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ABSTRACT

We consider mean field models for n identical systems
interacting with each other, and with another additional system.
Each hamilteonian H" is taken to be symmetric with respect to
permutations of the identical systems, and for large n and
arbitrary k, (n+k)'1HMk is approximately equal to n'TH“, taken as
an operator of the larger system, and resymmetrized. We give a
complete theory of the equilibrium statistical mechanics of such
systems. - The validity of the Gibbs Variational Principle is
established: firstly, at the level of the states of the infinite
system, then secondly at the level of the states of the single
system. A generalized gap-equation is obtained at this second
level. In some cases, the variational problem reduces further;
this leads to a non-commutative version of the large deviation

results of Cramér-Varadhan for R%-valued random variables.

1) On leave from: FB Physik, Universitidt Osnabriick, Postfach 4469,
D~4500 Osnabrick, West Germany.

1. INTRODUCTION

We define a class of statistical mechanical models of mean
field type, and obtain a complete theory for them. The models are
specified by a C*~algebra ®% for the single system, and a
hamiltonian Hn for the aggregate of n single systems (described by
the n-fold tensor product of 3®) interacting with each other, and
with a second system specified by a C‘~algebra 4. The precise
nature of the allowed hamiltonians is described in Section II. The
essential features are that the hamiltonian density H“ is
invariant with respect to all permutations of the n single
systems, and is asymptotically symmetric in the sense that Hn+1 is
given, up to a small correction, by resymmetrizing Hn considered

as element of the (n+1)-fold tensor product.

For our general mean field model, we prove the validity of
the Gibbs Variational Principle at two levels. Firstly, the
thermodynamic 1limit of the free energy density is obtained by
minimizing the free energy density functional over the set of
(symmetric) states of the (infinite) system. Secondly, the latter
variational problem, is reduced to that for a free energy density
functional on the states of the single system. At this level, the
minimizing states are solutions of a gap-equation. Since all
limiting states of the model are minimizers, we obtain some

detailed information about them as well.

In special cases, the reduction proceeds one step further,
and a finite dimensional variational problem is obtained. This
corresponds to a "level-1" large deviation result in the
terminology of [5], and extends Varadhan's results [21], on the
multidimensional Cramér Theorem, to the non-commutative domain.
All three levels were obtained in [14] for the simplest possible

case.

From a technical point of view, this paper extends the
results of [14], particularly those involved in the estimates of
the energy density, thus allowing not only for the inclusion of

the additional algebra ¢, but more importantly, for a large class



of hamiltonians.

The basic definitions and the main results are expounded in
section II. Section 1III <contains their proofs. The energy
estimates are based on the contents of section IV, which is
essentially selfcontained and describes a general theory of what
we call the C*-algebra of symmetric tensors. In the concluding
section V, we discuss possible extensions, and problems. Some
results on the many-variable functional calculus in C*—algebras

*
(C -functions), are given in an Appendix.

II. Main DerFINITIONS AND STATEMENT OF MAIN ResuLTs

*
Throughout the paper o and 3 will be unital C -algebras. We

shall be concerned with sequences of models with observable

n
algebras %n = d@(u®1$(u)), where © denotes the minimal, or
- .

injective, C -tensor product [19] and 3 is an isomorphic copy

* w)
of 8. The C -inductive limit of the sequence %n with the natural
injections will be denoted by ﬁw. Whenever convenient, ?Jn will be

considered as a subalgebra of 7J®. The symmetrization operator

symn:%n —— %n is the continuous linear extension of
symn(a®x1®. . .®xn) = (1/n! )):,[ a®xm®. . .®xn", where the sum 1s over
all permutations m of (1,...n}. The same definitions apply when

d=C; we then write %n and %m for %n and ﬂm respectively.

For any C'—algebra F, K(¥) will denote its state space. A
state ¢€K(%®) (resp. K(fﬁm)) is called symmetric, if for all neN,
and all Xe‘ﬁn (resp. fﬁn), ¢(X) =¢(symn(x))
symmetric states of 200 will be denoted by Ks(fﬂm). For ¢€K(3), the

The convex set of

associated infinite product state on 3 is written ﬂ(p, and is

symmetric.

The models we consider, are specified by a sequence of
hamiltonians, given abstractly as follows. Firstly, the

non-interacting part is determined via a sequence
n

{0 =p 9( 9 p

03 (m” of  product states of Z", where pOEK(sd), and

p(u)=p € K(3) are arbitrary separating states (i.e. a state such
that the associated GNS-vector is separating for the von Neumann
algebra generated by the GNS-representation). The interactirn is
introduced by perturbing each W in the sense of Araki [1] with a
relative hamiltonian n-Hneﬂn. The perturbed (unnormalized)
positive linear functional of %n will be written ﬁ):Hn. This
framework provides a generalization of that special case where the
state w is given by w(°)=Tr(Dc) with a (non-singular) density D
with respect to a trace Tr; there, the state wh has density
exp(log D + h). The number log wh(l) can be interpreted as a
relative negative free energy [1,14]. The sequences of relative
hamiltonian densities we allow are assumed to be approximately

symmetric in the sense of the following definition:

II.1 Definition: A symmetric sequence in ?)m is a sequence (Xn),

defined for n larger than some initial value no. such that X“@n,

and for all k20 and n2n : X = sym (X ). The set of symmetric
(o] n+k n+k n

sequences will be denoted by ¥, or ¥(«,3).

A sequence (Xneﬁln)nZ" is called approximately symmetric, if for
0

all nzn, X = sym (X ) and v 3 v X -Y |l £ €. The
o n n n n n

£>0 3Y€v m  nZm N
set of approximately symmetric sequences will be denoted by Yy, or

J(d4,3) .

Thus, a mean field model is specified by the algebras 4, and 3,

with respective separating states p and p, and by an
L]

approximately symmetric sequence H=(Hn)n2n , of relative

*
hamiltonian densities Hn=Hn € ?Dn.

The simplest examples of such models are the usual quadratic

mean field models with hamlltonians of the form

"h o+ (n-1)"%F% v

n-H = Zl-l i i#j ij ’

n
where hi is a copy of the single particle hamiltonian he3, acting
in the 1i'"™ tensor factor, and Vi, is a two-particle interaction
velms®, acting in the i*" and jLh factors. Note that the first term
can be included in the second by setting V's V+(h®1+18h)/2=
HZ. Clearly, the above sequence Hn is strictly symmetric, and

defined for all nz2. It is also the most general sequence of this



description. The generalization of the quadratic mean field
systems to arbitrary N-particle interactions is straightforward,
and leads to symmetric sequences Hn defined for n2N. As in the
guadratic case such a model 1is completely specified by HNE%N,
since the higher terms of a symmetric sequence are dgiven by an
explicit formula. Just as the requirement of symmetry fixes the
scaling of the N-particle interaction-term in Hn, it fixes the
scaling of the 1ntgraction between o and %n. With o non-trivial
there are also symmetric sequences defined for nz0, which are of
the form H:= a®1---®1€%n. The corresponding hamiltonian has a
factor n, so the non-interacting s#-part of the hamiltonian is
scaled to infinity with the number of 3-particles. This is
necessary for #° to contribute non-trivially to the thermodynamic
functions of the model.

‘:1hi )2 of hamiltonian
densities. This can be written as H =Yn*Rn, where Yn is symmetric
with Y2= h#h and HRan n"”ﬂmz. Thus H is approximately
symmetric. More generally, we can take Hn= f( n'kz‘_ﬁh ), where
f is any continuous function on the spectrum of h. These are

exactly the hamiltonian densities considered in [14]. If f 1s a

Consider now the sequence H = ( n'l'z

n

polynomial, then the sequence Yey in Definition II.1 can be taken
independently of €. However, for general f we need the full
freedom of the definition.

A further generalization covered by the above definition of
mean field systems is to allow the function f in the previous
paragraph to depend on several variables, which do not have to
commute, and may themselves be arbitrary approximately symmetric
sequences. Thus we can have Hn= f(x’n,xzn,...) E%n, with Xueﬂ for
some function f (see Proposition II.2 below). However, in order to
make this definition of Hn precise we have te clarify what we mean
by "the same function f" in the different C -algebras*%n. This is
done in the Appendix by introducing the notion of C -functions.
Here we only remark that the set of C*—functions is closed under
composition, and includes all polynomials of (finitely many)
non-commuting variables, as well as the continuous functions of a

single variable.

A crucial role in the theory 1is played by the algebra
6(K(3),4) of continuous functions on the state space of 3 (with
the w*—topology) with values in & (with the norm topology). This
is developed in section IV. To every xﬁ%n we associate a function
j"(x) € B(K(3).4) such that for every pek(3), j“(a®b1®u-®bn)(w) =
a- ﬁ(p(bp). We show in Lemma IV.6 that for X=(X ) € U, the limit

Vw1
Jj(x)y = limn jn(Xn) exists uniformly and j maps Y onto 8(K(3).,d4).

In fact, we equip ﬂ with the structure of a seminormed *-algebra,
and show that j is a C*—isomorphism. As an application, we obtain
a proof of the non-commutative de Finetti-Theorem of Stermer ([18]
and also its extension [6] (without separability assumptions on
the algebra «). Returning to our main concern, the statistical
mechanics of mean field models, we can show that for a symmetric
state ¢ of %m, ¢(X") converges as n — ®, for each X=(Xn) € ﬂ; and
we obtain a formula for this limit in terms of the map J, and the

decomposition of ¢ into extremal symmetric states.

If Y is obtained by operating on some other sequences x¥
elementwise with some C*—function (see the Appendix), then we have
the following convenient formula for j(Y) in terms of the
functions j(xu).

II.2 Proposition: Let f be a C*~function on some compact convex
set FCRm, and let Xueﬂ be an approximately symmetric sequence for
each velN such that Yn = f(X’",in,...) eﬂn is defined for nZno.
Then Y=(Yn)n>_n is approximately symmetric and

°

J(Y) = £03(xN), 3(x%), .. )

The treatment of the entropy parallels that of [14]; most of
the technical details needed in our more general setting are found
in [13]. For states w and ¢ of a unital C*—algebra, S(w,p) will
denote the relative entropy of ¢ with respect to ® (in the

sign-convention of [2]). The non-negative real number S(w,p) is
defined wvia the GNS representation associated with ©, and  is

finite only if ¢ extends to a normal state of the generated von



Neumann algebra; in this case, S(w,p) 1s given by the definition
of [2] applied to the normal state extensions. S(w,°) is convex
and lower w'—semicontinuous (the lower semicontinuity in this
general context follows readily from [13, Theorem 9]). In the
particular case where both states are given by non-singular
densities D with respect to a trace Tr,

S(w,p) = Tr[Dw(log Dw - log Dw)]

The mean relative entropy for ¢€K($m) with respect to mex(%m)
i1s defined to be
SM(u,¢) = lim sup_ n'is(wlﬁn,¢{%") ;
and is affine in ¢. When the reference state is a symmetric
product-state ﬂp, and ¢ is symmetric, then by Proposition III.4
the upper limit is in fact a proper limit.

The connection between w:Hn(l) and thermodynamics is the
following. Suppose that the separating states pDEK(d)and PEK(B)
determining wn are given by densities exp(—ﬂﬂo)/Trdexp(—B&o),
respectively exp(—Bﬁ)/Tr%exp(—Bﬁ), with B>0. The non-interacting
system then has %:= &°®[&®1n_1+1eﬁ®1n_z+---+1n_1@&] as its
hamiltonian. The corresponding free energy density F:(ﬁ) is then
simply

F(B) = (-nB) 'log Try exp(-HX’)
= (-nf) 'log Tr exp(-Bh_ ) - B'1f09 Trpexp(-BR)

and its thermodynamic 1limit is —B'llog Tr%exp(—ﬁﬁ). The free
energy density corresponding to the hamiitonian %:+Vn, i.e.
Fn(B)=(—nB)'1log Trﬂ exp(—B(%:+vn)), is then given by
n
s(s2(p) - F (B) = n'1og v PYac1)

The following result gives the existence of the thermodynamic
1imit of the relative free energy density of any mean field model,
and establishes the validity of the Gibbs Variational Principle.
Moreover, and as is to be expected due to the mean field nature of
the models and the non-commutative de Finetti-Theorem, the
variational problem contracts to one on the direct product of the

state space of « and the ("single particle") state space of 3.

I1.3 Theorem : For every mean field model,

1im 0! log o™a(1) = sup {11m B(H ) - S, (1,63 »} (*)
n n 0€K (3) noe Ml
= sup {@O<J(H)(w)> - S(p,w)} L)
PEK(B)
wqéK(d)

Remark that the separating state P, of 4 does not appear in
the functionals to be maximized, and also that the d-system does
not contribute at all to the entropic part of these functionals.
The only influence of the d-system enters via the 1limiting
interaction energy density.

The basic information on the nature of the equilibrium states

is collected in the following result.

I1.4 Theorem : For every mean field model one has:

x
(1) Every w cluster point of the sequence (Normqwnﬂq >
n nan

maximizes (*);

(2) The subset M, c Ka(%m) of states ¢ maximising (*) is
convex and compact, and the subset M,, ¢ K(#)xK(B) of pairs (¢ ,¢)

o

maximising (**) is non-empty and compact. The extreme points of M,
are the *states q)o«sﬂq) with (cpo,(p)eMH and tpOEK(sﬁ) pure. Every ¢eM,
has a w -integral decomposition ¢ = u(do) wo®ﬂa, where u is a
Baire probability measure on K(3), wﬂéK(d) for all o0€K(B), O+
@a(a) is measurable for all a€d, and (¢0,0)6M** a.e.(u).

(3) If o4 and B are separable, then for any extreme
point ¢ of M, there exists an approximately symmetric sequence
(Hn)nZno such that

lim || H-H|) =0 |,
n n n

- H *
and the sequence (Norm 1”:H")n2n is w -convergent to ¢.
o



(4) Let Xeﬂ(m,%), and suppose that the sequence (Norm'%ﬁHd

n
converges to an extreme point of M,. Then the segquence (Kn) of

probability measures on R, defined by fKn(dx)f(x)=
- *

(Norm %ﬂﬂn)(f(xn)) for feﬁo(R), is w -convergent to a point

measure.

(5) If ¢ is a maximizer of (*), then the restriction of ¢ to
%n is normal with respect to the restriction of w to 3 for all
n
n.

Note that the integral decomposition given in (2) is not a
decomposition into pure phases, which would be an integral of the
form ¢ = fu(d(wo,w)) woaﬂw with a probability measure v on
K(«4)xK(3), supported by the set of (wo,w)eM** with 9 extremal in
K(d) .For non-separable ¢ the set of extreme points of K(#) is not
measurable in K(#) and hence M,, is in general not measurable. The
"support" of the measure v on K(#)xK(3) thus has to be understood
in the weaker sense customary in non-metrizable Choguet-theory.
The integral decomposition given in the theorem avoids this
difficulty and has the additional virtue of being unigque in the
sense specified in Proposition 1IV.5,

One may wonder whether the local normality property (5) holds
also for the whole algebras ﬁn rather than the tensor factors %n.
That this is not the case is seen in the following example. Let
A=R(#) be the algebra of bounded operators on %=L2([0,1],dx) and
let 3=C be trivial. Let P be any faithful normal state on &, and
let Hnﬂkd be the multiplication operator with x in #. Then by
Theorem II.4(1) any cluster point woex(d) of the sequence
(Norm'1-p2x) satisfies wO(H)= sup spec(H)= 1. Hence wo must be

purely singular on 3(&).

Under a differentiability condition, the maximizers of (*#*),
i.e. the states in M,,, satisfy a generalized gap-equation [7,14]
with a state-dependent effective hamiltonian A:

II.5 Proposition: Let (wo,w)eM**, and suppose that J(H) is
differentiable at (wo,w) in the sense that there is some Red such
that for all peK(3):

wo(j(H)((l—X)w+XW)) = wo(j(H)(w)) + Mw(R)-p(h)) + o(n)

as A — 0'. Then o = (p(1)) "o

In the case studied in [14], the variational problem (**)
contracts further to one on the real line. This was seen to
provide an extension of Varadhan's asymptotic formula [20,21],
based on the large deviation results of Craméer for the
distribution of sums of independent, identically distributed
random variables. We obtain a further generalization of this,
which at the same time reduces the computation of the suprema of
Theorem II.3 in a certain subclass of mean field models to a
variational problem on R¥. The subclass consists of those models
where o4 1s trivial, and the hamiltonian density 1is given by
Hn=f(x;",x‘2’,---,x‘“’

w)

n } . for some C*~function f, and k symmetric
sequences X ‘€Y, all beginning at no=1.

(1) (2) (k)

Consider k self-adjoint elements x X PRI 4 in 3. For
tERk, let t-x = t]x(1)+tzx(2)+---+th(k], and define G;:Rk — R,
I;:Rk — Ru(+®} by

Gr(t) = log pt*(1) L teR
I*(u) = sup, {t-u - G(t)) , u € R¥ ,
e teR

where p 1is any separating state of 3. G;

differentiable [3] with

is then convex and

tex X

(v63) () = p (x9) p%® (1) L 1s3isk

Moreover, G;(0)=0, and the generalized Peierls-Bogoljubov and
Golden-Thompson inequalities of [3] imply p(t-x) < G;(t) <
t-x)' It follows that I” is non~-negative, convex, and lower
@), p(x®))=0. Using [3]
one can see that G; (and hence I;, [17, T?:orem Zi}s]) is strictly
convex if and only if the set (1,x ,'-»,x '} 1is 1linearly

independent. We remind the reader that the effective domain,

log ple
semicontinuous, with I;(p(x( )).p(x

10



dom(I;), of I; is the convex set where I; is finite.

1.6 Theorem: Let x(D), 1spsk, be self-adjoint elements in 3; then

the closure of dom(rY) is E = ([o(x'")00x®) o px™)))]

W 4n Y(C,8), 1svsk, be
*

given by X:V)= x“”e%, and let f be any C —-function on E. Set

peK(®))}. Let the symmetric sequences X

H =f(X(”,X(2),"',K(k)) € 3
n n n n n

Then, with H=(Hn)n21 € Y(C,B8), one has

sup {j(H>(w) - S(p.w)} = sup {f(u) - I;(u)}
PEK(B) u€k

=swk{fﬁmp(ﬂ)—t%W%Ht)+Gyt&

Let us illustrate these results in the case where the
assumptions of Proposition II.5 and Theorem II.6 are both
satisfied, i.e. f 1s differentiable as a scalar function on a
neighbourhood of E. Then

fo=T 9 fox ), 0(x ™))
jar 34
Consider the maps U,T, and ¢ defined by:

K(B)3p —— U(p)=(p(x' "), oo, 0(x*)) € B,

R5t — 0(t)=(p" % (1)) " * € k(2)

E>u — T(u)=Vf(u) € R*
If ¢eK(3) 1is a maximizer for J(H)(°)-S(p,°), then U(p) is a
maximizer for f(o)—I;(o). Given a maximizer teRk, ¢(t) maximizes
J(H)(°)-S(p,°). Finally, an argument similar to that of the proof
of Proposition 1II.5 shows that given a maximizer u€E, T(u)
maximizes t —— f((VG;)(t)) - t(963)(t) + Gi(t). This sets up
bijections between the sets of maximizers of the three expressions
of Theorem II.6. The gap-equation becomes

(1)

@ = ®ToU(p) = NOFm“D(Vf(P(x )’...'Q(X(k))).x

or, alternatively,

t = ToUed(t) = Vf(VG;(t))

11

The bijective correspondence between the sets of maximizers
of the three variational problems of Theorem II.6 1is also
guaranteed if dom(I;)=VG;(Rk). This last condition does not follow
from the differentiability of f. If G; is strictly convex, then
VG;(Rk)=int(dom(I;)) [17, Theorem 26.5] 4is open. On the other
hand, if ® is finite-dimensional, then S(p,°) is bounded above,

and one can show that dom(I;)=E, which is closed.

III. ProoF ofF MaIN ResuLTs

In this section we give the proofs of all results of the
previous section except II.2. This 1is done in the appendix. The
basic idea of the proofs is exactly the same as in the paper [14].
The new ingredients are the inclusion of a non-trivial algebra o,
and a much larger class of admissible hamiltonians; this becomes

possible due to the theory presented in sect.IV.

The central idea 1is to wuse the following important
variational characterization of the relative entropy of states in
a general C*—algebra due to Petz [12,13]. It can be stated by
saying that hr—— log mh(l) is the "Legendre" transform of

p——S(w,p), and conversely.

II1.1 Lemma (Petz): Let w be a separating state of a unital
* *
C -algebra &£, h=h €4, and ¢ any state of d. Then

log w(1) 2 @(h) - S(w,)

and equality holds if and only if ¢ = wh(l)‘lwh. Moreover,

S(w,e) = _sup (p(h) - log 6"(1)}
h =hed

This lemma is now applied to the algebra %n, with the
n

reference state w=mn=p°®( ), the relative Hamiltonian h=nH ,
n

Y
vai (V)
and a symmetric state ¢=¢n of %n. After dividing the inequality by
n , we pass to the limit. Thus one has to control two kinds of
terms, namely the interaction energy density ¢n(Hn), and the

relative entropy density n'is(wn,¢"). We shall have to require of

12



the sequence (¢“) only that it converges *—weaklz to a limiting
state on @m. Since the state space of %@ is w -compact, this
condition can always be met by passing to a subnet ( since we are
not assuming £ and 3 to be separable, subsequences will not do).
We will use the following notations. Let v be a subnet of N, i.e.
a function v:A — N on a directed set (A,2) such that for every
neN there exists GOEA such that v(a)2n, whenever GZGO. If [an)neN
is a sequence in a Hausdorff space, we write limnqv a for
limaeA au(a) if it exists, and employ a similar notation for
superior and inferior 1limits of sequences of extended-real

numbers.

III.2 Definition: Let (anew
symmetric states ¢n€K(%n) (resp. ¢"€K($n)). We say that (¢n) is

be a sequence of permutation

convergent along a subnet v:A — N, if for all meN and all Xd%
(resp. %m) the limit lJmn " ¢n(f:) =: ¢(X) exists.

-

For any sequence convergent along a subnet, the
limit-functional @extends from U“%n (resp. Unﬁn) to a unique
symmetric state ¢ of Qw s (resp. %m), and we shall write ¢ =
1imn*u ¢n. By Proposition IV.5 any symmetric state ¢ has an
integral decomposition, ¢ = fu(do)wa®ﬂc , into product states.
This decomposition is used in the following proposition, which
summarizes the energy estimates we shall need. It is proven at the
end of section IV.

III.3 Proposition: Let XG@ and let be a sequence of

(¢ ) en
n on
permutation symmetric states of %n converging along a subnet v to

limn*u ¢" = fu(do)wowﬂa € Ks{%m). Then

vim oo (X)) = [u(@e) p(3(X) (0))

Recall that SM(m,¢) was defined as an upper limit. We shall
need to know that this 1lim sup is in fact a 1limit, if o is a
product state and ¢ is symmetric. The necessary control of the

lower limit is stated in the following proposition.

13

III.4 Proposition: (1): Let (¢nhﬁw be a sequence of permutation
symmetric states of %n converging along a subnet v to limmw ¢n =
¢ € KS(Q»). Then

lim inf  n’' S(IB ,0) 2 Sy(M,6)

(2): If ¢ = fu(do)ﬂU is the decomposition of the symmetric state ¢
into product states, then SM(ﬂp,¢)= fu(do)s(p,0).

Proof: We may suppose that S(mﬂ%n,¢n) is finite for every n. Let
%
T be the right-shift on ﬁm. SM(Hp,o) is lower w -semicontinuous on

the t-invariant states of B (see the appendix of [14]). One has
m inf p Sy(M,E0) = Sy(ll . 6) '

for any net (Eul «€fA} of rt-invariant states of ﬁm which is
*
w -convergent to ¢. The first claim follows if we construct such a

net, with the additional property that
- -1 *
SM(ﬂprﬁa)— v(a) S(nplﬁu(a)'¢u(a)) . (***)

Define the state ca € K(@n) by

Ca}%ku(a) = ¢u(a)®¢u(a)®”.®¢u(a) (k factors), for every kz1 ;
Cu is then ru(u)—invariant. For every meN, Cq(X)=¢U(a)(X) for all
xeﬁ!m w?iigver v(x)zam. Hence, w —limaeu Ca=¢. Put
Ea = u(oz)'1 gaorj'1 ; then, Ea is t-invariant and has the same
i=1

limit as (Ca} by {14, Lemma 5]. We can repeat the argument of [14,
Lemma 7] to show that for any m,
< -1 m - -1
11mk k S(ﬂp]%k,ca T I%k) = p(a) S(ﬂpl% ¢

via), v(a))

Then the argument of [14, Lemma 8] implies (***), This completes
the proof of the first claim. The second claim follows from the
lower semicontinuity of SM(ﬂp,e) by a standard result of Choguet
Theory, and the fact that SM(ﬂp,ﬂw)=S(p,w).

®

14



Proof of Theorem II.3 and of Theorem II.4(1):

Put an=n'1log u:Hn(l),
A=sup(limn ¢(Hn)—SM(ﬂp,¢)$m))¢€K9(Qn)), and
B=sup{¢_(J(H)(9))-S(p.p)| ¢eK(B), ¢ €K(d)}.

We first claim that A < B. Indeed, by Proposition III.3 and
the second part of Proposition III.4, for any ¢6Ka(%®),

lim () - Syl 613 = ju(do)[w0<3<x)<o)>-5(p.u)] < B

since u is a probability measure. The first claim follows by
taking the supremum with respect to ¢.
Now we claim that 1lim infn a 2 B. By Lemma III.1, for
arbitrary woex(d), and ¢eK(3),
a = (p el - n!
n (wo p)(Hn) n S(p°®(ﬂp|$n),wo®(ﬂw|$n))

= (@ 8M,)(H) - n"'(s(o,.0,)+ns (0, 0))
Thus, if S(po,wo) is finite,
lim inf a 2 wo(j(H)(w)) - S{p.,9)
by Proposition III.3. This implies that

lim inf a =2 sup{woij(ﬂ)(w))—S(p.w)l PEK(B), ¢ €K(d), S(Polwo)<®}

Since e, is separating, the set of states of o with finite
relative entropy with respect to P, is w*—dense in K(d), and the
second claim follows.

The third claim is that if the sequence {Norm"w"HnInGN)
converges along a subnet v to ¢€Ks(%m), one has g

lim sup_,, « < limn ¢(Hn) - SM(np’¢|%m) < A

By Lemma III.1, and monotonicity of the relative entropy, for any
a€h,

= _ -1
3,000 = Cia) Bu(a)) = PIE) S0, 6y By o)
-1
= ¢u(u)(Hv(a)) - vla) s(wu(a)’%u(u)’¢u(a)|%u(a))

-1
v{a) S(ﬂpi%

= % () (o) o) % () 1B (o)

The third claim follows from Propositions III.3 and III.4.
Theorem II.4(1) follows from the three claims. Suppose that
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lim sup a_ is strictly larger than A. Then then there is a subnet
uq of N such that (an) converges along v, to this larger value. By
w -compactness of K(ﬂm), there is a subnet v of v, such that
(Norme:Hn) converges along v to a symmetric state in the sense
of Definition III.2. This contradicts the third claim, and shows
that lim sup a < A , which together with the first and second

claims proves Theorem II.3.

Proof of Theorem II.4(2):

Since the functional maximized in (*) is affine in ¢, M, is
convex. Due to the lower semicontinuity of relative entropies the
functionals in (*) and (**) are both upper semicontinuous, and
hence assume their supremum on a closed set, which 1is compact
since KK(%N) and K(d)xK(®) are compact. The integral decomposition
exists by Proposition IV.5 for any ¢€Ks(%m), and we only have to
prove that (WGAUEM*‘ almost everywhere. This is clear from the
first inequality in the above proof of II.3, which must be an
equality for a maximizer ¢. Clearly, ¢ cannot be extremal unless y
is a point measure, i.e. ¢= g@ﬂw for some (%fw)eM*‘, and unless
®, is extremal. Conversely, if ¢ has the stated property, then it

is extremal in Ks(an), hence in M,.

Proof of Theorem IX.4(3):

By II.4(2) every extreme point of M, is of the form f=%ﬁﬂ¢
with ?, pure and (¢0,w)eM**. We claim that there exists GeY such
that wU(J(G)(w)]s o for all yeK(s), weK(?), with equality exactly

for the pair (wo,w). We then consider for €>0 the mean field
models with hamiltonian density eGn+Hn, and let WiEK(%n) denote
the state Wi= Norm'lwfiecn+ﬂn). Then by II.4(1) the sequence &

n

converges to the given extreme point ¢ for every €>0. We construct

a sequence converging to zero with the property that

€n n N

Vn —» as n—w. For this consider a metric d on K(2)). which

exists since each %n is separable as the tensor product of
E 3

separable C -algebras. Let NkeN such that d(w,Wi)s 1/k for e=1/k

and all nsz. Nk can be arranged to be an increasing sequence and

we set ¢ =1/k for N sn<N . Hence a(d,¥*")se for all nzN_. Then
n k k+1 n n 1
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H=c¢ Gn+Hn has the properties stated in the theorem.
n n

It remains to be proven that Ge? with the stated properties
exists. By Lemma V.6 it suffices to find get (K (3) ,4) such that gsO
and wo(g(w))=0 iff (wo,w)=(wo,w). Note that the pair (oo,w)
defines an extremal state ¢ of %(K(3).,4) via ¢(f)= ¢o(f(@)). and
that we are looking for an element geB(K(3),«) "exposing" this
state, in the sense that ¥eK(B(K(3).d4)) and ¥(g)=0 imply ¥=¢. Now
since B is separable, so 1is 6(K(3)), being generated by the
functions of the form f(g@)=¢(b) for b in a countable dense subset
of B on account of the Stone-Weierstraf-Theorem. Hence &(K(3),d)=>
B(K(B))ed is separable as the tensor product of separable
algebras. Our claim is thus reduced to the general proposition
that any pure state ¢ of a separable C*—algebra ¥ 1is exposed.
(Counterexamples for non-separable ¥ are easily constructed). By
{11, Theorem 3.10.7] every extremal state ¢ is characterized as
{(d)= (WeK(f) | eri Y(f)=0}, where ¢ denotes the Ileft ideal
f={feF |d(f £)=0}. As a subspace of a separable normed space the

ideal ¢ contains a dense sequence (f ) and g= -an'"ﬂfn"'1fn

n’'neN’
is an element exposing ¢.

Proof of Theorem I1.4(4):

By Proposition II.2 Yn= f(Xn) is approximately symmetric and
j(Y}= £(j(X)). Hence, by Proposition III.3, 1lim JK (dx)f(x) =
Ju(do) wa(j(Y)(a)) with the integral decomposition II.4(2). Since
the limit state is pure, p is a point measure, say at PpeK(B), and
since XE@(E,%), j(Y)(o)ed is a multiple of the identity for all o.
Hence 1lim JK (dx)f(x) = Y)Y (@)= £(3(X))(e)= £(3(X)(9)), which

means that Kn converges to the point measure at J(X)(¢).

Proof of Theorem II.4(5):

Clearly, for ¢ a maximizer SM(Hp,¢IQD) =
lim sup_ n“smpmn,q:mn) is finite, and hence s = S(0|3 9|3 )
must be finite for all sufficiently large n. By the monotonicity
property of S, s is an increasing sequence, and is hence finite
for all n. By [13] this implies that m%n extends to a normal
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state on np(ﬁn)", where np denotes the GNS-representation of %n

with respect to Wﬁﬁn as claimed.

Proof of Proposition II.5:
Let F(p)= wo{j(H)(w))—S(p,w). By convexity of S(p,°), we have
F((1-M)e+wp) 2 F(9) + A { w(R)-p(R) +S(p,p)-S(p.,w) } + o(r) -,

for all weK(®) and all r€[0,1]. If the expression in braces is
strictly positive for some ¥, then the left hand side must be
strictly larger than F(¢) for some small A, contradicting the

maximality of (mo,w). Hence, for all "] we have
p(h)-S(p,p) s ¢(R)-S(p,p). Taking the sup over Y and using Lemma
III.1, we find @(R)-S(p.p)=log pﬁ(l), and hence
-1 R
p=Norm -p .
]

Proof of Theorem II.6:
In what follows, we drop the index p and the superscript x

from I and G. Notice that E 1is compact, convex and contained
k

in x spec(x(U)). For teR", we write pt=(pt'x(1))'1pt'x € K(3), and
V=1
remark that, in an obvious vector-notation, pt(x)=VG(t), and

moreover, S(p,pt)=t-pt(x)—G(t) due to Lemma III.1.

We first prove that VG(Rk) and dom(I) have the same closure,
which is E. By [17, Corollary 26.4.1], ri(dom(I)) < VG(Rk) c
dom(I), where ri denotes the relative interior [17, p-441. By

[17, Theorem 6.3] ri(dom(I)) and dom(I) have the same closure, so

since VG(R¥) ¢ E and E is closed, VG(R*)=dom(I) ¢ E. For the

converse inclusion, suppose uﬁaEETf). There exists (17,

Theorem 13.1] teRk such that t-u > sup{t-v| vedom(I)}. Since I is

non-negative, we have for every neN

n"G(nt) = sup, {(vet —- n‘II(v)) = sup (v-t - n" 'I(v)) s tu - c,
veR vedom(1I)

for some c>0. Applying Theorem II.3 in the case #=3 and 3=C, we

have limn n"G(nt)=sup(w(t-x)=t-w(x)| PEK(B) ). Hence u¢E
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by [17, Theorem 13.1]. This completes the proof of VG(Rk)=dom(I)=E‘

The second part of Lemma III.1 implies that S(p.¢) 2 I(p(x))
(take h=t-x and vary t). Using this, and Proposition II.2,

S’== sup {j(ﬂ)(W) - S(PaW)} = sup {f(w(X)) - S(P:@)}
PEK (B) PEK ()

< sup {f(w(X)) - I(w(x))} = sup {f(u) - I(u)} =: s,
PEK (B) u€eE

Since I is +» outside dom(l) which has closure E, we may rewrite

S2 = sup {f(u)—I(u)}

uedom(I)
Oon the other hand,

S1 2 sup, {f(pt(x))—s(p,pt)} = sup, {f(VG(t))—t-VG(t)+G(t)} = 83

teR teR
I1f uEVG(Rk), then u=VG(t) for some teR", and [17, Theorem 23.5]
I(u)=t-VG(t)-G(t). Thus, S. = sup (f(u)-I(u)l uEVG(Rk)). Since

3
ri(dom(I)) < VG(Rk), sz sup{f(u)-I(u)] ueri(dom(I))}. We have
3

established that

sup {f(u)—I(u)} < s1 < sup {f(u)—l(u)} . (***)
ueri(dom(I)) uedom(I)
Due to lower semicontinuity {17, Corollary 7.5.1},
1im I((1-A)v+ru) = I(u) for every ueRk and vedom{(I). Moreover
Al

{17, Theorem 6.1], if veri(dom(I)) and ue€dom(I) then (1-2)v+ru €
ri(dom(I)) for every 0sA<l. This implies that given uedom(I) and
€>0, there exists veri(dom(I)) such that ]I(u)-I(v)|se. Since f is
continuous, it follows that the left and right hand sides of (***)
are equal. This completes the proof.

IV. A Cx-ALGEBRA OF SYMMETRIC TENSORS
In this essentially self-contained section we develop the

theory of symmetric and approximately symmetric sequences. This

provides a systematic background for the energy estimate I11.3, as
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well as the necessary information for showing the equality of the
two variational expressions in Theorem II.3. However, we also
prove some results of independent interest. The central idea is to
equip the set @ of approximately symmetric sequences with the
structure of a (semi-) normed *-algebra in two prima facie

different but equivalent ways.

The first product on ¥ ( in the case of trivial «4 = C ) is
simply the symmetrized temsor product ﬁ:%ﬂXﬂm——~ﬂ@n®%m =@n*m.

Clearly, this product is commutative. Any symmetric state ¢€Ks(@m)

defines a state on the algebra (¥,%), and the product states of 2

‘become homomorphisms, i.e. pure states on this algebra. This is

the basic observation behind Stermer‘'s Theorem {18], which says
that any symmetric state has an integral decomposition into

product states (compare Proposition IV.5).

The second product on ﬂ is the elementwise product of
sequences. It is not immediately obvious that this operation takes
§Xﬂ into ﬂ. However, the elementwise product turns out to be
asymptotically equal to the #-product. This equality will make it
possible to treat mean field hamiltonians, which are defined for

each n as some arbitrary function of a set of sequences from ﬂ.

We shall continue to use the notation introduced in sect.II.
On the set U the operations of scalar multiplication, adjoint, and
addition will simply be defined elementwise, e.g. (X+Y)n= Xn+YJ@n
for all n such that both Xn and Yn are defined. We shall set [X|=

lim Hxnﬂ. This 1limit exists since [X Il = “symn¢k(xn®1®---®1)ﬂ <

an®1®~v®1H =HX“H , i.e. the seguence ogknorms is decreasing. It
is worthwile to note that this sequence is in general strictly
decreasing {( unless Xn is defined for all n21 ), but that it never
decreases to zero for X#0. (This can be shown with the help of
Lemma IV.4 and the fact that product states on %n separate points

of symn(%n); we shall not use this observation).
The product in ¥ , which we shall denote by X,Y+— X&Y, will

be the symmetrized tensor product in the following sense:

for X= a®x1®x2®~~~xn €%n and Y= b®y1®y2®.--ym €@m let
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s - v .
X n'mY symn+m{ab®x1®xz® x“®y1®y2® ym)} €2

n+m

Clearly, this extends by linearity and norm continuity to a

bilinear map *" m:%HX% ——-e@n‘m. Moreover, this product is
» m
associative, and elements of the form 1®B“€%n=d®($®n) commute with
all others. Note that a seguence Xneﬂn is symmetric iff for all k
X = X % 1, where 1 denotes the unit element in 2 . The
n+k n n,k k k k

product #*:Yx)——Y is now defined by (X*Y)n+m:= X % Y for all

non,mm

n,m such that both Xn and Ym are defined. Since X & Y =

n+k nek,m o m
(Xn*n,klk)‘n+k,mYm: xn*n,k+m(1k*k,mYm)= xn‘n,k’mYk&m the value
(XiY)r of the sequence X#Y does not depend on the representation
r=n+m, and by a similar argument one finds that indeed X#Yey. It
is easy to verify that with these operations Y becomes a
semi-normed *-algebra with unit, and we shall call ¥ the algebra

of symmetric s-valued tensors over 3.

It is crucial for our application to relate the algebraic
properties of the elements Xn€$n to the properties of the sequence
XeY. The key to such questions is the following combinatorial
lemma, which will allow us to transfer the full "elementwise
functional calculus" from the algebras %n to the functional

calculus of Y.

IV.1 Lemma: Let X,YeY and k,melN such that xk and Ym are defined.

k-m
- & x-m .
Then for nzk+m I xvy (XAY) s — HXJ]HYJL

- ¢4 =
In particular, limnﬂm it XnYn (X Y)n ] 0.

Proof: Let n+— %fAut(%n) denote the action of the permutations

= -1 =
of (12,...n} on 2 . Then X = sym (X )= (n!) Zn“n(xu) and X Y
(nt!) Zﬂ,"' an(xk)an,(Ym). Moreover, (XﬁY)n is represented by the

sum over only those terms in the same sum, for which
m({1,...k})nu'((1,...m})= . Let wn(k,m) denote the relative
weight of thesg terms in the sum. Then || XnYn - (X*Y)n s
ll—wn(k,m)l-HXkH-quH. Thus it remains to be proven that

ll—wn(k,m)|5 km/n.
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The number of permutations b such that
n({1,...k})nmm" ({1,...m})= @ does not depend on mw'. Therefore
n!'-w (k,m) is the number of permutations n with

n

n({1,...k})n{1,...m}= @, i.e.(";'")-k!-(n—k)!. Hence

k-1
_ (n-k)!(n-m)! _ (n-m)(n-m-1)...(n-m-k+1) _ _nh-m-o
wolkem)= S Teem) - n (n=1)... (n-k+1) M =

a=0

The bound wn(k,m)z 1-km/n is obviously true for k=0 or m=0.
Therefore we may assume mzl and proceed by induction over k. Using
the induction hypothesis we find

wn(k+1,m) = w"(k,m)-(l—m/(n~k)) 2 (1-km/n)-(1-m/(n-k)} =

1 - m(k+1)/n + km(m-1)-n ‘- (n-k)”' 2 1-m(k+1)/n, as long as n<k.

%x
IV.2 Corollary: The seminorm defined on Y satisfies X &x§j = HX“Z.

* * *
Proof: XK #X| = lim (X *X) | = 1im IX "X | = 1im X |% = 1x°
n n n n n n n

Our next aim is to show that there is a natural one-to-one
correspondence between the symmetric states of 2 and the states
of Y. A state on ¥ is by definition a linear functional ¢:y—C,
such that ¢(1)=1, and ¢(X’*X)20 and |¢(X)|sIXl for all XeY. The
set of such functionals will be denoted by K(VY), and coincides
with the state space of the separated completion of ¥. It is
useful to introduce the following map &:Un%{——ay: for xe%n £(x)
a1y " 8Ly ) Note that £
is compatible with the injections ﬁnh——ﬂﬂm, and maps Lh%n onto VY,
because &(xn) =X for all Xe€Y and neN such that Xn is defined. Due
to the estimate ||&(x)|s|xll. £ has an adjoint £ , taking continuous
linear functionals on ¥ to the dual (%m)*.

will be the sequence &(x)m = symm(x®1

IV.3 Lemma: &*;x(y)———axg(zm) is an isomorphism of compact convex
*_

sets. The inverse is given by (£ 1¢)(X) = ¢(xn) for ¢€Ks(%m),

XeY, and n large enough for Xn to be defined.

~ *
Proof: Let &:KB(QJ——aU denote the map described in the lemma,
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which is well defined since for symmetric ¢ and Xey ¢(X ) =

n+k

cb(symmk(xn]) = ¢(X ). The functionals Ed» are indeed continuous on
i, since {EWXH = lim l¢(X HS lim "X I = "XI! If ¢ is positive,
then so is ﬁq&, since (&cb)(X *X) = lim ¢((X *X) ) = l1lim w(x *X ) 20

by lemma IV.1. Since for every Xel the map 3 P—*«D(X) is

w*—continuous, £ is continuous for the w —topologies and maps
K (2.) into K(¥).
8 ©

We show next that &* maps K(¥) into K (2 ). It is clear that

&*w is always a symmetric functional O? %w. Suppose that o e*y is
*

positive. Then [& ol < [o] = w(1) = (£ w)(1), which implies that
&*m 20. From the definition of £ and £ it 1is clear that for
XE U% and ¢€ Ks(%m) o(x) = (8¢) (x). Hence 6*02 is the identity
on I( (.‘D) Oon the other hand, for Xe€Y and e K(Y) we have
(Bog" m)(X) = (ﬁ*u)(xn) = ©(&(X)) = w(X). Hence i anda & are

inverses of each other.

This characterization of the symmetric states of 2 is useful
only if we can give a concrete representation of K(¥)., or,
equivalently, of the completion of the algebra (Y¥,%). The
following lemma shows that this completion is canonically
isomorphic to %(K(3),#), and that the embedding of Y into its
completion is just the map j:f/———’i%(!{(ﬂ),s!) introduced in sect.II.
We defined jn:%n——'\%(x(fﬁ),sﬂ) by jn(a®x1®---®xn)(zp)= a ﬂuw[xu), and
J(X)= limnjn(xn). The existence of this limit will be established
for general Xe€Y in Lemma IV.6. Here we only need the trivial case

Xe€Y, in which the sequence m—bjn(xn) is constant.

IV.4 Lemma: Jj:Y——8(K(3).4) 1is an isometric *-homomorphism of ¥
onto a dense subalgebra of ®(K(3),4). The pure states of
Z(K(3),4), which are of the form feB(K(3B),d)r— ¢o(f(¢)) for a
pure state ¢>€K(st) and an arbitrary state ¢ €K(3), are mapped by
& j to the product states «boeﬂ‘pe!(s(%m).

Proof: 9 contains two special subalgebras, namely an isomorphic

copy of o consisting of the sequences A“ = a@l(“@---@l(n)@ with
n
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aed, and another algebra, isomorphic to Y(C,3), consisting of the
elements 5.(1®X) with Xneﬁ!n. The algebra Y(C,3) belongs to the
center of ¥ = Y(«£,8), and since ?) = si@@, the finite linear
combinations of elements AX with Aaﬁ and XE‘_U((II 3) are norm dense
in Y(«,8). Consequently, Y(od,3) = #8Y(C,B). As an abelian unital
C*—algebra, the completion of ¥%(C,3) is isomorphic to 8(ry for
some compact space I'. Hence the completion of Y(«4,8) is isomorphic
to #488(I') = B(l,4) by Proposition IV.7.3. and Theorem IV.4.14. of
{19]. It remains to be shown that the space ' is canonically
isomorphic to the state space K(3). Thus in the remainder of this

proof we can take o =C.

For any abelian C*—algebra g, I is the set of pure states of
8, or, equivalently, the space of unital *—homomorphisms 1:6—C,
equipped with the w'—topology. Let y be a homomorphism of Y(C,3).
We claim that »@*y is then a product state of fem. For let xefﬁn and
Ydim' and x@yéBmm. Then £(xy) = B(x)%&(y), and
(8 ) (xy) =y(R(x)%&(y)) = 7y(&(x))7(£(x)). Conversely, suppose that
¢€K°(§Bw) is a product state. Then according to Lemma IV.3 we have
for all X,¥cY and k,neN sufficiently large:
(&:-?)(Xﬂ)*:’ !b(SYmn(Xk@Yn_K)Z = ¢(Xk®Yn_k) = ¢(Xk)¢(Yn‘k) =
(8 "'o)(X)(&# “'¢)(Y). Hence (& ~¢) is a product state of Y(C,3).
Hence the extreme points of K(Y) correspond exactly to the product
states ﬂ , and since the map ¢ —— ﬂ is a homeomorphism for the
w —topologies, the completion of ¥Y(C, %) is isomorphic to %B(K(3)),

with K(2) taken in this topology.

Putting together these two lemmas we obtain the following
generalization of Stermer's Theorem ([18]. Our proof is an
expansion of the proof given in [6] foruthe case of separable «
using the theory of liftings [9].
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IV.5 Proposition: Any state %KB(%GD) has a w‘—integral
decomposition ¢ = [fu(do) l{)a®ﬂ0, where py is a probability measure
on K(3), «poel{(d) for all o€K(®), and o»——»q)o(a) is measurable for
all aed. Moreover, for each ae€d, vpa(a) is uniquely determined by ¢
almost everywhere with respect to p. If o is separable, then Py is

unigquely determined by ¢ a.e..

Proof: By the previous two lemmas we have to show that any state ¥
on B(K(®),4) has an integral decomposition Y(f)=fu(do) fpo(f(o)),
for p and Or—> v, as spgcified above. For any aed with az0,
consider the functional f — ¥Y(af) on scalar functions
feB(K(B),C). Clearly, this is positive and hence of the form
Y(af) = fua(do) f(oc) for a unigque probability measure Hg- Since
Y(af) < Jlall Y(1f) for all positive f, we have uas lall Hy- Hence oy

is absolutely continuous with respect to Mo and has a
Radon-Nikodym derivative R(a)eL1 (K(3B) ,ul) ., which 1is essentially
bounded by Jall. Hence R(a)ELm, and ar———-»R(a)ELw(K(fB) ,pl) extends

to a positive linear map of norm <1. Note that R{(a) is not a
single function, but an equivalence class with respect to a.e.
equality. However, there exists a '‘l1ifting’
p:Lw(K(SB),pl)————»fm(K(fB),ul), which associates in a 1linear and
positive manner a single bounded measurable function to each class
{9]. Thus for each o0€K(3) the map ar—— R(a) +—— P(R(a))
(pR(a)){o) is linear and positive, an takes led to 1€R. That is to
say there 1is a state npcel((gl) with zpo(a) = (pR(a)) (o). For
discussing the uniqueness statements, let [ and v, be families of
states satisfying the conclusion of the proposition. Then since
¢, (a) and y_(a) both represent the Radon-Nikodym-derivative R(a)
they must be equal a.e.. If & is separable and (a )

n' neN
sequence, let Nn=(a|wa(an)¢wo(an)). This is a null set, hence

is a dense

{alo,#w )c UnNn is also a null set.

As a simple example showing that separability is essential

for the final uniqueness statement, consider 3 two dimensional, so

that K(3)= [0,1], and #=L”([0,1]). Let ¢ denote the state on

G(K(B) ,4) = 8([0,1])®Lm([0.1]) given by ¢(feg)= [do f(o)g(o}) for

fe%([0,1]) and gELm([O,I]). Thus the function or———awOEK(d) in
25

Proposition IV.5 must satisfy qoa(g)= g(o) almost everywhere, and
hence two such functions, say cpj' and w?, have to coincide a.e. for
every g. However, the exceptional null-set may depend on g, and we
shall construct tpf and :p? such that w;;hp; for all o. By
[9, Theorem VIII.6] we can find a lifting
p*.1®(10,1]) — £2([0,1]) such that p'(f)= f for all functions f,
which are continuous from the right. Set ep:(g)= (p+(g))(a). Then
if xgeLm([o,l]) denotes the characteristic function of [0,0}, we
have tp;(xa)=0. If p is a 1lifting fixing left-continuous
functions, and ¢ 1is defined similarly, then for gll g po(xo)=1,

+ -
and hence lpa#«pa.

The following result states that 27 modulo the equivalence
relation limnﬂxn—Y“|l=0 for X,Yeﬂ is exactly the completion of Y.

IV.6 Lemma: Let Xey. Then the 1limit [X| :=limn||)(n|| and the norm
limit J(X) := lim“ j“(Xn) in B{K(3) .4) exist. The map
j:ﬂ———v B(K(3),4) thus defined maps ﬂ isometrically onto B(K(3),4).

Proof: Let e>0. Then according to Definition II.1, there is some
exactly symmetric YeY, and o, such that for nzn, Hxn-YnII <e. Thus
for n,mzn : | IIX“ﬂ—IIxmll | < 2 +| ||Yn]|—||Ym|| | < 3e for
sufficiently large n,. since the seqguence ||Yn[| is convergent.
Similarly, IIjn(Xn)—jm(xn)n s 2¢ +Hjn(Yn)-jm(Ym)ll =2€, since
nF— jn(Yn) is constant for nzno.

By Lemma 1IV.4 Jj|Y 1is an isometry, and since [J(X)l=
limnlljn(xn)lls limnllan: IIXll, this property carries over to ?l] To
show that j is onto, let E€B(K(3),4). Then by Lemma IV.4 there is
a segquence (x"‘)“ewey such that j(X‘x)——»E as o—®., We may assume

o+ 1

that l|Xa—X IIs 2'“, and pick some increasing sequence oa—m{o)

such that [X°-x**'Js 2°*'' for nem(x). Now set Y = x‘: for
n n

m{x)sn<m(a+1). Then for nzm(x), say m(B)sn<m(B+1) with Bza,

1y -x%= 1xP-x®s 7P 27 272, Hence vel, ana |ly-x"ls 22

n n n n V=Q

This implies [3(Y)-Els N3(Y)-3(XX)I+13(x*)-Els const 27%, 1i.e.
j(Y)=E.
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We are now ready to prove the convergence of the mean energy

of the models under consideration:

Proof of proposition III.3:
First let XeY be strictly symmetric, i.e. X“= symn(xk) for some
xueﬂk. Then ¢U(a)(xu(a))= ¢u(a)(symu(u)(xk))= ¢D(u)(Xk) — O(X ).
The 1limit is egual to the right hand side of II1.3 due to
Proposition IV.5 and the definition of j. Now let Xeﬁ, and Yey
with HXn~YnHSe for nzm. For any cluster point E of
(8, () Fp(aya) | xAY lE-fu(do)p (3(X) (o)) ] = 1E-1im _, & (Y )] +
|fu(da)wa(j(Y-x)(o))| < € + ||J(¥Y-X)|| s 2¢. Since ¢ is arbitrary by
definition of ¥, the proof is complete.

]

V. Discussion

In this paper we have focussed only on those features of mean
field systems which are thermodynamically relevant, 1i.e. have an
influence on the free energy in the thermodynamic limit. If two
hamiltonian densities H and ﬁn satisfy HHn—ﬁJl——ﬁ 0, then they
are thermodynamically equivalent. It is clear that 1in each
equivalence class the convergence of the states Norm'%ﬁnn to a
l1imit state can be arbitrarily slow. Hence, the asymptotics of the
fluctuations of expectation values around the limiting value

cannot be discussed at the thermodynamic level ([8].

Another gquestion, which cannot be treated at the purely
thermodynamic level is the convergence of effective Hamiltonlans.
Recall that we defined the effective hamiltonian A in Proposition
I1.5 as a derivative of the energy density @O(j(H)(m)) with
respect to ¢. Now for suitable sequences Hn we can exXpress
A= h(¢u,¢) as liann(Hn), where the (¢D,w)—dependent operator
Jn:%n——~ 3 is given by

@®
J (a®x ®:-:8x ) = Y

by (X m0(x)) e (a) T

Lo? (%)

21

These maps Jn are compatible with symmetrization and the
canonical injections %“u——» @m. Hence, for a strictly symmetric
sequence HeY, Jn(Hn) is eventually constant, and in fact equal to
f. On the other hand, convergence of Jn(Hn) may fail for other,
thermodynamically equivalent hamiltonians. To see this, let Gn=
€ 18% @ -+@X for some sequence ¢ going to =zero and some
hermitian xneﬁ with Hxnn=1. Then HGnn—aO, and Jn(Gn)z
en nw(xn)"—i(xn—w(xn)). Now if we choose xn 1e] that w(xn)
converges rapidly to 1, without x converging to 1€3, we can
construct GeY such that HJn(Gn)H diverges.

On the other hand, the condition liann(Hn)=& for all (wo,w)
may be of physical interest. For example, if #=C, one computes
that limnﬂw(A [an,B] C - A én(B) C)=0 for all stricly local
A,B,CeUn%“, where Gn(B) denotes the commutator of B with
Jn(Hn)®1n_1 4 ceed 1n_1®Jn(Hn). In other words, if Jn(Hn) ——f,
then the generators of the time evolution in the system of size n
converge to a derivation of %m, which corresponds to a
one-particle evolution generated by A. Hence in this case A can be
given a dynamical meaning. This has been exploited in (7,15] to
characterize the equilibrium states of mean field systems by an

energy-entropy inequality.

We would 1like to point out a characteristic difference
between the scope of the above results in the quantum and the
classical cases. Consider the two functions
Gn(t)= n! log w:(3"+txn)(1), and Cn(t)= n 'log w?ﬂn(etx") for
teR. In the classical case, i.e. when o and 3 are abelian, wh(1)=
u(eh) holds for all states w and all hermitian h, and hence Cn=Gn.

Thus, in the classical case, the function Gn (respectively the

1imit) not only contains all the thermodynamics but also - via

derivatives with respect to t - information about expectation

values of X with respect to the state ¢ = Norm™ 1oRH" Here,
n n

convergence of Gn(t) for all t 1is an asymptotic property of the
probability measures Kn on R, given by fKn(dx)f[x)= ¢n(f(x“)) for
bounded continuous f:R—MR. In fact, 1f G(t):= 1lim G (t) is
differentiable, then the measures Kn converge to the po;ntnmeasure

at G'(0) exponentially fast in the sense made precise by the Large
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Deviation Principle {10, Theorem 4]. In the non-commutative case,
Gn still encodes all thermodynamics, but no longer contains direct
information about expectation values. This is contained in Cn,
which acts as the cumulant generating function of the measures Kn.
By Theorem II.4(4) the measures Kn still converge to point
measures in any pure phase of the system, but the proof [10] of
the Large Deviation Principle for differentiable G carries over to
the non-commutative case only if the reference states poex(d) and
pEK(B) are traces and X is an approximately symmetric sequence
such that [Hn,xn]=0 for all n. However, in general, the
Golden—-Thompson inequality Gn(t) < C“(t) remains a strict
inequality in the 1imit, even though ( for «#=C ) limnH[Hn,Xn]H

0.
It would be interesting to find asymptotic properties of p, Hn,
and Xn that would allow the control of the limit of Cn(t), and the
proof of the Large Deviation Principle for the measures Kn.
However, such properties will again depend on Hn more sensitively

than the thermodynamic properties.

The models we have considered here should perhaps more
appropriately be called homogeneous mean field models. Indeed, no
local features enter the interaction hamiltonian at all. One can
also consider "heterogeneous mean field models" (e.g. the BCS
model treated in [4]), where the interaction between particles may
depend on their location in some compact space X, and in which the
global scaling behaviour of the interaction is of the mean field
nature. For each particle number n the locations of the particles
are held fixed, and one is interested in the limit in which their
density converges to some given measure on X. Extension of our
results to this class of models is presently under consideration
[16].

APPENDIX
In this appendix we collect the results on the calculus of
*
C -functions referred to in sections II and IV. These functions

are best seen as a many-variable generalization of the ordinary

*
functional calculus in C -algebras. There are two natural ways to
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define "the same function" in different algebras. The first is
abstract, and requires only some transformation behaviour with
respect to C*~morphisms. The second approach starts directly from
the algebraic structure and the evaluation of "the same
polynomial" in different algebras, and extends to all functions,
which can be approximated by polynomials in a sufficiently strong
sense. We shall start from the abstract definition and show the

equivalence to the second approach in Lemma A.2.

A.1 Definition: Let I be a compact convex subset of Rm, the set of
real valued sequences with the product topology. Then a C:function
on I' is a family of functions fd' for every unital C*-algebra o,
with
fg‘:{(Ai,Aa,...)esiw A=B) . Voex () (O1R,) 9(A,) oo )T } —_—d
such that for any unital *-homomorphism ¢:4 — 3 into a unital
C‘—algebra B,

. f$(¢(A1),®(A2)....)=¢(fd(A1,A2,...)).
A C -function is called hermitian, if the values of all fd are
hermitian for all arguments in its domain. For notational
convenience we shall from now on drop the subscripts d, and will

-
sometimes abbreviate the sequence (Ai'Az"") of arguments by A.

We remark that this definition is strictly speaking not
legitimate, since it contains a quantifier over the proper class
of C‘-algebras. However, it always suffices to define fd on the
separable C*—subalgebra generated by its countably many arguments.
Since every separable C*—algebra can be faithfully represented on
a separable Hilbert space, it suffices to define fd on the set of

separable C‘—algebras on a fixed Hilbert space.

The C*—functions depending only on a single variable are just
the continuous real valued functions on some interval, evaluated
in the functional calculus. The interval on which f is defined in
the single variable case becomes the set I' in the many-variable
case. Often one can choose I' to be an infinite product of compact

intervals, which amounts to imposing a constraint on the spectrum
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of each A, separately. The compoei:ion of C*—functions, where it
is defined, is again a [o] —function Hence f(X,Y,2)=
exp(}i[X,YH)/cosh(Z) is a legitimate ¢’ -function for any choice
of I'cR®. As this example shows, a c —function of several arguments

is not determined by its values on scalars Av=lvl.

A.2 Lemma: Let f be a C*-function on I'CR“) Then for any €>0 there

exists a polynomial g depending only on finitely many of the

non-commuting variables A A, . such that ||f(A) g(A)II < E.

Moreover, there is a constant c such that Ilf(A)IISC, and
Ve>036>03u€N(Vusu IIAV—AL',N < 8) =*=b Ilf(A) ~£(R")l < €

These statements are valid for any C -algebra 4, any admissible

sequences of arguments A and A' and the choices of g, ¢, 5, and ¢

can be made independently of 4, A and R

Proof: Let ¥ denote the free unital *-algebra over countably many
hermitian symbols Xi,xz,--', i.e. the algebra of polynomials in

xi,x ,+++ with complex coefficients. Then any choice of a sequence

*
K= (A )ueN of hermitian elements in some C-algebra « induces a
unique unital *- homomorphism d>-> :§ —et such that dH(X ) A for
all veN. Define on ¥ the seminorm llgli := sup{ IIdH(g)lI ), where the

supremum 1s over all sequences A in separable C —algebras # such
that qo(K):= (qo(A) cp(A },--)el for all geK(d). This is clearly a
C*—seminorm, and we shall denote by F the separated completion of
¥ with respect to this seminorm. By definition of the norm on ¥,
each ¢ is continuous, and hence extends to a unique

A -
*_homomorphism ¢K s Fmred

We prove next that §= (X X L, )Ef%m is an admissible
sequence of arguments for f, 1.e. for any ¢€K(ff) we have (b(f(’)él’.
For any continuous linear functional E on R” , i.e. any functional
of the form E(x)}= Zn':IEnxn for some finite m, let M+(E)= sup E(I)
and M_(§)= inf E(I'). Since [ is compact and convex xell 1s
equivalent to X€E [M_‘(&),M+(§)] for all E. For any continuocus £,
1ot xicF demote the element X°= T 7 EX - (1/2) (M (E)HM_(E)):2:
Then, by definition of (DK and the norm in ¥:
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1= sup(lp(ez(x5)) )= supClo(L T E A ) ~ (1/2) (M (B} (E)D)

where the supremum is over all admissible sequences Zed” and all
states ¢eK(d). Therefore q)(A)EI‘, so that E(«l(l”))€ [M_(E),M+(€)].
and |IXE! < (1/2)(M (E)-M_(E)). Hence for any ¢€ K(ff)

EN’(X))— Zn E ®(X )= ‘D(XE) + (1/72) (M_(E)+M_ (E)) s M_(E)

The lower bound E(di(X)]zM‘(E) follows similarly, so that ¢(X)€F

Now let f be a C -function. Set f:=f(X)eF. Then since 7 is
the completion of ¥§, we can find ge€¥ (ieN) such that nf—gllse. Thus
Ilf(A)—g(A)H = H(tH(f) <1H(g)|| < Hf —gllse uniformly in A. Boundedness
and uniform continuity are obvious for the polynomials g and

follow for f by straightforward estimates.

The final result of this section is the complete
transformation of the elementwise functional calculus of
approximatively symmetric sequences into the functional calculus
of B(K(3),4) stated in section II:

Proof of Proposition II.2:
consider first the case f(x’,x2)= X‘IX2 and fix E‘,£2>O. Let
Zl,Zze‘U such that nx‘n—z‘nus €, for i=1,2 and nzm . and set Z=

Z"\'rz2 Then by Lemma IV.1, there is some mzeﬂ, such that

IIZ Z —Z IIS €, for nzm,. Hence for nzmax(m_ ,m ) n}\{1 XZ -Z \\s
ci(ux ||+||Z ||)+62, which can be made arbitrarily small by choice
of €, and €,- Thus by definition Y x! X is approximately
symmetric, and Nj (Y, ) - j (X )3 (X )HS ||Yn—zn||+
IU ((2 az® b, )-3, (z' )j (Z )N+ ||J (Z )J (Z ) -3, (1"’-1 '3, (Xz e

The first and last term on the right hand side are estimated as
before, and the middle term vanishes, since for 2z€Y jn(Zn) J(Z)
and j is a homomorphism for the %«-product. Hence the left hand

side becomes small for sufficiently large n, and we find J(Y)=

JxH3(x%).

r

The case of a monomial f(Xl.XZ,---Xr)= x‘xz---x now follows

by induction over r, and the case of general polynomials by t&
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*
linear combinations. Let f be a C -function and €>0. Then by

Lemma A.2 we can find a polynomial g such that Hf(X)—g(K)Mse for

all admissible arguments K. Consider the sequence Zn=
g(Xln.in,---). By the above arguments zej, so that we can find
2'€ey and meN such that Hzn—z'nﬂse for n2m. Hence HYn—Z'nH <
nf(i'n)—g(ﬁn)u + lz-z' | s 2 for nzm. Thus Y€y, and
ERCARIFICI IR FRC AR FRCICSEEIEEIE IR I
g ((F(X))-£((j(X))]l. The first and last term on the right are < ¢

because g approximates f, and the middle term goes to zero since

the proposition is valid for polynomials.
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