathcal{A} will be denoted by ω_{M} and by ω respectively. Since X_{t} is an isometry, we have

$$\omega^{0} \circ j_{t}^{0} = \omega_{M}^{0}. \tag{1.10}$$

It remains to prove that j_t^0 can be extended to a normal *-isomorphism of $\tilde{\triangle}$ into \tilde{A} . By the Remark made after Examples 1—3, it suffices to construct the normal extension in the cases

(i) Ker
$$(l_M - Q_M^+Q_M) = \{0\} (\omega_M \text{ faithful})$$

(ii)
$$Q_M^+Q_M = 1_M$$
 (ω_M Fock).

<u>Case (i)</u>: We adapt the argument of [14], Theorem 4.2. Let $\mathcal S$ be the set of states on $\mathbb S^0$ which are majorized by a scalar multiple of $\omega_{\mathbb M}^0$: any state ϕ^0 in $\mathcal S$ has a

normal extension ϕ to \mathcal{B} , and the set of such normal extensions spans a norm-dense subset in the predual space of \mathcal{B} , since ω_{M} is faithful. If ϕ^{0} is in \mathcal{J} , then, by (1.10), ϕ° , j_{t}° is majorized by a scalar multiple of ω , hence it has a normal extension to \mathcal{A} . By density, the predual space of \mathcal{B} is mapped into the predual space of \mathcal{A} by the transpose of j_{t}° , so that j_{t}° has a normal extension to \mathcal{B} . Case (ii): If ω_{M} is Fock, we have

$$1_{M} = Q_{M}^{\dagger}Q_{M} = X_{+}^{\star}Q^{\dagger}X_{+}X_{+}^{\star}Q X_{+} \leq X_{+}^{\star}Q^{\dagger}Q X_{+} \leq X_{+}^{\star}1_{H}X_{+} = 1_{M},$$

hence $(1-X_tX_t^*)QX_t = 0$ and Q maps the subspace $H_t = X_tM$ of H into itself. It follows that $W(X_tm)$ commutes with W(k) for all m in M and for all k in the orthogonal complement K_t of H_t in H, and we have the natural identification

$$W(H) = W(H_t) \otimes W(K_t) : H_t = X_t M, K_t = H \bigcirc H_t.$$

Let \mathfrak{H}_{t} be the Hilbert space $\overline{W(H_{t})}\Omega$, where Ω is the cyclic vector for W(H) satisfying (1.3); let also \mathfrak{H}_{M} denote the space on which W(M) acts with cyclic vector Ω_{M} satisfying the analogue of (1.3). By (1.9) and (1.10), $(\mathfrak{H}_{M}, W(m), \Omega_{M})$ and $(\mathfrak{H}_{t}, W(X_{t}m), \mathfrak{H}_{t}, \Omega)$ are two cyclic representations of the CCR over (M, \mathfrak{G}_{M}) with the same generating functional, hence there exists a unitary operator U_{t} of \mathfrak{H}_{M} onto \mathfrak{H}_{t} such that

<u>Definition</u> A process as in Theorem 1.1 is a <u>Gaussian process</u>. It is clear that classical <u>Gaussian processes</u> (see [10]) are covered by the above definition. We recall a few definitions from [3]:

A stochastic process (j_t , ω) over $\vec{\mathcal{B}}$ evolving in $\hat{\mathcal{A}}$ is said to be stationary if there is a group $\{\mathcal{U}_t: t\in \mathbb{R}\}$ of *-automorphisms of $\hat{\mathcal{A}}$ such that $\mathcal{U}_t \circ j_s = j_{s+t}$ for all t, s in R, $\omega \circ \mathcal{U}_t = \omega$ for all t in R. Define the following W*-subalgebras of relative to the time t:

(past and present):
$$\hat{A}_{t\uparrow} = V\{j_s(b) : s \in t, b \in \hat{B}\},$$

(present): $\hat{A}_t = V\{j_t(b) : b \in \mathcal{B}\},$
(present and future): $\hat{A}_{f\uparrow} = V\{j_s(b) : t \in u, b \in \mathcal{B}\},$

and assume that the functions $t\mapsto j_t(b)$ are continuous in the weak* topology, so that the W*-subalgebra $A_{t} = V\{j_s(b): s < t, b \in \mathcal{B}\}$ coincides with A_{t} for each t in \mathbb{R} . Then the W*-stochastic process is said to be Markov if there exists a family of normal conditional expectations E_{t} of A onto A_{t} , $t \in \mathbb{R}$, which is compatible with A in the sense that

$$\omega = \omega \underset{A_{t]}}{\triangleright} E_{t]} \qquad \qquad \text{for each t in } R \ ,$$
 and satisfies the Markov property

그들이 되었다. 이 보면 보면 하나를 보다 되는 때문에 되는 그는

$$E_{t} A_{t} = A_{t}$$
 for each t in \mathbb{R} .

For a Gaussian process, it will be possible to relate the above properties to the corresponding properties, (defined in §2), of the underlying H-process. To do so, we introduce maps on W(H) which are determined by operators on H. The following theorem is a slight modification of a result of Evans and Lewis [12], Demoen, Vanheuverzwijn and Verbeure [13]:

Theorem 1.2 A map Z defined on the W(h), $h \in H$, by

$$Z[W(h)] = W(Th) \exp(\frac{1}{2} ||Th||^2 - \frac{1}{2} ||h||^2),$$
 (1.11)

where T is a linear operator on H, extends by linearity and continuity to a completely positive identity preserving normal map of W(H) into itself if and only if

$$\sum_{i,j} \overline{c}_i c_j \left[\langle h_i, h_j \rangle - \langle Th_i, Th_j \rangle + i \langle Qh_i, h_j \rangle - i \langle QTh_i, Th_j \rangle \right] \geqslant 0$$
 (1.12) for all finite sequences $\{c_i\}$ in C and $\{h_i\}$ in H .

Remark Eq. (1.12) implies that T is a contraction on H, and any contraction T on H commuting with Q satisfies (1.12).

<u>Proof</u> (Sketch). It has been shown in [12,13] that (1.12) holds if and only if Z extends to a completely positive identity preserving map \overline{Z} of the C*-algebra generated by $\{W(h): h \in H\}$ into itself, so we only have to prove that \overline{Z} can be further extended to a normal map of W(H) into itself if (1.12) holds. Assume first that T is a contraction commuting with Q, and let $H = H_1 \oplus H_2 \oplus H_3$ be the decomposition introduced after Examples 1,2,3. Then also Z decomposes as $\overline{Z}W(h_1 \oplus h_2 \oplus h_3) = \overline{Z}_1W(h_1) \otimes \overline{Z}_2W(h_2)$

and it suffices to extend \mathbb{Z}_1 , \mathbb{Z}_2 , \mathbb{Z}_3 to normal maps on the von Neumann algebra. For \mathbb{Z}_1 and \mathbb{Z}_3 this is possible since they leave invariant a separating state (then use [14] Theorem 4.2), for \mathbb{Z}_2 this follows as a special case from [15] Theorem 4.4. We shall complete the proof after Theorem 3.5.

The extension of Z to W(H) will be denoted by W(T). The set S of the contractions on H which satisfy (1.12) is a semigroup, and $T \mapsto W(T)$ is a homomorphism of S into the set of completely positive identity preserving normal maps on W(H). If 0 is the zero operator on H, then $W(0) = \omega(\cdot) \perp$. All maps W(T), T in S, leave ω invariant. W(T) is a *-automorphism of W(H) if and only if T is a unitary operator commuting with Q, and it is a conditional expectation if and only if T is an orthogonal projection commuting with Q. Notice that in the classical case Q = Q, so that S is the set of all contractions on H; then each unitary on H determines a *-automorphism of W(H) and each orthogonal projection determines a conditional expectation.

2. H-PROCESSES

Since the structure of a Gaussian process will be determined by the underlying H-process, we give a short and systematic account of those properties of H-processes which we shall need. H-processes have been studied in connection with classical Gaussian or weakly stationary stochastic processes, see e.g. [16-20,10]. The basic object of a H-process is the <u>covariance function</u> $K(\cdot,\cdot)$ on $\mathbb{R} \times \mathbb{R}$ with values in $\mathcal{B}(M)$ defined by

$$\langle m, K(s,t)m' \rangle = \langle X_s m, X_t m' \rangle$$
 for all m, m' in M. (2.1)

It satisfies the following properties:

K1: K(.,.) is a positive definite kernel,

K2: K(t,t) = 1 for all t in \mathbb{R} ,

K3: $S_1 \leftarrow \langle m, K(s_1 \leftarrow m') \rangle$ is continuous for all m, m' in M.

By the theorem on minimal Kolmogorov decompositions of positive definite kernels [21], an H-process is determined uniquely up to equivalence by its covariance function, and any function $K: \mathbb{R} \times \mathbb{R} \to \mathcal{B}(M)$ satisfying K1-K3 is the covariance function of an H-process. Consequently, any property of an H-process can in principle be stated either in terms of isometries $\{X_t\}$ or in terms of the covariance function $K(\cdot,\cdot)$.

An H-process is <u>stationary</u> if K(t,t+S) is independent of t for all s. By the uniqueness up to equivalence of the minimal Kolmogorov decomposition of a positive definite kernel [21], this holds if and only if there is a group $\{T_t:t\in\mathbb{R}\}$ of unitary operators on H such that $T_tX_s=X_{t+S}$ for all s, t in \mathbb{R} .

For each t in \mathbb{R} define the following subspaces of H relative to the time t:

$$\begin{array}{ll} \text{(past and present)} & H_{t]} = \bigvee \big\{ X_{s} \, m : s \! \leqslant \! t \; , \, m \! \in \! M \big\} \; , \\ \text{(present)} & H_{t} = \bigvee \big\{ X_{t} \, m : \, m \! \in \! M \big\} \; \; , \\ \text{(present and future)} & H_{ft} = \bigvee \big\{ X_{u} \, m : \, t \! \leqslant \! u \; , \, m \! \in \! M \big\} \; . \\ \end{array}$$

Denote by P_{\sharp} the orthogonal projection onto H_{\sharp} , where \sharp stands for t],t, or [t . Because of the assumed continuity, the space $H=V\{X_sm:s< t,m\in M\}$ coincides with H_{t} . Define also the subspaces

$$D_{t}^{-} = H_{t} \Theta H_{t} \qquad , D_{t}^{+} = H_{t} \Theta H_{t}$$

Definition An H-process is said to be

$$\begin{array}{lll} \underline{\text{deterministic}} & \text{if} & H_{\mbox{tj}} = H & \text{for all t;} \\ \underline{\text{regular}} (\text{or completely nondeterministic}) & \text{if} & \bigwedge \left\{ H_{\mbox{tj}} : \mbox{t} \in \mathbb{R} \right\} = \left\{ 0 \right\}; \\ \underline{\text{Markov}} & \text{if} & D_{\mbox{t}}^{-} & \text{is orthogonal to} & D_{\mbox{t}}^{+} & \text{for all t in} & \mathbb{R} \end{array}.$$

In Section 3 we shall see that the following result leads to a generalization of Doob's theorem [17]:

Lemma 2.1 Let $\{X_{\underline{i}}\}$ be an H-process over M, with covariance function $K(\cdot,\cdot)$. The following are equivalent:

- (i) the H-process is Markov;
- (ii) the covariance function satisfies the evolution equation

$$K(s,t)K(t,u) = K(s,u)$$
 for all $s \le t \le u$ in R ; (2.2)

(iii)
$$P_{t}H_{tt} = H_{t}$$
 for all t in \mathbb{R} . (2.3)

Proof: (i) ⇔(ii) For all m, m' in M, S < t < u in R we have

$$\langle m, [K(s,u) - K(s,t)K(t,u)] m' \rangle = \langle X_s m, [1 - X_t X_t^*] X_u m' \rangle$$
.

The operator $X_{t}X_{t}^{*}$ is the projection P_{t} onto H_{t} , and $\{X_{s}m:s\leq t,m\in M\}$ $\{X_{t}m':t\leq t,m'\in M\}$ generate $H_{t}\}$, H_{t} respectively. The result then follows. (i) \iff (iii) D_{t} and D_{t}^{+} are orthogonal if and only if $H=D_{t}\oplus H_{t}\oplus D_{t}^{+}$. If this is the case $P_{t}\}H_{t}=H_{t}$. Conversely, if $P_{t}\}H_{t}=H_{t}$, then $P_{t}\}D_{t}^{+}=0$ and D_{t}^{+} is orthogonal to D_{t}^{-} .

Corollary An H-process is stationary and Markov if and only if there is a strongly continuous semigroup $\{S_{+}: t>o\}$ of contractions on M such that

$$K(s,s+t) = S_t$$
, $K(s,s-t) = S_t^*$ for all $t > 0$ and s in \mathbb{R} . (2.4)

Hence, given a strongly continuous semigroup $\{S_{t}\}$ of contractions on a Hilbert space M, let $\{T_{t}: t \in \mathbb{R}\}$ be a minimal unitary dilation of $\{S_{t}\}$, acting on a Hilbert space H, with isometric embedding X_{0} of M in H such that $S_{t}=X_{0}^{\kappa}T_{t}X_{0}$. Then $\{X_{t}=T_{t}\cdot X_{0}: t \in \mathbb{R}\}$ defines a stationary Markov H-process; and each stationary Markov H-process arises in this way.

Definition Let $\{X_t\}$ be an H-process over M; then an H-process $\{\bar{X}_t\}$ over \bar{M} (evolving in the same space H) is said to be an extension of $\{X_t\}$ if there exists an isometry W from M into \bar{M} such that $X_t = \bar{X}_t \cdot W$ for all t in \bar{K} . An extension $\{\bar{X}_t\}$ is said to be non-anticipating if $V\{\bar{X}_sWM:S\leqslant t\}$ = $V\{\bar{X}_s\bar{M}:S\leqslant t\}$ for all t, and minimal if $V\{\bar{X}_s^*\bar{X}_tWM:t\geqslant o\}=\bar{M}$. A non-anticipating extension of a stationary H-process is clearly stationary, with the same group $\{T_t\}$ of unitaries as the original H-process.

Lemma 2.2 (Rozanov [22]). A stationary H-process has a unique minimal non-anticipating Markov extension, given by

$$\overline{M} = P_{oj} H_{[o]}, \overline{X}_t = T_t \overline{X}_o$$
, \overline{X}_o being the natural embedding of $P_{oj} H_{[o]}$ into H . (2.5)

Proof From stationarity, it follows $P_{t,j} = T_t P_{o,j} T_{t}$, hence $\{P_{o,j} T_t : t > 0\}$ is a semigroup of contractions on H. $P_{o,j} H_{t,o}$ is the smallest subspace of H which is stable under $\{P_{o,j} T_t : t > 0\}$: let \overline{S}_t be the restriction of $P_{o,j} T_t$ to $P_{o,j} H_{t,o}$, then $\{\overline{S}_t : t > 0\}$ is a semigroup of contractions. Define $\overline{M}_{o,j} X_t$ as in (2.5). It is easy to see that $\{\overline{X}_t\}$ is a minimal non-anticipating extension of $\{X_t\}$, and it is Markov since $\overline{X}_s^* \overline{X}_{s+t} = \overline{S}_t$, $\{\overline{S}_t\}$ being a semigroup.

Let $X_{t}: \overline{\mathbb{M}} \to \mathbb{H}$ be another extension of $\{X_{t}\}$, and $\overline{\mathbb{P}}_{t}$ the associated family of projections onto $\overline{\mathbb{H}}_{t} = \mathbb{V}\{\overline{X}_{s}\overline{\mathbb{M}}, s \not\in t\}$. If $\{\overline{X}_{t}\}$ is non-anticipating, $\overline{\mathbb{P}}_{t} = \mathbb{P}_{t}$ for all t, if it is Markov $\overline{\mathbb{X}}_{s}\overline{\mathbb{M}}$ is mapped into itself by $P_{oj}T_{t}$; if it is minimal, $\overline{\mathbb{X}}_{s}\overline{\mathbb{M}} = \overline{\mathbb{M}}$. Then $\overline{\mathbb{M}}$ and $\overline{\mathbb{M}}$ can be identified, and so can \overline{X}_{t} and $\overline{\mathbb{X}}_{t}$.

Lemma 2.3 A stationary Markov H-process is regular if and only if the associated contraction semigroup $\{S_{\pm}\}$ contracts strongly to zero as $t\to\infty$, i.e.

$$\lim_{t \to \infty} \| S_t m \| = 0 \qquad \text{for all m in M.}$$
 (2.6)

Proof For all $t \geqslant 0$, $S \geqslant -t$ we have

 $\|S_{t+s}m\| = \|X_0S_{t+s}m\| = \|P_0X_{t+s}m\|$

 $= \|P_{0J}X_{t+s}^{m}\|$ (by the Markov property)

 $= \| -t P_{0} - X_{s} m \| = \| P_{t} X_{s} m \|$ (by stationarity),

so that (2.6) holds if and only if $\lim_{t\to\infty} P_{-t} = 0$, which is equivalent to regularity. Let G denote the infinitesimal generator of $\{S_t\}$.

Lemma 2.4 [23] A stationary Markov H-process is regular if and only if there is a family $\begin{cases} G \\ + \end{cases}$ of linear operators from $\mathcal{D}(G)$ into H such that

$$\langle \xi_{t}^{q} m, \xi_{t'}^{q} m' \rangle = (t_{\lambda} t') [-\langle q m, m' \rangle - \langle m, q m' \rangle]$$

for all t, t' in
$$\mathbb{R}$$
 , m, m' in $\Sigma(G)$. (2.7)

 $H = V\{\xi_t^G m: t \in \mathbb{R}, m \in D(G)\},$

and $\left\{X_{t}\right\}$ satisfies the following Langevin equation:

$$X_{tm} - X_{sm} = \int_{s}^{t} X_{u} Gm du + (\xi_{t}^{G} - \xi_{s}^{G})m$$
for all s,t in \mathbb{R} and m in $\mathcal{D}(G)$. (2.8)

Proof: See [23] Theorem 4.2 and [21] Theorem 5.15. Notice that if D(Q) = D(Q), then $\frac{1}{2} = \frac{1}{2} \left(-\frac{1}{2} \left(-\frac{1}{2} + \frac{1}{2}\right)^{1/2}\right)$

In their abstract study of scattering theory [24] Lax and Phillips introduced an interesting Hilbert space structure, which we now define:

Definition Let H be a Hilbert space, and let $\{T_t: t \in \mathbb{R}\}$ be a group of unitaries on H. Suppose that there is an orthogonal decomposition

$$H = D^- \oplus K \oplus D^+$$

Such that

$$\begin{split} H &= \bigvee \{ \ \overline{l_t} \ D^- : t \in \mathbb{R} \} = \bigvee \{ \ T_t \ K : t \in \mathbb{R} \} = \bigvee \{ T_t \ D^+ : t \in \mathbb{R} \} \;, \\ T_t \ D^- &= D^- \quad \text{for all } t \leqslant 0 \quad , \quad T_t \ D^+ \leq D^+ \quad \text{for all } t \geqslant 0 \;. \end{split}$$

We shall refer to the above structure as a <u>cyclic LP-structure</u>. The following result follows from a careful inspection of the proof of Theorem 4.4 of [23]. However the statement of the Theorem there is incorrect.

Proposition A cyclic LP structure defines a stationary Markov H-process over K such that both S_{t} and S_{t}^{κ} contract strongly to zero as $t\to\infty$.

Conversely, a stationary Markov process with S_{\pm} and S_{\pm}^{*} contracting strongly to zero defines a cyclic LP-structure with $K=H_{o}$, $D=D_{o}$, $D^{+}=D_{o}^{+}$

<u>Proof</u>(Sketch) Given a cyclic LP-structure, let X_0 be the natural embedding of K into H, and put $X_{\pm} = T_{\pm} X_0$: Then $\{X_{\pm}\}$ is a stationary H-process. Lax and Phillips show in [24] that $S_{\pm} = X_0^* X_{\pm}$ is a contraction semigroup on K (so that the H-process is Markov by Lemma 2.1) and that both S_{\pm} and S_{\pm}^* contract strongly to zero.

Conversely, given a stationary Markov H-process, we have

$$D_{t}^{-} = T_{t}D_{0}^{-} = H_{t}^{\perp} \qquad \text{and} \quad D_{t}^{\dagger} = T_{t}D_{0}^{\dagger} = H_{t]}^{\perp}.$$

Since $H = V\{T_t H_0: t \in \mathbb{R}\}$, we only have to prove that $\bigwedge\{H_t: t \in \mathbb{R}\} = \{0\}$. By the same reasoning as in Lemma 2.3, this is equivalent to the condition that both S_t and S_t contract strongly to zero as $t \to \infty$. The associated scattering operators of such processes have been studied by Okabe [25].

3. PROPERTIES OF GAUSSIAN PROCESSES

ω(j(W(m)) j(W(m'))/ω(j(W(m)))ω(j(W(m'))

$$= \exp\left[-\langle m, \langle (t,t')m' \rangle - l \langle m, \langle (t,t')m' \rangle\right],$$
m, m' in M, (3.3)

where K(t,t') and K(t,t') in B(M) satisfy

$$K(t,t) = 1$$
 for all t, $K(t,t')^* = K(t,t)$ for all t, t', (3.4a)

$$K^{(t,t)} = -Q_M$$
 for all t, $K^{(t,t)}^* = -K^{(t,t)}$ for all t, t', (3.4b)

$$\sum \bar{c}_{i} c_{j} \left[\langle m_{i}, K(t_{i}, t_{j}) m_{j} \rangle + i \langle m_{i}, K(t_{i}, t_{j}) m_{j} \rangle \right] \geqslant 0$$
 (3.4c)

for all finite sequences $\{c_i\}$ in \mathbb{C} , $\{m_i\}$ in M and $\{t_i\}$ in \mathbb{R} , (3.4d) the functions $t_it'\mapsto \langle m, K(t_it')m'\rangle$, $t_it'\mapsto \langle m, K(t_it')m'\rangle$ are continuous for all m, m' in M.

<u>Proof</u> (cf. AFL [3] and Lindblad [26]) Given a Gaussian process ($\{\{(X_t)\}, \omega\}$) we have

$$K(t,t') = X_t^* X_{t'}, \quad t, t' \in \mathbb{R} , \qquad (3.5a)$$

$$K^{\mathbb{Q}}(t,t') = -X_{t}^{*}\mathbb{Q}X_{t'} , \quad t, t' \in \mathbb{R} ; \qquad (3.5b)$$

then eqs. (3.3) and (3.4a-d) hold. Conversely, given a pair of operator-valued functions $K(\cdot,\cdot),K^2(\cdot,\cdot)$ on $\mathbb{R}\times\mathbb{R}$ satisfying (3.4a-b), let (H_1X_{τ}) be the minimal Kolmogorov decomposition of $K(\cdot,\cdot)$: then $\{X_{\tau}\}$ is an H-process over M evolving in H (see Section 2). Define a skew-symmetric form G on H by

$$\sigma(\Sigma_{c_i}X_{t_i}m_i,\Sigma_{c_j}X_{t_i'}m_j') = \sum_{c_i}C_{i_j}\langle m_i,K_{c_i,t_j'}^Q,m_j'\rangle$$
 (3.6)

for all finite sequences $\{C_{i}\}_{i}\{C_{i}\}_{i}$, in \mathbb{R} , $\{t_{i}\}_{i}\{t_{i}\}_{i}$ in \mathbb{R} , $\{m_{i}\}_{i}\{m_{i}\}_{i}$ in \mathbb{N} . By eq. (3.4c) there is a skew-adjoint contraction \mathbb{Q} on \mathbb{N} such that $\mathcal{O}(h,k)$ = $\langle \mathbb{Q}[h,k] \rangle$ for all h, k in \mathbb{N} ; moreover $X_{t}^{*}\mathbb{Q}X_{t} = \mathbb{N}^{\mathbb{Q}}_{t}(t,t)$ is a skew-adjoint contraction \mathbb{Q}_{M} independent of t. Thus $\{X_{t}\}_{i}$ is compatible with the pair $(\mathbb{Q}_{M},\mathbb{Q})$, a Gaussian process can be constructed as in Theorem 1.1 and eq(3.3) holds for it. \mathbb{N} , $\{X_{t}\}_{i}$ and \mathbb{Q} are determined up to unitary equivalence, hence also the process is unique up to equivalence. We refer to Lindblad [26] for a different kind of elaboration on Gaussian processes on the CCR algebra and their covariance function.

Theorem 5.4 A Gaussian process is stationary if and only if the underlying Hprocess is stationary and the unitaries T_t on H commute with Q: then $u = W(T_t)$

Proof If $(\{j_+\}, \omega)$ is stationary,

 $\omega(j_s(W(m)j_t(W(m')) = \exp\{-i < Q \times_s^m, X_t m' > - < m, K(s,t)m' > -\frac{n}{2} \|m'\|^2 - \frac{i}{2} \|m'\|^2 \}$ is a function of t-s alone, for all m, m' in M. Then K(s,t) is a function of t-s , so that $\{X_t\}$ is stationary, and

 $\langle \chi_{s'm}, [Q-T_t] \chi_{u'm'} \rangle = 0$ for all m,m' in M, s, t, u in $\mathbb R$, so that T_t commutes with Q for all t. Then $W(T_t)$ is well defined. We have

$$W_{t}W(X_{sm}) = W(X_{t+s}m) = W(T_{t}X_{sm})$$
 for all m in M, s,t in R,

so that indeed $W_{\pm} = W(T_{\pm})$.

Conversely, if T_t is a unitary operator commuting with Q, $W(T_t)$ leaves ω invariant and is a *-automorphism of W(H). If $T_s X_t = X_{s+t}$ for all t,s, then $W(T_s)W(X_t) = W(X_{s+t})$, so the process is stationary with $\mathcal{U}_s = W(T_s)$.

By the assumed continuity properties, we have

$$\dot{\mathcal{A}}_{\text{t}} = \mathcal{N}(H_{\text{t}}) = \mathcal{N}(H_{\text{t}}) = \dot{\mathcal{A}}_{\text{t}} \ ,$$

$$A_t = W(H_t)$$
, $A_{it} = W(H_{it})$,

for all t in $\mathbb R$. Hence a Gaussian process is Markov if and only if there is a family of conditional expectations E_{t1} of W(H) onto $W(H_{t1})$, compatible with ω and satisfying

$$\mathsf{E}_{\mathsf{t}_{\mathsf{J}}} \mathsf{W}(\mathsf{H}_{\mathsf{E}\mathsf{t}}) = \mathsf{W}(\mathsf{H}_{\mathsf{t}}).$$

Theorem 3.2 A Gaussian process is Markov if the underlying H-process is Markov and the projections $P_{t]}$ of H onto $H_{t]}$ commute with Q; then $E_{t]} = W(P_{t]}$. The converse also holds when ω is faithful.

Proof If $[P_{t]},Q]=0$, then $W(P_{t]})$ is well-defined and is a conditional expectation of A onto $A_{t]}$, compatible with ω , and $W(P_{t]})W(h)$ is proportional to $W(P_{t]}h)$ for all h in H; then $E_{t]}A_{t}=A_{t}$ if and only if $P_{t]}H_{t}=H_{t}$. When ω is faithful (equivalently, $Q^*Q<1$), we can use Takesaki's theorem [27] and the explicit form of the modular automorphism group in terms of Q [28] to prove that a conditional expectation onto $A_{t]}$ compatible with ω exists if and only if $[P_{t]},Q]=0$, and if it exists it is unique: then it is $W(P_{t]})$.

In order to simplify the discussion we make the following

Definition A Gaussian process is said to be Gaussian Markov if it is Markov and $E_{+}=W(P_{t})$ for each t in $\mathbb R$. Then the statement of Theorem 3.2 can be rephrased as follows: A Gaussian process is Gaussian Markov if and only if the underlying H-process is Markov, the projections P_{+} commute with Q and

 $E_{t_{\parallel}}=W(P_{t_{\parallel}})$ for all t_{\parallel} if ω is faithful a Gaussian process is Gaussian Markov if and only if it is Markov. The following Theorem is a consequence of theorems 3.1, 3.2 and lemma 2.2.

Theorem 3.3 A Gaussian process $(\{j_t\},\omega)$ is stationary and has a unique non-anticipating minimal Gaussian Markov extension if and only if the underlying H-process $\{X_t\}$ is stationary and

$$[T_t, Q] = 0 = [P_{t1}, Q]$$
 for all t in \mathbb{R} . (3.8)

Remark Since for a stationary H-process we have

$$T_t P_{s]} = P_{s+t]} T_t$$
 for all s, t in R, (3.9)

the condition (3.8) is very restrictive in the non-commutative case (Q\$\forall 0\$). In particular (3.8) is not satisfied in the quantum case when \$\omega\$ is KMS for \$\omega_t = \omega (T_t)\$ for some inverse temperature \$\beta\$ (\$\forall 0\$). Then Q is explicitly given as a function of \$T_t\$ [28], and \$[P_t]\$, \$Q]\$ \$\notine 0\$ (unless \$P_t]\$=1 for all \$t\$); so the process is not Markov because of the lack of conditional expectations compatible with \$\omega\$. This is the reason why the quantum Ford-Kac-Mazur model [5] at non-zero temperature fails to provide an example of a Markov process, whereas the corresponding classical process (with Q=0) is Markov. The classical situation is recovered in the quantum case in the limit of infinite temperature (\$\beta >> 0\$).

The

failure of the Markov property at finite ... temperatures is reflected in the fact that the covariance function is not a semigroup [5.29]. Indeed we have the following generalization of Doob's theorem [17]:

Theorem 3.4 A Gaussian process ($\{j_t\}$, ω) is Gaussian Markov if and only if its covariance function satisfies

K(s,t)K(t,u) = K(s,u) for all $s < t \le u$ in \mathbb{R} , (3.10a)

 $K(s,t) = -Q_M K(s,t)$ for all $s \le t$ in \mathbb{R} . (3.10b)

<u>Proof</u> (cf [3]) If the process is Gaussian Markov, the underlying H-process is Markov by Theorem 3.2, then (3.10a) holds by Lemma 2.1; moreover

$$K_{(s,t)}^{Q} = -X_{s}^{*}QX_{t} = -X_{s}^{*}P_{s]}QX_{t} = -X_{s}^{*}QP_{s]}X_{t}$$

$$= -X_{s}^{*}QX_{s}X_{s}^{*}X_{t} = -Q_{M}K(s,t)$$
for all $s \le t$,

where we have used (2.3), (3.4) and (3.5); so that (3.10b) holds. Conversely, if (3.10a) holds, $K_{(5,\pm)}$ is the covariance function of a Markov H-process by Lemma 2.1; then (3.10b) tells us that

$$\begin{split} &\langle \mathbb{Q} X_{s} m, [1-X_{t} X_{t}^{*}] X_{u} \, m' \rangle = \langle \mathbb{Q}_{M} m, K(s,u) \, m' \rangle - \langle \mathbb{Q}_{M} m, K(s,t) K(t,u) \, m' \rangle = 0 \\ &\text{for all } m, \, m' \text{ in M and } s \leqslant t \leqslant u \text{ in } \mathbb{R} : \text{ hence Q maps } H_{t]} \text{ into the orthogonal complement of } \mathbb{D}_{t}^{+} \text{, which is } H_{t]} \text{; and since Q is skew-adjoint it} \\ &\text{commutes with } \mathbb{P}_{t}^{+} \text{.} \text{ Then by Theorem 3.2 the process is Gaussian Markov.} \end{split}$$

Corollary A Gaussian process is stationary and Gaussian Markov if and only if (3.8) holds and the covariance function K(s,t) is given by a semigroup $\{S_1, t > 0\}$ of contractions on M, as in (2.4).

Let M be a Hilbert space, Q_M a skew-adjoint contraction on M, $\{S_{\pm}; t \geqslant o\}$ a strongly continuous contraction—semigroup on M, ω_M the state on W(M) defined

by $\omega(\sqrt[M]{m}) = \exp(-\frac{1}{2}||m||^2)$. Then, by Theorem 1.2,

$$Z_{t}W(m) = W(S_{t}m) \exp \left\{ \frac{1}{2} \|S_{t}m\|^{2} - \frac{1}{2} \|m\|^{2} \right\}, m \in M, t \ge 0,$$
 (3.11)

defines a semigroup $\{Z_{t}: t \geqslant 0\}$ of completely positive identity preserving normal maps of W(M) into itself if and only if (1.12) holds with T replaced by S_{t} for all $t\geqslant 0$, and $\omega_{M} \circ Z_{t} = \omega_{M}$ for all $t\geqslant 0$. So far, we have only proved the statement for the case $[S_{t},Q_{M}]=0$, and in the general case we only know that there is a semigroup of completely positive identity preserving maps of the C*-algebra generated by $\{W(m): m\in M\}$ into itself if (1.12) holds. The following Theorem will allow us to complete the proof of Theorem 1.2.

Theorem 5.5 (Reconstruction theorem) Let $\{Z_{t}: t \gg 0\}$ be as above. Then there exists a stationary Gaussian Markov process $(\{J_{t}\}, \omega)$ over W(M) such that

$$\lambda_{t} Z_{t} = E_{0} u_{t} j_{0} \tag{3.12}$$

for all $t\geqslant 0$, and the process is unique up to equivalence in the class of Gaussian Markov processes.

<u>Proof</u> Since Z_t is completely positive and $\omega_M \circ Z_t = \omega_M$, there exists a contraction F_t on \mathcal{H}_M such that

 F_t W(m) $\Omega_M = Z_t$ W(m) Ω_M for all m in M, and $\{F_t\}$ is a semigroup of contractions [12]. Then, by [30] Chapter I Section 8; we have

$$F_{t} = F_{-t}^{*} \qquad \text{for } t \leq 0 \qquad \text{. If we let}$$

$$\alpha_{i} = \frac{d}{d\lambda} W(\lambda \dot{m}_{i}) \Omega \Big|_{\lambda=0} \qquad , m_{i} \in M ,$$

we find explicitly

$$\sum \bar{c}_i c_j \{\langle m_i, K(t_i, t_j) m_j \rangle + i \langle m_i, K^2(t_i, t_j) m_j \rangle \} \geqslant 0$$

where

$$K(s,t) = \begin{cases} S_{t-s} , t \ge s , \\ S_{s-t}^* , t \le s , \end{cases}$$
 (3.15a)

$$K_{(s,t)}^{Q} = \begin{cases} -Q_{M}S_{t-s}, t \geqslant s, \\ -S_{s-t}^{*}Q_{M}, t \leqslant s. \end{cases}$$
(5.15c)
(5.13d)

Then the pair $K(\cdot,\cdot)$, $K^Q_{\cdot,\cdot}$ determines a (unique) Gaussian process by Lemma 3.1, and the process is stationary and Gaussian Markov by the corollary to Theorem 3.4.

A straightforward verification proves that a Gaussian Markov process satisfies (3.12 with $Z_{\rm t}$ given by (3.11), if and only if its covariance function is given by (3.13a-d). This concludes the proof.

Remarks Notice that S_{\pm} need not commute with Q_{M} , but T_{\pm} and $P_{\pm J}$ commute with Q. Then, by Theorems 1.1 and 1.2, j_{o} , \mathcal{U}_{\pm} and E_{oJ} are normal maps, and also Z_{\pm} extends to a normal map of W(M), by (3.12). The same construction obviously works for a discrete semigroup $\{S_{n}=S^{n}:n\in\mathbb{Z}_{\pm}\}$, S being a contraction on M satisfying (1.12); this allows us to complete the proof of Theorem 1.2 to the general case. If S_{\pm} commutes with Q_{M} , then (3.10b)

holds for all s, t in \mathbb{R} , and Q commutes with $P_{\mathbf{t}} = X_{\mathbf{t}} X_{\mathbf{t}}^{*}$ for all t, by the same reasoning as in the proof of Theorem 3.4; then there is a conditional expectation $\mathbf{E}_{o} = W(P_{o})$ of W(H) onto $W(H_{o})$, compatible with ω , and $0 \in \mathbb{R}$, $0 \in \mathbb{R}$ commutes with $0 \in \mathbb{R}$ and $0 \in \mathbb{R}$ commutes with $0 \in \mathbb{R}$ similar constructions have been used in [31,32,21] for the dilation of dynamical semigroups on the CCR algebra, for related results, on the CAR(or Clifford) algebra, see [33,3].

Definition A W*-stochastic process $(\{j_t\},\omega)$ over $\mathcal B$ evolving in λ is said to be regular if

Note that the property of regularity only depends on the localization $\{A_{t}\}$ induced on A by $\{J_t\}$. Regular W*-stochastic processes with ω faithful and with a family $\{E_{t}\}$ of conditional expectations compatible with ω correspond to generalized K-flows in the sense of Emch [34,31].

Theorem 3.6 Let (j_t, ω) be a stationary Gaussian Markov process over W(M) evolving in W(H), and let $\{Z_t\}$ be the associated semigroup on W(M). Then if ω is faithful the following are equivalent:

(i) the process is regular;

(ii) $\varphi \circ Z_t$ tends weakly to ω_M^O as $t \to \infty$ for all states φ on the C*-algebra $W^O(M)$ generated by $\{W(m): m \in M\}$ such that $m \mapsto \varphi(W(m))$ is continuous, where ω_M^O is the restriction of ω_M to $W^O(M)$.

Proof Ey Lemma 2.3, it suffices to show that $(\{j_t\}, \omega)$ is regular if and only if the underlying H-process $\{X_t\}$ is regular, and that (ii) holds if and only if $\lim_{t\to\infty}\|S_t m\|=0$ for all m. Let $\{X_t\}$ be not regular: then there is a nonzero h in $\bigwedge\{H_t\}:t\in\mathbb{R}\}$, and W(h) in $\bigwedge\{A_t\}:t\in\mathbb{R}\}$ is not a

multiple of the identity; so $(\{j_t\},\omega)$ is not regular. Let (x_t) be regular: then $\lim_{t\to\infty}\|P_{-t}\|h\|=0$ for all h in H. Let \hat{E}_{t} be the orthogonal projection in H such that

 $\hat{E}_{t\,j}(a\,\Omega) = E_{t\,j}(a)\,\Omega \quad \text{for all a in } A \; .$ We have, in particular,

 $\hat{E}_{t]} \mathbb{W}(h) \Omega = \mathbb{W}(P_{t]} h) \Omega \exp[-\frac{1}{2} \mathbb{W}(1-P_{t]} h]^2] \xrightarrow{+} \mathcal{L}_{\to -\infty} \langle \Omega, \mathbb{W}(h) \Omega \rangle \Omega$ in norm. The linear span of vectors of the form $\mathbb{W}(h) \Omega$: $h \in \mathbb{H}$ is norm dense in \mathbb{H} , hence $\lim_{t \to -\infty} \hat{E}_{t]} \psi = \langle \Omega, \psi \rangle \Omega$ for all ψ in \mathbb{H} . If $a \in \Lambda \{A_{t]} : t \in \mathbb{R}\}$ then $\hat{E}_{t]} a \Omega = a \Omega$ for all t, hence $a \Omega = \langle \Omega, a \Omega \rangle \Omega$; and since Ω is assumed to be separating, a is a multiple of the identity, and $(\{j_t\}, \omega)$ is regular. The second equivalence has been shown by Vanheuverzwijn in [35]. We sketch the proof for the sake of completeness: if $\|S_t m\| \to 0$ as $t \to \infty$, then $\phi(Z_t \mathbb{W}(m)) \to \omega(\mathbb{W}(m))$ if $\phi(\mathbb{W}(m))$ is a continuous function of m; conversely $\phi(\mathbb{W}(m)) = e^{-\mathbb{W}(2 - \mathbb{W}(m))}$ is a state on $\mathbb{W}(M)$ such that $m \mapsto \phi(\mathbb{W}(m))$ is continuous, and $\phi(Z_t \mathbb{W}(m)) \to \omega(\mathbb{W}(m))$ holds if and only if $\|S_t m\| \to 0$. Remark 1 It is clear from the above proof that (i) implies (ii) also when ω is not faithful.

Remark 2 Taking into account the faithfullness of ω , it follows that if the process is regular then $\varphi \circ Z_t$ tends weakly to ω_M for all normal states φ on the W*-algebra W(M), but the converse is not true in general. We introduce now the unbounded field operators R(h) (see [6,7]). Since $\lambda \mapsto W(\lambda h)$ is a strongly continuous group of unitaries, there exists a self-adjoint operator R(h) in \Im such that

 $W(\lambda h) = \exp [i\lambda R(h)], \lambda \in \mathbb{R}, h \in H.$

It is known that the $\{R(h):h\in H\}$ are essentially self-adjoint on a common dense domain $\mathcal{D}\subset\mathcal{H}$, the map $h\mapsto R(h)$ is linear, R(h)=0 if and only if h=0, and

R(h)R(k) - R(k)R(h) = 2ic(h,k)1 = 2ic(h,k). (3.23)

The following result is a consequence of Lemma 2.4 and theorem 3.1, 3.2, 3.6. We use the notation introduced in Lemma 2.4.

Theorem 3.7 A stationary Gaussian Markov process is regular if and only if

$$\label{eq:WH} \mbox{$W(H)$} = \mbox{$V(W(\S^G_{t^m})$} : t \in \mbox{R}, \ \mbox{$m \in D(g)$} \mbox{g}$$

(3.24)

and the $\mathbb{R}(X_{\mathsf{t}})$ satisfy the following Langevin equation

$$R(X_{t}m) - R(X_{s}m) = R(\int_{s}^{t} X_{u}Gm du) + R((\xi_{t}^{G} - \xi_{s}^{G})m)$$
 (3.25)

for all $s \leq t$ in \mathbb{R} , m in $\mathcal{D}(G)$. Moreover, we have

$$[R(X_{t}^{m}), R(X_{t}^{m})] = [R(m), R(m)] = 2i < Q_{M}^{m}, m' >$$
 (3.26)

for all m, m' in M, t in IR,

$$[R(X_{sm}), R((\xi_{u}^{G} - \xi_{t}^{G})m')] = 0 \quad \text{for all } S \leqslant t \leqslant u \text{ in } R, m,m' \text{ in } M. (3.27)$$

Proof (Sketch) (3.24), (3.25) are equivalent to (2.7), (2.8) respectively. (3.26) follows from $[T_{\xi}, Q] = 0$ and (3.27) from $[P_{\xi}], Q] = 0$. The Boson Wiener process has been studied by Hudson [36,37].

REFERENCES

- 1 Accardi, L.: On the non-commutative Markov property. Funct. Anal. Appl. (in Russian) 9, no. 1, 1-8 (1975)
- 2 Accardi, L.: Non-relativistic quantum mechanics as a non-commutative Markov process. Advances in Math. 20, 329-366 (1976)
- 3 Accardi, L., Frigerio, A. and Lewis, J.T.: Quantum Stochastic Processes Publ. R.I.M.S. Kyoto Univ. 18, 97-133 (1982).
- 4 Hepp, K. and Lieb, E.H.: Phase transitions in reservoir-driven open systems, with applications to lasers and superconductors. Helv. Phys. Acta 46, 575-603 (1973)
- Ford, G.W., Kac, M. and Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6, 504-515 (1965)
- 6 Araki, H.: Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys. 1, 492-502 (1960)
- 7 Segal, I.E.: Foundations of the theory of infinite-dimensional systems II.
 Can. J. Math. <u>13</u>, 1-18 (1961)
- 8 Manuceau, J.: Étude algébrique des états quasi-libres, in Cargèse lectures in Physics vol. 4, p. 303-322, D. Kastler, Editor. New York: Gordon and Breach 1970
- 9 Manuceau, J., Sirugue, M., Testard, D. and Verbeure, A.: The smallest C*-algebra for canonical commutation relations. Commun. Math. Phys. 32, 231-243 (1973)

- 10 Neveu, A.: Processus Aléatoires Gaussiens. Faculté de Sciences, Université de Montréal. Publication du Seminaire de Mathématique Supérieures 34, 1968
- 11 Lewis, J.T. and Pule, J.V.: The equilibrium state of the free boson gas.

 Commun. math. Phys. 36, 1-18 (1974)
- 12 Evans, D.E. and Lewis, J.T.: Some semigroups of completely positive maps on the CCR algebra, J. Funct. Anal. <u>26</u>, 369-377 (1977)
- Demoen, B., Vanheuverzwijn, P. and Verbeure, A.: Completely positive maps on the CCR algebra. Lett. Math. Phys. <u>2</u>, 161-166 (1977)
- Davies, E.B.: Irreversible dynamics of infinite fermion systems. Commun. math. Phys. <u>55</u>, 231-258 (1977)
- Vanheuverzwijn, P.: Generators of quasi-free completely positive semigroups.

 Ann. Inst. H. Poincare A <u>24</u>, 121-138 (1978)
- 16 Kolmogorov, A.N.: Curves in Hilbert-space which are invariant with respect to a one-parameter group of motions. DAN SSSR <u>26</u>, 6-9 (1940)
- 17 Doob, J.L.: The elementary Gaussian process. Ann. Math. Stat. 15,229-282(1944)
- Cramer, H.: On the structure of purely non-deterministic stochastic processes. Ark. Math. $\underline{4}$, 249-266 (1961)
- 19 Cramer, H.: Stochastic processes as curves in Hilbert space. Theory Prob. Appl. 9, 169-179 (1964)
- 20 Kallianpur, G. and Mandrekar, V.: Semi-group of isometries and the representation and multiplicity of weakly stationary stochastic processes. Ark. Maths. <u>6</u>, 319-535 (1966)

- 21 Evans, D.E., and Lewis, J.T.: Dilations of irreversible evolutions in algebraic quantum theory. Commun. Dublin Institute for Advanced Studies Ser. A No. 24, 1977
- 22 Rozanov, Yu.A.: On Markov extensions of random processes. Theory Prob. Appl. 22, 190-195 (1977)
- 23 Lewis, J.T. and Thomas, L.C.: A characterization of regular solutions of a linear stochastic differential equation. Z.f. Wahrschein. 30, 45-55 (1974)
- 24 Lax, P.D. and Phillips, R.S.: Scattering theory. New York: Academic Press 1967
- Okabe, Y.: On a stationary Gaussian process with T-positivity and its associated Langevin equation and S-matrix. J. Faculty of Science University of Tokyo Sec. 1 A vol. 26 115-165 (1979)
- 26 Linblad, G.: Gaussian quantum stochastic processes on the CCR algebra.
 J. Math. Phys. 20, 2081-2087 (1979)
- 27 Takesaki, M.: Conditional expectations in von Neumann algebras. J. Funct. Anal. <a>-, 306-321 (1972)
- Rocca, F., Sirugue, M. and Testard, O.: On a class of equilibrium states under the Kubo-Martin-Schwinger condition. II Bosons. Commun. math. Phys. 19, 119-141 (1970)
- Lewis, J.T. and Thomas, L.C.: On the existence of a class of stationary quantum stochastic processes. Ann. Inst. H. Poincare A 22, 241-248 (1975)
- 30 Sz.-Nagy, B., and Foias, C.: Harmonic Analysis of operators on Hilbert space.

 Amsterdam: North Holland 1970

- 51 Emch, G.G., Albeverio, S. and Eckmann, J.P.: Ouasi-free generalized K-flows. Rept. Math. Phys. 13, 73-85 (1978)
- 32 Demoen, B., Vanheuverzwijn, P. and Verbeure, A.: Completely positive quasifree maps on the CCR algebra. Rept. Math. Phys., 15, 27-39 (1979).
- Evans, D.E.: Completely positive maps on the CAR algebra. Commun. math. Phys. 70, 53-68 (1979).
- Emch, G.G.: Generalized K-flows. Commun. math. Phys, 49, 191-215 (1976)
- Vanheuverzwijn, P.: Semigroups of quasi-free completley positive maps on the boson algebra, in Mathematical Problems in the quantum theory of irreversible processes. Proc. Arco Felice(Naples) Conference 1978. Editors: L. Accardi, V. Gorini, G. Parravicini. 1979
- Cockroft, A.M. and Hudson, R.L.: Quantum-mechanical Wiener processes. J. Multivariate Anal. 7, 107-124 (1977)
- Hudson, R.L.: The strong Markov property for canonical Wiener processes. J. Funct. Analysis 34, 266 (1979).

