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We follow Accardi [1,2] and define a stochastic process to be
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: . together wi state & on X in this rowe work in ti )
Non-Commutative Gaussian Proczsses together with a state ¢} H this paper we work in tne category

of W*-algebras and normal morphisms, so that classical stochastic
processes are included as a special case (when both 2 and ;K are
I commutative). In [3] it was shown that a stochastic process is

determined up to equivalence by its family of correlation kerrels
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Dublin 4, Ireland. processes and their associated semigroups were studied, and examples
(related to the Hepp-Liebd models [41]) were constructed using tne

. ) Clifford algebra. In this paper we study non-commutativa Gaussian
prdcesses;' classical Gaussian processes are a special case.

GauSsian processes are génerated by Hilbert space prccesses
(Theorem 1.1), so in {2 we review results about Hilbert space proucesses.
A Gaussian process is determined. up to equivalence by its covariance
function (Lemma 3.1); it is Gau%sian Markov if znd only if its
: covariance function satisfies an evoiution condition {Theorem 3.4},

) There is a one-to-one correspondence baiween staticnary Gaussian Markov
processes and semigroups of quasi-free completely-positive
identity-preserving maps on the CCR algebra leaving invariant a

i quasi-free state (Theorem 3.5). A stationary Gaussian Mariov nrocess is
regular if and only if it satisfies a Langevin equation (Theorem 3.7}.
The Ford-Kac-Mazur process in quantum theory [5] is Gaussian; it is

* On lesve from Istituto di Scienze Fisiche, Universita di Milano, Milano, Italy. classical Markov at infinite temperature but aon-Markov at Tinite

temperatures,
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1. PRELIMINARIES AND DEFINITIONS

We summarize a few results from the theory of cyclic representations of the
canonical commutation relations over symplectic spaces [6,7] with possibly
degenerate sympiectic forms [8,9].

Let H be a Hilbert space, Q a skew-adjoint contraction cn H, and let

0~ be the symplectic form on H given by
G*('r:,g-:) - <Q},)k> for all h,k in H. (1.1

Then there exists a complex Hilbert space 70, with a distinguished normal-

ized vector L{L , and a one-to-one map W of H into .B(B"ﬂ) such that
—AT(hK)

WinWik)y = € W (h+k) for all h,k in H, 1.2)

W Wih) is continuous in the ultraweak topology,

the set { \f.v'/( RO he H} is dense in 1{, ,

<~Q.‘,, vlfl}:\../ @XP("%?OH‘) for all h in H. (1.3)

X ’ 5
Let 4\ be the ultraweak closure of the set {W(h). h € H} ;  then A
is a von Neoumann algebra. We denote it by W(H).

a von Neumann algebra /2\ is of the form W({H) for some real

we say that H is a Gaussian space for A . Let (0 be the

’L

Hilbert space t

state on A defined by O(0.) = <.Q, CLQ, for all a inJZ\

Example 1 Let =0 ; then A_ W(H) is abelian, and isomorphic as
LiO(v; &7 \ . ] LY
a Wr-algebra to some L,d,pP) then H may be identified with a
L - % ‘) RN . . .
closed subspace of l_r:,jz.” :J'/ , and it is then a Gaussian space 1n
&

the usual sense [10]. ~The state is faithful since a cyclic vector for A

is also separating for A if A is abelian.

(2]

Example 2 lLet Q=1 ;- then ¢ 1is non-degencrate, & is a Fock
state on A and W is an irreducible representation of the canonical comm-
utation relations (CCR) over (H,o) .

Example 3 Let Q be such that O < Q*Q <1 ; then o is non-
degenerate, & is a faithful primary quasi-free state on the algebrz of the

CCR over (M,o) .

E_e_n"._afﬁ: The above examples are universal: one can always deccmpose H as H‘a QH2$r3
where H, = kev Q , H, = ker (1-ad*Q) and HB =H B(H\QHQ , each
H,,n=12,3%, is stable under Q and W(H) = W(H)&W(H)8 W(Hy) :

then W(H,)  corresponds to the situation of Example n  for n=1,2,3 .
Note also that (W (hehehy) = W) (Wi w(Win) ’ for
hoeHpn=12.3, and that the centre of W(H) is W(H ol L . rel :

In applications one starts from a real vector space V with a symplectic
form & which is either identically zero (classical case) or is nondegenerate

(boson case). Then one defines a bilinear form §(¢:,;+) on V satisiving

o(h, k)< S(hMSkK) for all h,k in V (1.4)

for all finite

(or, eqrivalently, 3 T;c;l8thhp+iothy,hd] >

sequences {C:1in € , {h;} in V), and uses s to define
4 4

Let Il be the completion of V with respect to the nomm got
then O° can be extended to H by continuity, and it can be degenerate, in general.
For example, for the grand-canonical state of the free boson gas in the thermo-
dynamic liwit, H {0} above the critical temperaturc and H} =Rz below the
critical temperature [11]

Definition (Accardi, Frigerio,Lewis [3]): A W*-stochastic process over B

evolving in 72% is a pair ({jL ‘.teR} 5 @) , where 7\-3 ,45 are Wr-algebras,

~

[¢]
H

£ 3 3o : & et o .
ii :telR is a fa.n. normal *-isomorphisms of B -into R with j{1) =)
dpiven AR




such thatfais the W*-algebra generated by th(b) telR,beB}
(0 is a mormal state on)a\ ,such that pat can be identified with the von

Newrnann 2lgebra of operators JTQ( A) acting on the GNS space WX oof

Two W*~processes ({ﬁ})w) ({’5})5) over B evolving in A ;
respectively are equwalent if there is a normal *-isomorphism W of :Z\
onto Q\ such that Jt AL j forall £ in R and &= &

Here we construct W*-stochastic processes determined by families of isometries

in real Hilbert spaces.

Definivien - Let M, H be real Hilbert spaces. A Hilbert space process(or H-

process, for the sake of brevity in reference) over M evolving in H is a family
{"‘ P :?\] of isometries X 'M —> H such that
< .
A . - 2 - . -

H o= ‘/Z(X—;m :tER) me M% , b thm is continuous for all m in M. To

construct & stochastic process in our sense from an H-process {X‘:} over M
evolving in H, all w ire i be giv ai ) f skew-adjoi
O g in H, ve require is to be given a pair ( M of skew-adjoint
contracticns, on M and H respectively, which is compatible with i}(.tlj in the

[

scnse that
® o - .
N S X Q/(t for all t in R. (1.6)

The rmzain result of this secticn is the following
Theorem 1.1 Let ixt} be an H-process over M evolving in H, and let (QM;Q)
be a pair of skew-adjoint contractions compatible with {Xt} . Let B be the

c=ore W), with symplectic form 0’ given by QM , and let DZ\ be the

Wr-algebra W(H), with symplectic form O  given by Q. Then there exists a W*-

tochastic process {{ dt} , @) over B evolving in A for which
ét\v(\ 5= WK ) forallmin¥, t in R, (1.7
Wby = ep(—4 ihJ%)  for all h in H. (1.3)

Occusionallywe shall write

1.8
\f\/\.v\-c ‘ ( )

Proof . Let %9, /\fz(teIR) and A° be the C*-algebras generated by

we have, for all m,m' in M,
WmW(m') = e~ TSOMmm" >y (i),

WX (Xm') = e T<QRMXem >y (x (memt))

9-1<QMm’ml>w(Xt(m+m')),

so that, by Stawny's theorem [21], there is a C*-algebra isomorphism 39 of &°

ontoﬁg such that jz(W(m)) = W(X;m) for a1l m in M. In particular, we have
jg (150) = 171‘0. Let a)OM and (0 be the states on 2 and on &° respectively
defined by

DM = e M w(n)) = e B0,

JWm) s meM), (W(Xem) @ me M) and {W(h) @ heH} respectively. By tondition (1.6},

(1.9}

(1.9)

; Upon identifying £° and Ao with their respective GNS representations determined

w?° to & and to A will be denoted by Wy and by &) respectively. Since X¢ 35 an

isometry, we have

0 .0 0
=W
w oj¢ N

| by twff and ¢, we have B = (£0)", A= (A°)". The normal extensions or’wf, and of

It remains to prove that jg can be extendad to a normal '~1sonorph15n of & intox.

By the Remark made after Examples 1—3, it suffices to construct the noinal

extension in the cases

(1) Ker (ly - QfQy) = {0} (& faitnful)

(1) QiQy = Ty (e Fock).

Case (i): We adapt the argument of [14], Theorem 4.2. Let ¥ be the set of states

o
c>n'£50 which are majorized by a scalar multiple of Wyi o any state @Oing has

Q



normzl extension @ 40 B, and the set of such normal extensions spans. a norm-dense
subset in the predual space of &, since CuMis faithful, - If (?0 is inJ, then, by
(1.10}, ’v’ojg is majorized by a scalar multiple of ¢u , hence it has a normal
extension to A . By density, the predual space of B s mapped into the predual

snace of JS by the transpose of jg, so that jto has a normal extension to % .
Case (ii): If Wy is Fock, we have

T = Qiy = XQTHXEQ Ko< X:QTQ K€ X{TKe = Yy

(B

hence (i—)(t,i:)QXt = 0 and Q maps the subspace Hy = X M of H into itself. It
follows thet W(Xym) commutes with W(k) for all m in M and for all k in the

orthogonal complement K¢ of Hy in H, and we have the natural identification

HIE) = W) QUKe) t Hy = %M, Ky = HOHy.

LetTHy be the filbert space W(H¢)(), where ) is the cyclic vector for W(H)
satisfying (1.3); let a]so'l* denote the space on which W(M) acts with cyclic

vector 1y -satisfying the ana]ogue of (1.3).

By (1.9) and (1.10), Gly, W(m),fy)
and (Hy, Wl Atrf,zt,ﬂ are two cyclic representations of the CCR over (M, 0'y) with
the same generating functional, hence there exists a unitary operator Ui of }\M

onto _,‘4 t such that

v w . .
Hxmiy, o= U(m)Uy for all m in M.
ey . .
, - . f‘ 2 T e e * ,
Then we defing jg = —/1by ’,(b; = U bU. X lA\Oy\t); belX,
\her Oy s the zero vector in K, and Jt is a norrra] *-isomorphism satisfying
(1.7} and §( L“; = 13\. .

Gefinition A process as in Theorem 1.1 is a Gaussian process. -It is clear that
clzssical Gaussian processes (see .[10]) are covered by the above definition. We
a

recall a few cdefinitions from [3]:

A'stcepastic process @) over B evolving in M is said to be stationary

j" 3
T
i7 there is a group {4, .t R of *automerphisms of A such that Ugeds=isat
for-all t, s in R, (,d=uﬁ=&}fcr all t in R. Define the following W*-subalgebras of

relative to the time t:

{(past and present)::}xﬂ = ijs(b) Csct, beé},
(present): Jj\t =\/H,c(b)" pe B,
(present and future): A[_,_ = \/iﬁ L) *’«St&;‘aeB} X

nd assume that the functions € +> ét(b) are continuous in the weak* topology,

so that the W*-subalgebra Jz\t) = V{j by s<zt ) be B} coincides with JZ\Q

for each t in IR~ . ‘Then the W*-stochastic process is said to be Markov if there

TJ

exists a family of normal conditional expectations E4_3 of >Z\

which is compatible with @ in the sense that

W = (A)f\ °Et] for each t in R

JA 1]

and satisfies the Markov property

E‘bj At‘t =Jh\t

for each t in R

For a Gaussian process, it will be possible to rclate the above properties to

the corresponding properties, (defined in §2), of the underlying H-process. To do
so, we introduce maps on W(H) which are determined by operators on H. The follov:\'-
ing theorem is a slight modification of a result of Evans and Lewis [12], Demoen,
Vanheuverzwijn and Verbeure [13]:

Theorem 1.2 A map Z defined on the W(h), heH , by

7wl =WI({Th) exp (F1Thi -—-‘-‘ah'l (1.11)

where T is a linear operator on H, extends by linoarity and continuity to a

completely positive identity preserving normal map of W(H) into itself if and

only if

z, T ¢y [eh hyd =<y T, Y+ i LQh by —<<QTh Tapdlze 1D
Li
for all finite sequences {€;}in € and {‘nd in H.



Remark Eq. (1.12) implies that T is a contraction on H, and any contraction T
on H commmuting with Q satisfies (1.12)

Procf {Sketch). It has been shown in [12,13] that {1.12) holds if and only if

2 extends to a completely positive identity preserving map Z of the C*-algebra

generated by {Wih)t he H}

into itself, so we only have to prove that Z
can be further extended to a normal map of W(H) into itself if (1.12) holds.

. 1
Asstme first that T is a contraction commuting with Q, and let H = H1~9HQ_®T‘{3

be the decomposition introduced after Examples 1,2,3. Then also Z decomposes as
ZWthah shy) = Z Wh)8ZWh) @ Z Wk,

and it suffices to extend /. 7, to normal maps on the von Neumann algebra.

i) -—-'~ o0 Mol
For ’_7,1 and .43 this is possible since they leave invariant a separating state
(then use [1u] Theorem 4.2), for 22 this follows as a special case from [15]
Thecrem 4.4, We shall complete the proof after Theorem 3.5.

The extension of I to W(H) will be denoted by W(T). The set S of the contractions
on H vhich satisfy (1.12) is a semigroup, and T v W{T)is a homomorphism of

S into the set of completely positive identity preserving normal maps on W(H). If

(&
[
w

ct

he zerc operator on H, then W(0) = w(-) 4. . A1l maps W(T), T in S,

invariant. W(T) is a *-automorphism of W{H) if and only if T is a unit-
ary operator commuting with Q, and it is a conditional expectation if and only if
T is an orthogonal projection commuting with Q. Notice that in the classical case
0 =0 ., so that S is the set of allv contractions cn H; then each unitary on
deteraines a *-automorphism of W(H) and each orthogonal projection determines a

conditional expectation.

2. H-PROCESSES

Since the structure of a Gaussiah process will be determined by the wnderlving
H-process, we give a short and systematic account of those properties of H-processes
which we shall need. H-processes have been studled in connection with classical
Gaussian or weakly stationary stochastic processes, see e.g. [16-20,10]. - The

basic object of a H-process is the covariance function K(’)'? on [Rx IR

with values in  B(M)  defined by
z, X >\/ m/ t o3 N
<, Kes,tymD> =< AL for allm, m' in M. 2.1)

It satisfies the following properties:

K Ke, is a positive definite kernel,
Keg,e) =1

K3: g7t > <, K(s, 6y m™

for all t inR

is continuous {or all m, m' in M.

By the theorem on minimal Kolmogorov decompositions of positive definite keinels
[211, an H-process is determined uniquely up to equivalence by its covariance
functior, and any function Wi Rx R = B(M) satisfying KI1-¥3 is the covariance
function of an H-process: Consequently, any property of an H-process can in prin-
ciple bg stated either in terms of isometrics {XJ or in terms of the covarianc
function K(-5+) .

An H-process is stationary if K(t,"c +8) is indeperident of t for all s.
By the uniqueness up to equivalence of the minimal Xolmoporov decompesition of a
positive definite kernel f21], this holds if and ecnly if therc is a group
{\T telR } of unitary operators on H such that TI:X.S =><.~, e for all

4

s, tin IR .
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#
! . L - H - S = M1
For each t in 'R define the following subspaces of H relative to the time t: nie. operator XtXt is the projection Pt onto. 1, and (’\/s'q isst,meMy

{XL{W‘,: tew, m’ e M} generate Ht] 5 H It respectively. The result then

i

(past and present) Ht] ViXSm 1 S<t ,me MS ) follows. (4 <= (i1 D_ and D: are orthogonal if and only if
t

cnt =\ ) ? <.
(prescnt) . H't =V{Xim: meM] ) H:—-D:'_@Hi@l):: . If this is the case P_.;]H{t= H't, .
(present and future) }"1& = V{Xum: tg, meMi . Conversely, if P-t,] H[t =H, , then 21 D#;—_- 0 and DI is ortho-
[ R #1 =3

~ . i onal t© N .
Denote by I,  the orthogonal projection onto H s » where 4 stands for t],t, gonal to D-{;

or [t . Because of the assumed continyity, the spaceH ___\/z Xsm ZS<"‘-‘)M€M}. Corollary An H-process is stationary and Markov if and only if there is a
. Comgides it H‘j  Define also the su{bDSPaces strongly continuous semigroup {Sbi t 703 of contractions on M such that
V -+ 4 : ! ) < / * all == i'w‘.d s in R 5 2
D:: “\"3\_,_1@';"'1;, ’D.(;:H[,te H*b . | K(S,S‘f”t\/: N , \'\(S,S"t)x S_:’ for all 20 and s in X . (2.4
Definition An H-process is said to be . * | Hence, given a strongly continuous semigroup iSt\ of contractions on a Hilbert
: space M, let {Tt\: te R} be a minimal unitary dilation of ES{-,.S ., acting on a
deterninistic £ Ht'} = H for all t; : Hilbert space H, with isometric embedding Xo of M in H such that St=>&'f'l;‘/(a_

,
- . . - v e i —

recular{or completely nondeterministic) 1if { Ve éR = D‘S H i , . . : N

- b — ) N A H—t} ] E ’ ? Then { Xf: = Tt . Xa: 'GGR} defines a stationary Markov H-process; and each

varkov if [> is orthogonal to D), for all t in IR . : “ . . X .

Markov Dt 20na Dt stationary Markov H-process arises in this way.

In Secticn 3 we shall see that the following result leads to a generalization of e . fw ) Y
Sectien 3 we shal g g zation o3 : Definition Let {XJ be an H-process over M; then an H-process X | overM

. —— LA

cob! worem [177: | . . . . . . c s

Doob!s theorem [17] i (evolving in the same space H) is said to be an extension of EXJ 1f there

- ¢ 3 3 . - .
Let { A { be an H-process over M, with covariance function K¢ 5) .
<

3

exists an lsometry W from M into M such that th S(t ‘W ofor all ¢ in N .
Toe following are equivalent: An extension {}?J is said to be non-anticipating if V EXQW M gst }
@ the Hrprocess. is Markov; = \/{\/\_/S M : $<k } for all t, and minimal if \/{ '}‘(:“}—\’t\,«/M Ly o}-:j\? .
(11} the covariance. finction satisfies the evolution equation A non-anticipating extension of a stationary H-process is clearly statiocnary, with

i
i
1
t
|
|
|
2
i RN I 1 N SR s il 1Y v o
. . . i the same group of unitaries as the original H-process.
Kos,oKig v = Kis,w) for all sstsuw InR 5 (2.2) ! w { T}
i
1}
|
|

i) P H =H for all t in & . (2.3)

L) it <

Lemma 2.2(Rozanov [22]). A stationary H-process has a unique minimal non-

T

anticipating Markov extension, given by

- . . . ™
Proofi iyl b Ilm, n' in M gtgw in X we have ' — — — Y .. L. -
ToOLi (iy4 (34) foT 2 1t n,om I M, SEteu W © : : V] ; v )¢ being the natural embedding of
1 ML= o]H'"o YALT I, 0 "o N :
H 5
; . s e FN ’ ‘ into H . (2.5
iy LRy — K esKa,wlm?y = <>\sm> ,.'.["/\ti\tjka 7. Po] H(_,



; : : . o = e B
Proof  From statlonarity, it follows a) = T;PD_J \. . - hen {PojT'b tyo}
. . o i
is a semigroup of contractions on H. R,:,Hio is the smallest subspace of I
+ 3 restriction of
which is stable under { Py T, tzo] let S, be the restrictio Po’]T'b
IR
to YJc’jH[O
= o
| " box —
{\‘)XL }, and it is Markov since XEX...=8,
anticipating extension of {X and it i s Xewt N
TN _ ¥
(M —>H

. = s?
associated family of projections onto Ht] \Y% M

hen {8 i i ntractions. Define
, then {S, t£y0] is a semigroup of co

as in (2.5). It is easy to see that Sl)(t'g is a minimal non-

s LS }bemg a semigroup. -

, and Pﬂ the
e} . I£{X,}is

be another extension of E

t=
o
ot
~ -

= ce oea s AV 4
i B. = t, if it is Markov X M is mappe
non-anticipating, ,Dt] = Rﬁ for all t, if it ds M . . ;\—/‘
. . - . 3 X — . and ‘
inte itself by P_!T_t : if it is minimal, Xo M = M Then M
ol ==

. . LV, .
can be identified, and so can )<"c and Xﬁ

Lemma 2.3 A stationary Markov H-process is regular if and only if the associated

4

: i nt ¥ o zero as = % , i.e. .
contraction semigroup {St’r contracts strongly t

; 2
B 1 S.wll =0 for all m in M. (2.6)
AT =
< -y -
Proof For all + 30 » S» —~t we have
o \ = |

18, ml = 1%, S, ml=1RX,  ml

T y 1

=4 r)o] X/'t;-‘r.cm“ (by the Markov property)
ST P T Y oml = |\P X ol (by stationarity),
T Lyt T -t) S

if (U = hich i i egularity.
50 that (2.6) holds if and only if (,Lr-'\ -t] 0 , which is equivalent to regul
: 2,
Lat G denote the infinitesimal generator of {S

i ov H- s i if and only if there is
Lerma 2.4 [23] A stationary Markov H-process is regular y

virodL

a i ' i H st \at
a family 5“’ of linear operators from .DC G ) into H such th
+

T D eD” for all t <o .
‘

13

) / /
<§Tm ’Sifm/> (£atH [ <Grmm> — Km, Gm’>]

forall't, t' in R, m, n' in 3. (2.7

H = gam:te[&,\m D)y,

and % X{:‘S satisfies the following Langevin equation:

X{:m. =% m =5;X\~Gmﬂtw + (58 ~ESHm

for all §,t in R ~and m in ZL 7)- 2.9)

Proof: See {231 Theorem 4... and [21] Theorem 3.15. Notice that if qu») 7\""

then zG “S( i){ C+G )}

In their abstract suudy of scattering theory [247 Lax and Phillips  introduced an
interest'mg'; Hilbert space structure, which we now define:

Definition Let H be a Hilbert space, and let {T‘,: ‘te R} be a group of
unitaries on H. Suppose that there is an orthogonal decomposition

H=D ekeD"

such that

H—_:\/[ chD tER} \/§~EK“-'{:€R} =\/'{T}LDT‘:{:C~R}

We shall refer to the above structure as a cyclic LP-structure. The following

result follows from a careful inspection of the proof of Theorem 4.4 of [2 1.

wr

However the statement of the Theorem there is incorrect.

Proposition A cyclic LP structure defines a stationary Markov H-process over K

such that both -L: and St contract strengly to zero as £ —> o0



Conversely, a stationary Markov process with St and Sb contracting

) . . — -
strongly to zero defines a cyclic LP-structure with K= Ho , D= Do) DL=DY,

Proof(Sketch) Given a cyclic LP-structure, let Xo be the natural embedding of
Then {X } is a stationary H-process. Lax

<

K into H, and put ‘\'\/-b = _];Xo
AR, . ; S Xy . .
and Phillips show in [24] that —E:=Xo /\t is a contraction semigroup on K

. . o ®
(so that the H-process 1s Markov by Lemma 2.1) and that both S—t and O . contract
strongly to zero.

Conversely, given a stationary Markov H-process, we have
} . ) . . \
C= 1 D0 = - ¢ T=__ T =M T,
D—;; Tote L-—"Q Hfb and D‘t |‘tDo H_&]
Since E" = \/ i —I:;.HO vt aiR }

/“\ H-{I . ‘téf\} = 51071 . By the same reasoning as in Lemma 2.3, this ’

, we only have to prove that

. > . o 'S *

is eguivalent to the condition that both S{: and <, contract strongly to
2ero 2s. © ~» «© . The associated scattering operators of such processes have

been studied by Okabe [25].

—
w

£l

3. PrROPERTIES OF GAUSSIAN PROCESSES

Lemma 3.1 A Gaussian process over W(M) is determined up to equivalence by its

covariance function

AT j'éwmn jt(,\/\/(m‘)))/w(jéw(m)’)w(jé\/\/(m'))

= exp[~<m, K thm - L <m, K3 e5m’> ]
m, m' in M, (3.3)

P
where K(t‘,t’) and K(zt)t.’) in ‘_}3(1{\;‘1) satisfy

for a1l t, K (2,8 = |K&EL) forall e, t',  (5.4a)

Ky =1

Q

3
K'%t,t) =-Qum for all t, K%-{:,b’} ==Ky for all t, t',  (3.4b)
2 Cyeylkmy, K(-c;,tgv)m'3-> +L<-m&,K(3t;;c5wn,J')] >0 (3.4¢)
for all finite sequences {c} in C , fY‘nJ inMand {tdinR (5.4)

the functions ‘t,’t/i')<m)K(t)t')m/> )‘t;b/i-)(m)Ké)t’)ml} are continuous for 21l m,

m' in M.

Proof (cf. AFL [3] and Lindblad [261) Given a Gaussian process ( {W(‘,\@} ,w)

we have
¥ -
K ety = tht, ,  tttelR, (3.5a)
0, % t, t!' ! ; (3.5b
Ka(t't:\ ‘;:‘XtQXt/ > € K.K 3 [ )

then egs. (3.3) and (3.4a-d) hold. Converscly, given a pair of operator-vaiued
. %
functions }\(';-),chzu )

. s . . Ll
be the minimal Kolmogorov decomposition of i\(‘,' : then

Iy . sy - . - . 7
on R.x & satisfying (3.4a-b), let (\‘m);

ey

7Y . .
th 15 an h-process

over M evolving in H (see Section 2). Define a skew-symmetric form G~ on H by

14 \ ‘ ! i = e /IG oS (3
’0\'\20{:%4{’2’“% )E Cj X;"j mj> Z Ca\’j<m¢')\\ ‘L'.":’;."mj > (3.6
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for all finite sequences {,0. Fﬂﬂ' f’ ines o, 14 L,'élf)s‘\’{) mﬂ,\, .f\'md.lj ; ‘md‘,} in M.

By cg. (3:4c) there is a skew-adjoint-contraction Q on H such that o*(h,k)
Ry D B JRE P NN oz : Ly \ Q . 1 L
= \Q nyXp for all h, k in H; moreover XtQX{-, = K(cht) is a skew-adjoint

A
30N

\
AV

(QM'Q} » a Gaussian process can be constructed as in Theorem 1.1 and eq(S.S)

contraction independent of t. - Thus is compatible with the pair
M P
-~ . ¢ N . . .
wolds fordit. H, [th» and Q are determined up to unitary equivalence, hence also
the process is unique up to equivalence. We refer to Lindblad r26] for a diff-
q
erent kind of elaboration on Gaussian processes on the CCR algebra and their

covariance furction.

Theorem 3.9 A Gaussian process is stationary if and only if the underlying H-

process is stationary and the unitaries 7; on H commte with Q: then u =\,V(T).
+ +

Proof . If ({4 } ¢) is stationary,

; . U kN

AR ATV . / iA 4 /
L)(jg( Vv(m/ﬁé\/\/(m/)) = E/XP{- L (Q)gm;xtm >-<m, K(s,b)M) __lumu Al .;
is a function of T —$ alone, for all m, m' in M. Then K(S)-(:) is a function
of t-g , SO that {)( 11' is stationary, and

Ve - — 4 - N . . .
<>\5‘m, Q- Te @ Ts'l Xuyﬂ’> =0 forallmm' inM, s, t, uin R ,
so that | commtes with Q for all t. Then W(T—c) is well defined. We

have

th\/\/'(‘_ ij) = W/( X L= ( "stm)

for all m in M,‘s)t 'inR,
so that indeed ’\f‘.£ = \/\/(_};)

Conversely, if "I; is a unitary operator commuting with Q, W(T;) leaves (O
invariant and is a *-autcmorphism of W(H). If T;XL =X5+t for all t,s,

then \/\/[Tg\\/\/()() = W(Xs-}t} , so the process is stationary with
S ©
W.o=Ww (T_; 3.

~
bl

|

i

By the assumed continuity properties, we have

A= WH) =WH =A

7

A, = WIHY A

t

vl 2
= WHg),

for a1l t in X Hence a Gaussian process is Markov if ‘and only if there is
a family of conditional expectations E&__] of W(H) onto W(Hﬂ) , compatible

with @ and satisfying
E W) = WIHY.

Theorem 3.2 A Gaussian process is Markov if the underlying H-process is Markov
and the projections Pt’_] of H onto Ht] commute with Q;  then Et]::-\,\/(F;]),

The converse also holds when &) is faithful.

Proof If [Pﬂ ,Q]=0 , then \,»\/{Pt]) is well-defined and is a conditional

, compatible with (0 , and W(PIW(h)  1s
N N o)
for all h in H; then EQNE{: +

When @  is faithful (equivalently,

expectation of?z\ onto AQ

proportional to W (_ Pﬂb‘)
if and only if PqHpg = H,
Q\'\%Q S ), we can use Takesaki's theorem [27] and the explicit form of

the modular automorphism group in terms of Q 28] to prove that a conditional
expectation onto )Al‘b_] compatible with &> exists if and only if [a]: QJ-‘— o,

and if it exists it is unique: then it is \\/{ Pﬂ)

In order to simplify the discussion we make the following

Definition A Gaussian process is said to be Gaussian Markov if it is Markov and

E{]:\,\/’(a]) for each t in R . Thenthe statement of Theorem 3.2 can be re-

phrased as follows: A Gaussian process is Gaussian Markov if and only if the

underlying H-process is Markov, the projections P comnute  with Q and

]



Eiy = ""'(Pt]) for all t; if (> is faithful a Gaussian process is
Gaussian Markov if and only if it is Markov. 'The following Theorem is a

cecnsequence of theorems 3.1, 3.2 and lemmas 2.2.

!

heorem 3.3 A Gaussian process ({jt},@) is stationary-and has a unique
non-anticipating minimal Gaussian Markov extension if and only if the

underiying H-process {Xy} is stationary and i
(T¢, Q] =0 = [Pt], Q] for all t in R. (3.8)
Remark Since for & stationary H-process we have

TPy = P5+t] T¢ for all s, t in R, (3.9)
the condition (3.8) is very restrictive in the non-commutative case
(Q#0). In particular (3.8} is not satisfied in the quantum case when®

is KMS'for Ut = W{Ty) for some inverse temperature B (#0). Then Q is

explicitly given as a function of Ty (28], and [P¢y, Q] # 0 (unless Py =1
for-all t}; so the process is not Markov because of the lack of :
conditional expectations compatible with & . This is the reason why t‘ne§
quantum Ford-Kac-Mazur model [5] at non-zero temperature fails to provide,
an example of a Markov process, whereas the corresponding classical ‘
process (with Q=0) is Markov. The classical situation is recovered in

the quantum case in the limit of infinite temperature { @-‘: 0).

The

failure of the Markov property at finite temperatures is

reflected in the fact that the covariance function is not a semigroup
[5.28]. Indeed we have the following generalization of Doob's theorem

(171

Theorem 3.4 A Gaussian process ({jt'ﬁ , W) is Gaussian Markov if and only if

its covariance function satisfies

K(s,8y K = Kis,w) for all st < in R, (3.10a)
and

4(;{ -’ - . m -
Ks, ey = = Quikisw for all Sst  in K . (3.10b)

Proof (cf [31) If the process is Gaussian Markov, the underlying H-process is

Markov by Theorem 3.2, then (3.10a) holds by Lemma 2.1; moreover

Kl = XIQX, = -XTP QX = -XQRX,
=-XIOX XX, = QKo

for all sg¢t

where we have used (2.3), (3.4) and (3.5); so that (3.10b) holds. Conversely, if
(3.10a) holds , K(g).u is the covariance function of a Markov H-process by

Lemma 2.1; then (3.10b) tells us that
b, / ’
<Q><Sm)[1->(b><:] X, w>= <Qum Kuim'> - Qym, Koo Keymym >=0

for allm, m' inMand <t sw in R : hence Q maps M. . into the ortho-

- ‘tJ
gonal cumplement of Dj; , which is H ] ; and since Q is skew-adjoint it

commutes with P&ﬂ . Then by Theorem. 3.2 the process is Gaussian Markov.

-

Corollary A Gaussian process .. " is stationary and Gaussian Markov

. - cp - - / N s s R
if and only if (%.8) holds and the covariance functien \\(:,t/ is given by a

semigroup S( S ‘.'i:?/o.?; of contractions on M, as in (2.4).

]
v
]

Let M be a Hilbert space, Q M 2 skew-adjoint contraction on M, { bt; n;oj a

strongly continuous contraction . semigroup on M, wv the state on W(M) defined
vi
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by 43( “,\,‘"(;m) = 6',('_.‘»(—-'1 !!‘mu”“) . Then,by Theorem 1.2,
M :
LMWy = WS, ) €xp {Z0S, mll™ =4 imil L@)m e, ty0, (.11

defines & semigroup 51 ,7_,(_', 70}’ of completely positive identity pre-
serving normal maps of W(M) into itself if and only if (1.12) holds with T
replaced by S%_ for all €30 , and CO},,\”Zt:@M forall t 20

So far, we have only oroved the statement for the case [S L) QM] =0, and

in the general case we only know that there is a semigroup of completely
positive identity preserving maps of the C*-algebra genexi.ated by ﬂ_W(m): g} eM}
into itself if (1.12) holds. The following Theorem will allow us to complete the

proof of Theorem 1.2.

e

Theorem 3.5 (Reconstruction theorem) Let {-zt’ t?OB be as above. Then

there exists a stationary Gaussian Markov process ({ﬁ t, %) over WM) such that
4

V7 S (3.12
for all £33 0 , and the process is unique up to equivalence in the class of

Caussian Markov processes.

Proof  Since —Z.ﬁ is completel? positive and (/OM"ztr- (,\)M , there exists a

) ] ~n
centracticn Ft on JLN such that

TWey D, = Zt\/\/(m)ﬂ " for all m in M,
7y

€
and {F % is a semigroup of contracticns [121. Then, by [30] Chapter I Section 8;
T~ hd
we have

- M .
Cfor 411 finite sequences "C,_-‘I in € and '{SCJ; in %CM , where

2l

F;; = E: for t<0 If we let
= d Wining Q| myeM
4 6{?\ 4 I'Azo b) A

we find explicitly

>, EocSmy K epm + i< K epmp 20

where

K(sm ;-.{St—s » 25, : (3.13a)
* 13
Seop o tgs (3.13b)

_QMS)‘_{_S ,E28 , (3.130)

Q =
= *® . Ly
K 5,0 {.S QM y £<s o : (3.13d)
S+

. ‘ Q . . .
Then the pair Keso , K9 determines a (unique) Gaussian process by
Lemma 3.1, and the process is stationary and Gaussian Markov by the corollary to
Theorem 3.4.
A straightforward verification proves that a Gaussian Markov process satisfies (3.12
with Zt given by (3.11), if and only if its covariance function is given by

(3.13a-d). This concludes the proof.

Remarks Notice that Sﬁ need not commute with QM , but Tt and P*..]
commute with Q. Then, by Theorems 1.1 and 1.2, é s U, and b‘o] are nommai
o ©

. extends to a normal map of WQM), by (3.12).  The same construct-

maps, and also Z,c

. . . . n .
jon obvicusly works for a discrete semigroup {Sh =S nez_lj ,-S being'a
contraction on M satisfying (1.12); this allows us to complete the proof of

Theoram 1.2 to the general case. If S,C cormutes with QM , then (3.10b)



; . *
holds for all s, t in R , and Q commutes with Pt :X'—Xt for all t, by the
-

same reasoning as in the proof of Theorem 3.4; then there is a conditional

expectation & o WP of W(I) onto W(H) , compatible with & -, and
592.1': = Ea‘*tf)o ; -conversely, if Q commutes with all T and By , then

St cormutes with QM .  Similar constructions have been used in [31,32,21]
for the dilation of dynamical semigroups on the CCR algebra, for related results,

on the CAR(or Clifford) algebra, sce [33,31.

Definition A W*-stochastic process ({j &, w) over B evolving in 72\ is
< e

said to be regular if

/\)l *c te‘l}\‘& =Ci Al

T

Note that the property of regularity only depends on the localization {)2\ t‘j\k
induced on 7’3, by {ﬁ\\}‘ . Regular Wr-stochastic processes with ® faithful
*and with a family {E t]} of conditiocnal expectations compatible with &
correspond to generalized K-flows in the sense of Emch [34,311].

Theorem 3.6 Let ( jt , w) be a stationary Gaussian Markov process over W(M)
Vevﬂ.ving in W(H), and let (Z4} be the associated semigroup on W(M).  Then if w is

aithful the following are equivalent:

(i) the process is regular;

- .o .

i) Qut tends weakly to wy as t —= for all states @ on the C¥-algebra

W90 gznerated by {H(m) :meM suchthat m ;—s,c?('v.‘(m) is continuous, where uﬁ is the

restriction of wy to WO (M).

Proof  Ey Lemma 2.3, it suffices to show that <{jé , ) - is regular if and
only if the underlying IH-process {Xt} is regular, and that (ii) holds if and
only if = AMm S wmll=0 for all m. Let SIX;S be not regular:  then there

>

is a nonzero h in /\fH{J te& , and W(h) in /\{;Z\ﬂ‘.te?&]] is néta

multiple of the identity; so ({j¢),®) is not reguiar. LeT {Az0¢

reqular: then Tim [P_yyhf =0 for all hin H. Let Et} be the
t >0 -
orthogonal projection in H such that
A
Egylafl) = Egya)f) for all a inA .

We have, in particular,

wh)SL u(p, hD,exp h(1-Pep 012 o7 <2 i 1 >N
in norm. The linear span of vectors of the form W(h Mt heH is norm
dense inJ3, hence hm Lt]\}m(&,dbﬂ for all W indl. If ac /\{;2\ e’

then £ ]aﬂ = adl. for all t, hence a&;&.,aa.)u‘.

and since L is assumed to be separating, a is a multiple of the
identity, and ({jt},m) is regular. The second equivalence has been shown
by Vanheuverzwijn in [35]. We sketch the proof for the sake of
completeness; if IS mli>0as tsoo , thenP(ZM(m)) v {lm)) if
) = e—k’miz

Q (W(m)) is a continuous function of m; conversely & (W(m) is

a state on W(M) such that mv ¢ (W(w)) is continucus, and

@ (ZgH{m))> @ (W(m)) holds if and only if FSym |- o.

Remark 1 It is clear from the above proof that (i) implies {ii) also when
w is not faithful.

Remark 2 Taking into account the faithfullness of w , it follows that if
the process is regular then ¢oZy tends weakly to oy for all normal

states ¢ on the W*-algebra W(M), but the converse is not true in general.
We introduce now the unbounded field operators R{n) (see [6,71). Since A

W(hh) is a strongly continuous group of unitaries, there exists a

~self-adjoint operator R(h) in 3 such that

Wirh) = exp [12R(R)] | AR, heH.

It is known that the (R(h) : heH} are essentially self-adjoint on a

common dense domain Dc3H , the map hw R(h) is Vinear, R(h) = 0 if and
only if h=0, and

R(h)R(k) = R(K)R(h) = 2i&(h,k)1 = 2iXQh,k>. {3.23)
The following result is a consequence of Lemma 2.4 and theorem 3.1, 3.2,
3.6. MWe use the notation introduced in Lemma 2.4.

Theorem 3.7 - A stationary Gaussian Markov process is reguiar if and only if
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W) = Vu(stn) : teR, men(g)) (3.24)
and the R(Xt) satisfy the following Langevin equation
R(Km) = RO m) = R(] X Gm oLu)+R(c§G ‘iGm (3.25)
for all s<€ in R , M in é(ﬁ) Moreover, we have

(R mY,Rx J0] = TR, Remb) = 20<Q > (3.26)

for all m, m!' inM, t in R N
'[P\-'\Xsm})R((‘gG ‘§i)ml}]= 0 for all §gtguw in N 7, m,m' in M. (3.27)
Proof (Sketch) (3.24),(3.25) arc ecmivalent to (2.7), (2.8) respectxvely.

(3.26) follews from LT QI=0and (3.27) from EP ;Q] = .

The Baaon Wiener process has been studied by Hudson 1'36 ,371.
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