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Two level systems -interacting with bosons: thermodynamic limit

of ‘thermodynamic functions.
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Abslrdct: For a two-level ‘system coupled linearly. to bosons,
we reﬂuce the existence of the thermodynamic limit of the

therm@dynamic functions to that of the corresponding limit for

1
|

the free bosons. The case where the interaction is with: the

radiation-field is treated as a particularly relevant example.

1. Introduction

The Hamiltonian

X 2
- €S, +%mn aa  +S, 2 (A2, * Apan! (1.1)
describing a two-level system - specified by:
17, 0) 0 .wi) 0., 1

s et

3 0o, 1 2 i, ! 1,0
i i i - = - uantu
inferacting with bosons [an,amj Snm appears in. quantum
optics and solid-state physics 1). The wn‘s are the

frequencies of the free bosons, & is the level spacing, and
the %n's are (complex) coupling constants. Replacing &, and
all %n's by their negative values, one obtains a Hamiltonian

which is unitarily equivalent. We assume henceforth that &€ 20.

In semiclassical radiation theory, H is derived from
“first principles” as follows: One starts with the Hamiltonian
for ‘a system of K particles of masses mj and charges zj
(j=1.2,...,K) coupled to the electromagnetic  field described
in the Coulomb-gauge and quantized transversally in the usual

manner, say in a cube of side-length ﬂ. One then selects two

1 . N
! Relevant references to the literature up to 1980 are given
im Pfeifer's thesis [1]. where a thorough analysis of this
Hamiltonian is given.
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orthogonal eigenvectors"l"l,“’(2 of the free particle Hamiltonian
having opposite parity, and projects the full Hamiltonian with
these vectors. Upon neglecting terms which are quadratic in
the field annihilation and creation operators, one obtains H
up to a constant. The sums in. (1.1) are then over g:(nl,nz,ns)
with each n  running in Z\{0}, and over the polarization-index

k
o €{1,2}. The frequencies are

© = cl|lk | . with k= (2T /&)n
n ~h a

and the coupling constants are  ( gn o is the polarization

vector orthogonal to n)

K
3.1/2 , . 5
‘kn‘ - (zmmﬂi e ot j}zgl (zj/m;) <¥,.coslk .x;) v,
pfeifer |1] shows that
2 -1
(A 1.2
lim Z ‘mn,d‘ n < oo ( )

§ > n,o - =

but,
2 -2
lim > b\nx\ w, Zloe
{2 0o = -
The convergence, resp. divergence of the above ~limits is

essential for Pfeifer's arguments supporting the appearance of

a ground-state degeneracy for (1.1) in the bulk-limit

Here we propose to begin the study of the thermodynamic-
limit of the model, by proving existence. of the 1limit of the
mean  thermodynamic functions. In section 2, we introduce
notation, and collect results of a very general ‘nature which
will be of use in a forthceming study of the limit of the
Gibbs-states ([2]). In . section 3, we prove that, under certain
necessary and sufficent conditions on the coupling constants
and frequencies, the thermodynamic-limit of. the thermodynamic
functions  computed from H exists whenever the. corresponding
limit for the free bosons exist, ‘and that the limits are equal

up to certain £€-independent constants.

2. Some generalities
We adopt the standard Fock-space formalism and notation.

2). and

Consider a Hilbert space H with scalar-product <.,.>
let F be the symmetric Fock-space built upon H. We write a(f)
for the annihilation operator smeared with f, and the Weyl-
operators are given by

~ilm<t, g>

W(f)=exp{a*(f)-a(f)} , feH W(f)W(g)=e W(frg),

We write dl'(.) and I’(.) for the second-quantization maps, and

for the normalized Fock-vacuum vector.

29

This “is-our notation tor-all scaiav products whieh will
not he distinguished, and are assumed Linear an.the second
entry.
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In this setting, the operator (1.1) corresponds, upon Rellich Theorem. If, more restrictively NeD(h *) . then an
performing a unitary transformation ‘on the ‘two-level system applicdtion of the "quadratures formula” ([4]) shows that
which sends Sg and 32 into S] and S,3 respectively, to

Wirh A )drimw(zh 'a)=df(h) x (a*(N)+a(A)) + A1 (2.4)
H-= ESl®l 1 dlM(h) Sq®(a*(’>\)+a(>\)) . on $2® F. (2.1)
All this leads to the following characterization of (2.1) as. a
where we have also ~introduced. tensor -product notation which selfadjoint operator; we omit the details of the proof.

will be used throughout, and the one-particle Hamiltonian h is

1

42 N
a ' positive. injective. selfadjoint operator acting on H. Tt is Lemma: If N€D(h ) then H given by (2.2) is selfadjoint on

possible to make sense of pD(1® dr(h)), bounded below by -(A+€), and commutes with the

selfadjoint unitary Sl®f‘(—l). If moreover NeD(h '). then

HO<H-€S @ 1=1®dl(h) + S, @ (a*(N)+a())) , (2.2)
H-Et5®1 « v (1@ dn(m)u -A1 . (2.5)
and thus of ‘H, as a selfadjoint operator when “h-1/2,>\u2 < o
holds true without assuming that NeH 3) 1t one assumes that where the unitary operator U is given by
Ne D(th’xz) 4). then the inequality lh~1/2'>\><h”“2>\\ £ N1,
abere U P @wh N s P@W(-A A, (2.6)
A= nh‘l/z)\‘\z (this is (1.2)) : (2.3) where Pic are the spectral projections of 53 to the eigenvalues
*o1.
entails - [A><A "¢ Ah, and thus a*(N\)a(X) < A dU'(h). One then
proves that 53 ® (a*(nN)+a(n)) is (1. ® dr(h))-bounded with The operator inequality —1gslgx entails (recall £20)
relative bound zero, so (2.2) 'is selfadjoint by the Kato-
H° - g1 ¢ v < H® + €1 : (2.7)
1f NeD(h '), the operator H® has the vectors z_!@W(?—h-l'A)
PN . with Pj zy =2, as orthogonal ground-states with energy EVACE S § 1
This involves quadratic form technidgues and the KIMXN
Theorem, sece (3], Lemma 1

D) denotes domain of. 5 Recall that I)(llyl) is - a core for h

i)

1.2
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also h »cl, with ¢>0, then regular perturbation theory shows
that the degeneracy is lifted for £€>0 sufficently small, ‘and
one has two eigenvalues of opposite "parity"” (S] ® M(-1)) at
6)

the bottom of the spectrum For a wealth of information on

H when h acts on a finite-dimensional Hilbert space, see [1].

3. The thermodynamic limit of the mean thermodynamic functions

Let V be a subset of m3 of finite Lebesgue-measure (i.e.
volume) |Vl . To the positive, injective, selfadjoint operator
hv acting on La{v), and N\ v € D(h;l/z), associate the

selfadjoint operators (Lemma )

H, = 1®df‘(nv) + 53®(a*(>\v)+a{>\v)) .

[e]
HV— HV +ESI® 1

acting on 62® FV' where FV is the Fock-space built upon LZ(V).

If the condition

exp(*ﬁ(hv)) is-a trace-class operator for
(3.1)
some (hence all) 0 < < @

holds true, then exp{jAdP{hvvkll) is trace-class for every fie

(0,0 ), and every/M €(-o,0]. By the injectivity assumption,

G .
No peneral ‘statements about pronpd statef(s) are available

. N . 1
whenever bois nol discrete, and X isnot in Wh Jo.oorothe
lower bound on h is zerao

=1 ; . - -1 -1
h is bounded; also, (hv /ul) < hv R

v Let Nvadw{l) be ‘the

number operator on F . ‘Formula (2.5) applied to  the nvyul.

v

gives

o - -

H -/~(1®NV)~UV’ﬁ(1® dmhv/.n)uvw Av,,f' (3.2)
where

__1 ’]
Uy o T-B.® W(lhy-p1] "Ay) v P @ W(-[h;-pm1] "Ay)
-1/2 2

Ay - Ny, VRS L K e-e0] (3.3)

Notice that A is a convex and increasing function of/uAIt
Vo

; o
follows that exp(-/.S(H —/*(IGNV))) and exp{—/.s(Hvy«(l@Nv))) are
also trace-class for every A & (0,o ), and M e(-w,0]. Consider
the partition function and the mean free energy based on HV:
zv(/z,/k;E):Tr(exp{w/i(ﬂv-/d1® NV)H);

-1
Fylp pi€)=(-1/AIVL) log(Zy(p pi€))

Denote the corresponding functions. based on the free boson
Hamiltonian dP(hv) by the same symbols with a superscript
and of course no argument. &.
[
Due to (3.2), we have ZV(FU”;0‘:2exD<ﬂAV,ﬁ)ZV(ﬂﬁﬁ)' and the

inequality (2.7) implies

S L VSRS TTTE SRS SV MO RS ST
$ fylppie) (3.4)

< vl Yo Ehy ml o tV(A L)



i vl "A has a limit as |Vl o 7).

then the thermodynamic
Vim

Fimit of the mean free energy is reduced ‘to-that 'of the mean
free energy of the free bosons, and is independent of €. This

proves the following.

Theorem: Assume {(hy .V, ):@-1.,2,...) is_a sequence consisting
of finite-volume subsets V of m3 with lim vy} =0 . ‘and
MME 2 BUe LD I ot XA 250 I3 ang

positive, injective selfadjoint operators h, acting on LZ(VE ).

such_that condition (8.1) is satisfied for every f=1.2.3....
Suppose further that (we replace the_index V, by £)
Tim A /(v L= c, () (3.5)
. ) A
Lo D
lim f;)(/s.,u) = t%0.m) (3.6)
Q—%»
exist _for_some 0 < A <o, and some u £0. then
. o]
lim fg(/s,/*,i) = £OAM) T ) (3.7)

0 4%

Notice ‘that by (3.4), existence of any two of the three limits
(3.5),(3.6)&(3.7) will insure existence of the third one.
Furthermore, the above result generalizes ‘upon replacing the
two-level "system by an arbitrary system 'as follows. 'S is

1
replaceable by any bounded selfadjoint operator A ((2.7) still

U The ease ECE(V) with le(vil. ¢ kvl could also be handled.

holds with € replaced by e{all. ). and S3 is replaceable by a
bounded selfadjoint -operator B with purely 'discrete spectrum
(formula (2.4) applied to each eigenspace of B shows ‘that Ho
is the direct-sum of operators which are unitarily equivalent
to dF(h;Al) up to c¢ertain constants -depending on P and the
eigenvalue of B in question): condition (3.5) is then replaced
by the existence of the limit of (A]Vl)_llog(2:exp{ﬁ Av'»bi)).
where the sum is over the eigenvalues (bn} of B.

Under differentiability conditions —on fo(ﬁ./*). an
application of Griffiths Lemma ([5].,[6]) will prove existence
of the thermodynamic 1imit of the mean internal energy
uv(ﬁ,o;tl, and the mean. entropy sV(A.O;E). or the mean boson-
number expectation nV{A.O;C) at/k=0. If the Theorem applies in
a small neighbourhood of /A ', ‘at e =0, and £%(.,0) s

differentiable at /5, then:

]

lim UQ(A,O;E)
250m

u®(A.0)- €, (0)

sO(A,O).

i

1i ,0: €
im s{{ﬁ )

£ oo

The derivative at m=0 of /lv.)m~ is readily computed by using,

e.g. the Neumann series for lhv—ﬂl)"l, it equals Hh;l %vl\z.

Thus, if -~ the Theorem applies  for. some /A and ~small

neighbourhood of/k=0. if fo(ﬁ.') is differentiable at m=0, and
-1 -1 2,

if limo v, | Mhl Ay || #=c; exists, then

l-'l'.n

. : _ .0 :
lim n{lA.O.i) no(n,0) + CA

L0
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We return to the specific model considered in " the
introduction. The two polarizations. do not interact; for each
one of these, the one-particle hamiltonian is %:ﬂﬂ« A)l/z,
where AN is 'the Dirichlet-Lapalcian on YE =1-4/2, 1/2]3.
Disregarding the possibility of different "chemical

potentials” for the polarizations, we obtain

Lim £y (Bpik) = 2f°%(pp)
Q—)m
since due to. (1.2), CA(#):O for all /A$0. The factor 2 comes

from the two polarizations, and fo(ﬁyu)=]im f;(ﬂuﬂJ, where
Qﬂoo

£y (A= (-5L%) Mog(Tr(exp(-AdN(hy #1)))]

-aplp? =, dog(i-exp{Ale (L) ).
nezo\(0) n

By standard arguments for Riemann approximation of integrals,

oo
pp = 32wt §oefrogiexy

S sy Tt Zoat e
ny 1

Alerpm)) g

r

Differentiating with respect to /S(resp./*) at/A:O,

u®(p.0) = -3 £2(p,0) Sos%(p0) = -4k £2(BL0)
(2]
n®(p.0) = (3/27%) g ple Al pgfery "l 4y

= (3/?2) c~3/2>”3 ZE n?
ny1

i

It follows 'that,

Lin u (p.0:€) = 2u®(A,0) L lim s, (8,0: ) - 25’ (5.0)
1—)& Q‘)m
§ i : -1 -4 2
It remains to discuss the limit of lYll 1lh£ %l“ . Pfeifer
([1]), shows that éim HRLHQ exists. We have nh;“=(min(wn(£):gé
~ 00 -
28 (0yy) t=(2vFce) 'L thus [lnl“k{(l2\< K L2 \\'A(\\z. with K

independent of ¢ . We conclude that CA=0, and thus

lim n, (A,0;€) = 2n’(4,0)

Low
In the canonical formalism, the interacting two-level systenm
is thermoﬁynamically fully equivalent 'to the free radiation

field.
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