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The methods of thermofield dynamics are used to study the prop

erties of a squeezed quantum state which is in an environment main

tained at finite temperature. A relationship is established between

the squeezing parameter and temperature. In addition, the variances

of certain quantum operators are obtained using a squeezed quantum

state at finite temperature.
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It is possible to produce systems where the variance of a certain

quantum operator is below the standard quantum limit. This is accom

plished with the preparation of a squeezed quantum state[1-7]. These

states can he seen in a number of examples. They appear in the de

scription of quantum noise in a dissipative quantum oscillator[8J, in

the quantum representation of a parametric amplifler[91, and in four

wave laser mixing[10-12 where they have recently been observed. In

addition, these states are believed to be important to the development

of a laser interferometer[13j which could be used as a means of de

tecting gravitational radiation. It is expected that in the future these

states will play an important role in communications with weak sig

nals[14j. Most practical systems will usually he under the influence of

thermal effects. It is with this prospect in mind that it is believed to

be interesting to study the influence of temperature on the properties

of a squeezed quantum state. This is accomplished with the the in

troduction of a finite temperature vacuum state[15J which allows the

evaluation of ensemble averages of quantum operators as the matrix
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element formed with these finite temperature vacuum states. In this

paper, the methods of thermofleld dynamics are applied to a squeezed

coherent quantum state an(l a finite temperature squeezed quantum

state is found which acts as the new vacuum state in this represen

tation. This new state can then be used to form matrix elements of

quantum operators so as to obtain the ensemble averages of these op

erators when they are under the influence of a squeezed state.

II. THE SQUEEZED STATE AT FINITE TEMPERATURE

The squeezed coherent state at finite temperture is generated from

the vacuum state IO)ØfO) upon the application of the operator K(O, a, )

which is defined in terms of the squeezed state operator S()[16], the

coherent state operator D(a)[171, and the adjoint of the finite tem

perature operator G(O)1181 as K(O, a, ) = Gt(O)D(a)S(e) so that the

finite temperature squeezed coherent state becomes

l0,a,) K(6,a,E)Io)® O). (2.1)

The operators S(e), D(a), and G(6) are defined in terms of the boson

operatorsA,At,A, and At as

S() = exp((A2 — At2)/21

D(a) = ezp[cvA — aAJ (2.2)

G(6) = ezp[6(AA — AfAt)j.

In these expressions both and a are complex numbers, and theta is

related to temperature through the expression

= sinh(O)

f(f) (exp(fl)
—

(2.3)

= hw/KT

where h is Planck’s constant, K is Boltzmann’s constant, and w is the

angular frequency associated with a simple harmonic oscillator.

The operator (1) involves the commuting boson operators A and

A arid their adjoints. When the adjoint of this unitary operator is

applied to the vacuum state IO)®IO) which is annihilated by either A or

A, one obtains a finite temperature vacuum state which is annihilated

by the operator

A(O) = Gt(6)AG(O). (2.4)

The ensemble average of an operator O(A, A) is found by forming the

matrix element of this operator using the finite temperature vacuum

3
4



state in the form

Tr(pO(A,A)) = (Ol (oJG(0)O(A,A )Gt(O)J0) ® O).

III. THE EVALUATION OF VARIANCES

The finite temperature squeezed state that has been introduced

in the previous section can now he used to evaluate the variances of

operators that are of physical interest. The conjugate operators Q,

and P ,[Q, 19 = i, associated with a simple harmonic oscillator are

represented as
= A + At

2112iP = A — At (3.1)

6

+f(13).

(2.5)

Since K(6, , is unitary, these matrix elements can be evaluated

upon using the transformation

Kt(0, c, )AK(0, r, ) = cosh(8)[AcoshII_e*sinhIEIAt+a1+$iTLh(8)At,

(3.3)

its adjoint,and the fact that both A and A annihilate the zero tem

perature vacuum state 10) ® 10). Before presenting the results for the

variances of different operators, it is useful to introduce the self-adjoint

operators Yj and 1’2 defined by the equations

Y1 + tY2 = (Q + iP)eW2

(3.4)

Yi — = (Q — iP)e’/2.

The variance in an operator O(A, At) is defined by the equation

u2(O)e = (EaOIO2I9) — (aOlO)Oa)2. (3.5)

Following the method of evaluation described above, one obtains the

results

2i,r2(Y1), (1 + f())e2+ f(f3)
(3.6)

2u2(Y2)= (1 + f(fi))e2

H = N + 1/2

where H is the Hamiltonian and where N = AtA is the number oper

ator.

The ensemble average of an operator evaluated between a squeezed

quantum state is found upon forming the matrix element of the opera

tor using the finite temperature squeezed coherent state Oa) to write

(a6IO(A, At)l6a) = (°I 0 (OIKt(O, a, E)O(A,At)K(O, a, E)I°) 0 IÔ).

(3.2)
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In a similar manner the variances for Q, P, and H arc found to be

(1 f(fl))rsinh2II— cossirihlIcoshII + 1/2] + f(fl)/2

= (1 + f(/3))[sirih2II+ cos,siuhIIcoshII - 1/21 -1- f(fl)/2

= [(1 + f(fl))(sirih2 + frJ2) + f(/3)J

x (1 + f(fl))(sinh2IEI + 1a12) + f(fl) + 11

— (1
-- f(/))2kI4

(3.7)

The results for the various special cases can be easily obtained when

any of the parameters 0, , or has the value zero.

IV. THE RELATIONSHIP BETWEEN SQUEEZING AND TEMPERATURE

It is of interest to establish a relationship between the value of the

squeezing parameter and the temperature T. When both 0 and are

zero, one finds the standard quantum limits

u(Q) = u(P) = (Y1) = u(Y2) = 2-1/2 (4.1)

If, returning to (3.6), it is required that the variance in Vi has the stan

dard quantum limit value, then the relationship between temperature

and the squeezing parameter is expressed as

hw/KT = ln(1 + cothIj). (4.2)

It is now easily seen that in the limit — oo, the standard quantum

limit is maintained for temperatures which satisfy the relationship

hw/KT = 1n2. (4.3)

For the operators considered, it is known that the variances in cohn

gate variables must satisfy the Weyl inequality which for Y1 and Y2

becomes

(Y1)r(Y2) 1/2. (4.4)

In the coherent state standard quantum limit both the variances are

equal and the inequality becomes an equality. It is possible using a

squeezed state to find variances below this limit in one of these vari

ables; however, the variance in the second variable becomes greater

than the standard quantum limit. It is still possible to maintain the

variance in one of these variables, e.g. I’1, at the standard quantum

limit if one has the relationship (4.2).

V. DISCUSSION

The results for the variances given in (3.6) and (3.7) are important

for measurements on systems where the quantities to be observed are of

the order of magnitude of quantum fluctuations. if a system is prepared
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in a s(luee7.ed state it is possible to obtain variances below the stan

dard coherent state quantum limit; however, if the mechanism which is

used to generate the squeezed state is affected by thermal fluctuations,

then the squeezed state variance can increase, At a characteristic tem

perature represented by the relationship (4.2), the standard quantum

limit is restored. In the limit when the squeezing parameter becomes

infinite, the characteristic temperature is found from (4.3). This is the

temperature at which the mean number of quanta as determined from

the number operator is equal to one. In addition, it is the characteris

tic temperature for a quantum limited amplifler[19]. A squeezed state

affected by thermal noise could result from a parametric amplifier of

the type described in [9] which is operating in a heat bath. The results

for the variances of a system which produces a coherent state at zero

temperature but which is under the influence of thermal fluctuations

can be found from (3.6) and (3.7) in the limit of vanishing . A sys

tern of this type could be realized with a classical current [20] in a low

temperature heat bath.
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