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We consider mean field models for n identical systems

interacting with each other, and with another additional system.

Each hamiltonian H is taken to be symmetric with respect to

permutations of the identical systems, and for large n and

arbitrary k, (n+k)1H
k

is approximately equal to nH, taken as

an operator of the larger system, and resymmetrized. We give a

complete theory of the equilibrium statistical mechanics of such

systems. The validity of the Gibbs Variational Principle is

established; firstly, at the level of the states of the infinite

system, then secondly at the level of the states of the single

system. A generalized gap-equation is obtained at this second

level. In some cases, the variational problem reduces further;

this leads to a non—commutative version of the large deviation

results of Cramer—Varadhan for dld random variables.

We define a class of statistical mechanical models of mean

field type, and obtain a complete theory for them. The models are

specified by a Calgebra for the single system, and a

hamiltonian H for the aggregate of n single systems (described by

the n-fold tensor product of ) interacting with each other, and
*

with a second system specified by a C -algebra s. The precise

nature of the allowed hamiltonians is described in Section II. The

essential features are that the hamiltonian density H is

invariant with respect to all permutations of the n single

systems, and is asymptotically symmetric in the sense that H1 is

given, up to a small correction, by resymmetrizing H considered

as element of the. (n+1)—fold tensor product.

For our general mean field model, we prove the validity of

the Gibbs Variational Principle at two levels. Firstly, the

thermodynamic limit of the free energy density is obtained by

minimizing the free energy density functional over the set of

(symmetric) states of the (infinite> system. Secondly, the latter

variational problem, is reduced to that for a free energy density

functional on the states of the single system. At this level, the

minimizing states are solutions of a gap—equation. Since all

limiting states of the model are minimizers, we obtain some

detailed information about them as well.

In special cases, the reduction proceeds one step further,

and a finite dimensional variational problem is obtained. This

corresponds to a “level—i” large deviation result in the

terminology of [5], and extends Varadhan’s results [21], on the

multidimensional Cramer Theorem, to the non—commutative domain.

All three levels were obtained in [14] for the simplest possible

case.

From a technical point of view, this paper extends the

results of [14], particularly those involved in the estimates of

the energy density, thus allowing not only for the inclusion of

the additional algebra , but more importantly, for a large class
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of hamiltonians.

The basic definitions and the main results are expounded in

section II. Section III contains their proofs. The energy

estimates are based on the contents of section IV, which is

essentially selfcontained and describes a general theory of what
*

we call the C —algebra of symmetric tensors. In the concluding

section V, we discuss possible extensions, and problems. Some
*

results on the many—variable functional calculus in C —algebras
*

(C -functions), are given in an Appendix.

II. MAIN DEFINITIoNs AND STATErNT OF MAIN REsuLTs

*

Throughout the paper and will be unital C -algebras. We

shall be concerned with sequences of models with observable

algebras = ®( ® ), where ® denotes the minimal, or
V-I (V)

injective, C -tensor product [19] and is an isomorphic copy
*

of . The C -inductive limit of the sequence 0 with the natural

injections will be denoted by 0. Whenever convenient, 0 will be

considered as a subalgebra of 0.. The symmetrization operator

sym :0 —i 0 is the continuous linear extension of

sym(aax®.. .®x) = (l/n!) aex®. . .sx, where the sum is over

all permutations it of (1,.. .n). The same definitions apply when

C; we then write 0 and 0 for 0 and 0 respectively.
CD n CD

*

For any C -algebra , K() will denote its state space. A

state pEK(0) (resp. K(0)) is called if for all ndN,

and all XE0 (resp. 0 ), •(X) =(sym(X)) The convex set of

symmetric states of will be denoted by K(0), For Cp€K(0), the

associated infinite product state on is written and is

symmetric.

The models we consider, are specified by a sequence of

hamiltonians, given abstractly as follows. Firstly, the

non—interacting part is determined via a sequence

{wzp5(®P()} of product states of 0, where pEK(sS), and

E K(0) are arbitrary sp4g states (i.e. a state such

that the associated GNS—vector is separating for the von Neumann

algebra generated by the GNS—representation). The interact inn is

introduced by perturbing each u in the sense of Araki [1] with a

relative hamiltonian n.H€0. The perturbed (unnormalized)

positive linear functional of 0 will be written This

framework provides a generalization of that special case where the

state w is given by w()=Tr(D) with a (non-singular) density D

with respect to a trace Tr; there, the state has density

exp(log D + h). The number log w’(l) can be interpreted as a

relative negative free energy [1,14]. The sequences of relative

hamiltonian densities we allow are assumed to be approximately

symmetric in the sense of the following definition:

11.1 Definition: A yic in is a sequence (X),

defined for n larger than some initial value n0, such that X€0,

and for all kO and nn: Xk = y() The set of symmetric

sequences will be denoted by J, or 7,i(s4,0).

A sequence (XEO) is called approximately if for

all nan, X = sym(X) and VEO Vnm IjX—Yj( €. The

set of approximately symmetric sequences will be denoted by ], or

Thus, a mean field model is specified by the algebras , and 0,

with respective separating states p and p. and by an

approximately symmetric sequence H=(H) , of relative

*
0

hamiltonian densities H =H E 0
0 0 0

The simplest examples of such models are the usual quadratic

mean field models with hamiltonians of the form

nH= E’h + (n—l)1.V

where h is a copy of the single particle hamiltonian hEO, acting

in the i tensor factor, and V, is a two-particle interaction

VEL0s, acting in the i’ and
jth

factors. Note that the first term

can be included in the second by setting V’= V+(hsl+1®h)/2=

H2. Clearly, the above sequence H is strictly symmetric, and

defined for all n2. It is also the most general sequence of this
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description. The generalization of the quadratic mean field

scaled to infinity with the number of —particles. This is

necessary for H° to contribute non—trivially to the thermodynamic

functions of the model.

1 -i n
Consider now the sequence 11= n •11h1 j of hamiltonian

densities. This can be written as H =Y +R , where ‘1 is symmetric

with Y2= hh and )RN n111h112. Thus H is approximately

symmetric. More generally, we can take H= t(n1’h ) , where

f is any continuous function on the spectrum of h. These are

exactly the hamiltonian densities considered in [14). If f is a

polynomial, then the sequence YEIJ in Definition 11.1 can be taken

independently of . However, for general f we need the full

freedom of the definition.

A further generalization covered by the above definition of

mean field systems is to allow the function f in the previous

paragraph to depend on several variables, which do not have to

commute, and may themselves be arbitrary approximately symmetric

sequences. Thus we can have H= f(X1 ,X2,...) E2, with X’E!,I for

some function f (see Proposition 11.2 below). However, in order to

make this definition of H precise we have to clarify what we mean

by “the same function f” in the different C-algebras. This is

done in the Appendix by introducing the notion of C -functions.
*

Here we only remark that the set of C —functions is closed under

composition, and includes all polynomials of (finitely many)

non—commuting variables, as well as the continuous functions of a

single variable.

elementwise with some C -function (see the Appendix), then we have

the following convenient formula for j(Y) in terms of the
L)

functions j(X ).

11.2 Proposition: Let f be a C -function on some compact convex

set rcU?, and let X’’E7,I be an approximately symmetric sequence for

each I)EIN such that y = f(X1 ,X2 ,...) E is defined for nn
n n n n 0

Then Y=(Y) is approximately symmetric and

The treatment of the entropy parallels that of [14]; most of

the technical details needed in our more general setting are found
*

in [13]. For states ti and q of a unital C -algebra, S(t,qi) will

denote the relative entropy of tp with respect to w (in the

sign—convention of [2]). The non—negative real number S(w,) is

defined via the GNS representation associated with 0, and is

finite only if extends to a normal state of the generated von

systems to arbitrary N-particle interactions is straightforward, A crucial rOle in the theory is played by the algebra

and leads to symmetric sequences H defined for nN. As in the 1(K(),) of continuous functions on the state space of ¶ (with
*

quadratic case such a model is completely specified by H the w -topology) with values in (with the norm topology). This
N N’

since the higher terms of a symmetric sequence are given by an is developed in section IV. To every x€ we associate a function

explicit formula. Just as the requirement of symmetry fixes the j(x) E (K(),) such that for every qi€X(), j(aøb1e...ab)(q) =

scaling of the N-particle interaction—term in H, it fixes the n
a ft q(b). We show in Lemma IV.6 that for X(X) € , the limit

scaling of the interaction between • and . With 4 non—trivial
‘I

j(X) = lim j (X ) exists uniformly and J maps V onto (K(),s).
there are also symmetric sequences defined for nO, which are of n n n

the form H°= aøl®l€. The corresponding hamiltonian has a
In fact, we equip 1) with the structure of a seminormed *_algebra,

and show that j is a C -isomorphism. As an application, we obtain
factor n, so the non-interacting i-part of the hamiltonian is

a proof of the non—commutative de Finetti—Theorem of Størmer [18]

and also its extension [6] (without separability assumptions on

the algebra ). Returning to our main concern, the statistical

mechanics of mean field models, we can show that for a symmetric

state • of 0 , p(X ) converges as n —‘ a, for each X=(X) € ; and
a

we obtain a formula for this limit in terms of the map j, and the

decomposition of • into extremal symmetric states.

V
If Y is obtained by operating on some other sequences X

*

j(Y) = f(j(X1),j(X2),...)
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Neumann algebra; in this case, S(u,q) is given by the definition

of [2] applied to the normal state extensions. S(,’) is convex
*

and lower w —semicontinuous (the lower semicontinuity in this

general context follows readily from [13, Theorem 9]). In the

particular case where both states are given by non—singular

densities 0 with respect to a trace Tr, (
= sup (j(H) () ) — S(p,) , (**)

S(w ) = Tr(D(lo D — log Do)) qeK() I )
q)EK(s)

The mean relative for P€K(’) with respect to wEK(’)

is defined to be

SM(w ) = lim sup n 1S(w( •I ) Remark that the separating state p of does not appear in

and is affine in q When the reference state is a symmetric the functionals to be maximized and also that the c’L—system does

product—state and is symmetric then by Proposition III 4 not contribute at all to the entropic part of these tunctionals

the upper limit is in fact a proper limit
The only influence of the i-system enters via the limiting

interaction energy density

The connection between WHn(l) and thermodynamics is the

following Suppose that the separating states pEK()and pEK() The basic information on the nature of the equilibrium states

determining w are given by densities exp(—13)/Trexp(—I3.0) is collected in the following result

respectively exp(-13)/Trexp(-13), with 13>0. The non-interacting

system then has °= ®[e11+l®l2+..+i®] as its

hamiltonian. The corresponding free energy density F°(13) is then

simply maximizes (*)

(2) The subset M c K(s) of states P maximising (*) is

convex and compact, and the subset c K(s4)xK() of pairs (q,q)

maximising (**) is non—empty and compact. The extreme points of M,,

are the states pøfl with (q,4)EM and q€K(s) pure. Every €M

has a w -integral decomposition
= $ p(da) H, where p is a

Baire probability measure on K(), 40EK(A) for all aEK(), G—+

q(a) is measurable for all aE4, and (q,,o)EM a.e.(p).

(3) If s and are separable, then for any extreme

point • of M there exists an approximately symmetric sequence

(H ) such that
1 flfl

lim U H—HI! = 0

I -inH *

and the sequence 1Norm w nj is w —convergent to P

11.3 Theorem : For every mean field model,

lim n1 log un(l) = sup [lim ((H )
— SM(flp.ItD

3EK ()
( *)

11.4 Theorem : For every mean field model one has:

(1) Every w cluster point of the sequence (Norm1wn)

= (-n13) log Tr exp(-13°)

= (-n13)1log Trexp(—13F) - ff1log Trexp(-131t)

and its thermodynamic limit is —131log Trexp(-13F). The free

energy density corresponding to the hamiltonian i.e.

F(13)(—n13)1log Tr exp(—13(°+V)), is then given by

— F(fl)) = n1log
_PV(1)

The following result gives the existence of the thermodynamic

limit of the relative free energy density of any mean field model,

and establishes the validity of the Gibbs Variational Principle.

Moreover, and as is to be expected due to the mean field nature of

the models and the non—commutative de Finetti-Theorem, the

variational problem contracts to one on the direct product of the

state space of and the ( single particle ) state space of
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(4) Let X€V(t,), and suppose that the sequence (Norm’n]

converges to an extreme point of M. Then the sequence (1K) of

probability measures on R, defined by ilK (dx)f(x)=
-i H *

(Norm w n)(f(X)) for f€(IR), is w —convergent to a point

(5) If is a maximizer of (*), then the restriction of 4’ to

3 is normal with respect to the restriction of w to for all

n.

Note that the integral decomposition given in (2) is not a

decomposition into pure phases, which would be an integral of the

form 4’ = fv(d(,q)) qsfl with a probability measure v on

K(s)xK(), supported by the set of (q,q)EM with extremal in

K().For non—separable the set of extreme points of K() is not

measurable in K() and hence is in general not measurable. The

“support” of the measure v on K()xK() thus has to be understood

in the weaker sense customary in non—metrizable Choquet—theory.

The integral decomposition given in the theorem avoids this

difficulty and has the additional virtue of being unique in the

sense specified in Proposition IV.5.

One may wonder whether the local normality property (5) holds

also for the whole algebras rather than the tensor factors
.

That this is not the case is seen in the following example. Let
2=() be the algebra of bounded operators on =L ([O,l],dx) and

let =U be trivial. Let p0 be any faithful normal state on s, and

let HEHES4 be the multiplication operator with x in . Then by

Theorem 11.4(1) any cluster point q0€K(s) of the sequence

(Norm1.p) satisfies q0(H)= sup spec(H)= 1. Hence q must be

purely singular on

Under a differentiability condition, the maximizers of (**),

i.e. the states in satisfy a generalized gap—equation [7,14]

with a state-dependent effective hamiltonian :

11.5 Proposition: Let (q0,q)€M, and suppose that 3(H) is

differentiable at (q0,q) in the sense that there is some 1€ such

that for all pEK():

= q(j(H)(q)) + A(ip(ft)—cp(1.)) + 0(A)

+ -1_
as A —* 0 . Then q = (p (1)) p

In the case studied in [14], the variational problem (**)

contracts further to one on the real line. This was seen to

provide an extension of Varadhan’s asymptotic formula [20,21],

based on the large deviation results of Cramer for the

distribution of sums of independent, identically distributed

random variables. We obtain a further generalization of this,

which at the same time reduces the computation of the suprema of

Theorem 11.3 in a certain subclass of mean field models to a

variational problem on &‘. The subclass consists of those models

where 4 is trivial, and the hamiltonian density is given by
(1) (2) (k) *

H=f(X ,X ,“ ,K ) , for some C -function f, and k symmetric

sequences XE4,I, all beginning at n=l.

Consider k self—adjoint elements x’,x2’,’’ ,x in . For

let tx = t x1>+t x, and define G”:&’ __

k
2 k p

I:ff —f llu(+) by

G(t) = log
ptZC(1)

, t E

I*(u) = sup {tu — G(t)) , u E
plc

P tE&’

where p is any separating state of . G, is then convex and

differentiable [3] with

t’x (j) t’x(VG)(t) = p (x )/p (1) , ljk

Moreover, Gx(O)=O, and the generalized Peierls-Bogoljubov and

Golden-Thompson inequalities of [3] imply p(tx) G(t)

log p(eto). It follows that
I

is non—negative, convex, and lower

semicontinuous, with I(p(x ),p(x(2)),...,p(xU))]=O. Using [3]

one can see that G” (and hence Ix, [17, Theorem 26.5]) is strictly

convex if and only if the set (1,x’, ..‘,x) is linearly

independent. We remind the reader that the effective domain,

measure
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sup - S(P)} = sup ff(u) - Ix(U)}

q3EK() uEE

= sup f((VG)(t) - t’{9G)(t) + G(t)}

in the case where the

Theorem 11.6 are both

a scalar function on a

=
,•••

Consider the maps LJ,T, and ‘ defined by:
(1) (k)

i—’ U(q)=(q,(x ),‘.•, q(x )) € E

k3t (t)=(pt X(1)) ipt X
K()

E3u i—4 T(u)=Vf(u) €

If q€K() is a maximizer for j(H)()—S(p,), then U() is a

maximizer for f(’)-I(’). Given a maximizer t€I&, ‘(t) maximizes

J(H)(’)-S(p,). Finally, an argument similar to that of the proof

of Proposition 11.5 shows that given a maximizer u€E, T(u)

maximizes t —4 f((VG)(t)) — t.(VG)(t) + G(t). This sets up

bijections between the sets of maximizers of the three expressions

of Theorem 11.6. The gap—equation becomes
(1) (k)

= Norm1p(C ),...,q(x ))•x

or, alternatively,

t = T’U(t) = Vf(VGx(t))

11

The bijective correspondence between the sets of maximizers

of the three variational problems of Theorem 11.6 is also

guaranteed if dom(I)=VG(). This last condition does not follow

from the differentiability of f. If G is strictly convex, then

VG”(JR’)=int(dom(I)) [17, Theorem 26.5] is open. On the other

hand, if is finite—dimensional, then S(p, ) is bounded above,

and one can show that dom(I”)=E, which is closed.
p

III, PROOF OF MAIN RESULTS

In this section we give the proofs of all results of the

previous section except 11.2. This is done in the appendix. The

basic idea of the proofs is exactly the same as in the paper [14].

The new ingredients are the inclusion of a non—trivial algebra ,

and a much larger class of admissible hamiltonians; this becomes

possible due to the theory presented in sect.IV.

The central idea is

variational characterization
*

a general C -algebra due to
h

saying that hi—’ log w (1)

*S(,q), and conversely.

This lemma is now applied to the algebra 0, with the

reference state w=w=p®(v®lp(v)) the relative Hamiltonian h=nH,

and a symmetric state P= of . After dividing the inequality by

n , we pass to the limit. Thus one has to control two kinds of

terms, namely the interaction energy density P(H), and the

relative entropy density nS(w,P). We shall have to require of

12

dom(I’) of
I

is the convex set where I is finite
p p p

11.6 Theorem: Let x, lk, be self-adjoint elements in ; then

the closure of dom(IX) is E
=

€K(0)). Let the symmetric sequences in V(cC,), lvk, be

given by X1 x E, and let f be any C —function on E. Set

> €

Then, with H=(H) € one has

Let us illustrate these results

assumptions of Proposition 11.5 and

satisfied, i.e. f is differentiable as

neighbourhood of E. Then

to use the following important

of the relative entropy of states in

Petz [12,13]. It can be stated by

is the “Legendre” transform of

111.1 Lemma (Petz): Let w be a separating state of a unital
* *

C -algebra s, h=h E, and ip any state of . Then

log w1’(l) q(h) — S(,cp)

- h -ih
and equality holds it and only if cp = & (1) ‘-- Moreover,

h
S(w,p) = sup {q(h) — log w (1))

h*=h€s



urn inf S (11 , ) S (fl ,(P)cxEA M p cc M p

the sequence ((P ) only that it converges *_weakly to a limiting

state on Since the state space of is w*_compact this 4 Proposition (1) Let ((P) be a sequence of permutation

condition can always be met by passing to a subnet ( since we are symmetric states of converging along a subnet c to lim (P

not assuming s4 and to be separable, subsequences will not do). E K () . Then

We will use the following notations. Let v be a subnet of Th. i.e. lim inf n’ S(fl ,(P ) S (II ,(P)
n—tV p n n M p

a function L-:ti —t IN on a directed set (A,) such that for every

nElN there exists cxcxI such that c(a)n, whenever acx0. If (afl)flEIN (2): If (P = fi(da)H0 is the decomposition of the symmetric state (P

is a sequence in a Hausdorff space, we write lim a for into product states, then SM(Ilp(P) fp(da)S(p,ci).

lim a if it exists, and employ a similar notation for
aEI\ v(a)

superior and inferior limits of sequences of extended—real Proof: We may suppose that S(flI ,(P ) is finite for every n. Let

numbers. t be the right—shift on
. SM(flp ) is lower w—semicontinuous on

the i-invariant states of (see the appendix of [14J). One has

111.2 Definition: Let ((P) be a sequence of permutation

symmetric states (P EK(Ø ) (resp (PcxK( )) We say that ((P) is

convergent pg a subnet v I —+ IN if for all m€IN and all XcxI
m for any net { I cxcxf\) of i—invariant states of which is

(resp. 53 ) the limit lim (P (X) =: (P(X) exists. *
a S

n-tV w —convergent to (P. The first claim follows if we construct such a

net, with the additional property that

For any sequence convergent along a subnet, the —1
S (Ii , ) c-’(cx) S([I ,(P ) . (***)

limit—functional extends from Uø (reap U) to a unique M p cx p v(a) L-’(a)

symmetric state (P of (resp ) and we shall write (P =
S S Define the state cx K( ) by

lim (P. By Proposition IV.5 any symmetric state (P has an a a

integral decomposition, (P = fp(da)q all , into product states.
a a C = (P a(P S..€(P (k factors), for every kl

This decomposition is used in the following proposition, which a kV(a) V(a) v(a) V(a)

summarizes the energy estimates we shall need. It is proven at the v(a)
C is then t -invariant. For every rncxIN, 1 (X)=(P (X) for all

end of section IV. a
whenever V(a)m. Hence, w _lirna€ cc

Put
in

L)(a)

111.3 Proposition: Let XE,I and let be a sequence of a
= V(a)1 Z Cat1 ; then is i-invariant and has the same

n
n i—I

permutation symmetric states of converging along a subnet V to limit as {C} by [14, Lemma 5]. We can repeat the argument of [14,

limn (P = fJ(da)5ØR E K8(). Then Lemma 7] to show that for any m,

urn (P(X) = J(da)0{j(Ha))
. 1 -1

larnk k S(flpIlk Cat k
v(cc)

p1L)(a) ii(a)

Recall that SM(u,(P) was defined as an upper limit. We shall Then the argument of [14, Lemma 8] implies (***). This completes

need to know that this lim sup is in fact a limit, if u is a the proof of the first claim. The second claim follows from the

product state and (P is symmetric. The necessary control of the lower sernicontinuity of SM(flpi ) by a standard result of Choquet

lower limit is stated in the following proposition. Theory, and the fact that SM(flp?ll)=S(P?).

S
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Proof of Theorem 11.3 and of Theorem 11.4(1):

Put
-1 nH

a=n logu n(l),
n n

A=sup(iim and

B=sup(q(j(H) (q) )—S(p,tp) qEK(), qEK(s)).

We first claim that A B. Indeed, by Proposition 111.3 and

the second part of Proposition 111.4, for any €K(),

urn (H)
- SM(flOl) = j’P(da)[(i(H)(o))_S(PcY)] B

since jj is a probability measure. The first claim follows by

taking the supremum with respect to .

Now we claim that urn inf a B. By Lemma 111.1, for

arbitrary qEK(4), and q€K(),

a (®fl)(H) —n1S(pa(fl),qs(fl))

= (qJ®ll)(H) — n(S(PtP)+flS(p,fp)J

Thus, if S(p,cp) is finite,

urn inf a q{j(H)(q,)} — S(p,p)
n n

by Proposition 111.3. This implies that

urn inf a sup q{j(H)(q))—S(p,)j p€K(), qEK(s), S(p,cp)<a

Since p is separating, the set of states of ( with finite

relative entropy with respect to p is wdense in K(), and the

second claim follows.

The third claim is that if the sequence (Nornh?n(nEfl)

converges along a subnet v to qEK(), one has

lim sup a lirn P(H)
-

S(fl,) A

By Lemma 111.1, and monotonicity of the relative entropy, for any

a()
- i(a)Li -

4 (H ) — L)(a)1S(G) ,• I
v(a) v(a) v(a) v(a) v(a) v(a)

= • (H ) — L-’(cx)’S(ll ,• I
v(a) Li(a) p v(a) L’(a) v(a)

The third claim follows from Propositions 111.3 and 111.4.

Theorem 11.4(1) follows from the three claims. Suppose that

15

lim sup a is strictly larger than A. Then then there is a subnet

ji of N such that (a ) converges along Li to this larger value. By
A 0

w —compactness of K(Ø), there is a subnet i’ of ti such that

(Norm1wn) converges along v to a symmetric state in the sense

of Definition 111.2. This contradicts the third claim, and shows

that urn sup a A , which together with the first and second

claims proves Theorem 11.3.
I

Proof of Theorem 11.4(2):

Since the functional maximized in (*) is affine in (p, M is

convex. Due to the lower semicontinuity of relative entropies the

functionals in (*) and (**) are both upper semicontinuous, and

hence assume their supremum on a closed set, which is compact

since K(05) and K()xK() are compact. The integral decomposition

exists by Proposition IV.5 for any (pEK(), and we only have to

prove that (q,a)EM almost everywhere. This is clear from the

first inequality in the above proof of 11.3, which must be an

equality for a maximizer (p. Clearly, (p cannot be extremal unless J

is a point measure, i.e. (p= q®[1 for some (q,q)EM, and unless

is extremal. Conversely, if (p has the stated property, then it

is extremal in K(), hence in M.

Proof of Theorem 11.4(3):

By 11.4(2) every extreme point of M is of the form (p=qsfl

with pure and (p,q)EM. We claim that there exists GEV such

that v(j(G)()J 0 for all WEK(), p€K(), with equality exactly

for the pair (q0,p). We then consider for >0 the mean field

models with hamiltonian density EG+H, and let (1CEK() denote

the state
E= Norm1.w +H) Then by 11.4(1) the sequence

converges to the given extreme point (p for every c>O. We construct

a sequence (E)E converging to zero with the property that

as n—,a. For this consider a metric d on K(Ø), which

exists since each is separable as the tensor product of

*
A C

separable C -algebras. Let NkE4 such that d((p,P) 1/k for C=1/k

and all nN. can be arranged to be an increasing sequence and

we set c =1/k for N n<N . Hence d((p,’)C for all nN . Then
n k k+1 A A I
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H= cG+H has the properties stated in the theorem.

It remains to be proven that G€7J with the stated properties

exists. By Lemma V.6 it suffices to find gE(K(),s) such that g0

and w0(g(p))=0 1ff Note that the pair (,p)

defines an extremal state 4’ of (K(),) via 4’(f)= q0(f()), and

that we are looking for an element gE(K(),sS) “exposing” this

state, in the sense that EK((K(),s)) and ‘I(g)=O imply ‘Y=j’. Now

since is separable, so is 1(K()), being generated by the

functions of the form f()=(b) for b in a countable dense subset

of on account of the Stone-Weierstra-Theorem. Hence (K(),)

(K())a4 is separable as the tensor product of separable

algebras. Our claim is thus reduced to the general proposition
*

that any pure state 4’ of a separable C -algebra is exposed.

(Counterexamples for non—separable are easily constructed). By

[11, Theorem 3.10.7] every extremal state 4’ is characterized as

(4’)= {‘I’EK() V ‘Y(f)=O), where f denotes the left ideal
*

f=(f€F I4’(f f)=O). As a subspace of a separable normed space the

ideal contains a dense sequence nEfl’ and g=

is an element exposing 4’.

Proof of Theorem 11.4(4):

By Proposition 11.2 Y= f(X) is approximately symmetric and

j(Y)= f(j(X)). Hence, by Proposition 111.3, urn flK(dx)f(x) =

fji(da) q(j(Y)(a)} with the integral decomposition 11.4(2). Since

the limit state is pure, i is a point measure, say at q€K(), and

since xE7J((r,), j(Y)(a)E is a multiple of the identity for all a.

Hence urn JIK(dx)f(x) = j(Y)(q)= f(j(X))()= f(j(X)()), which

means that 1K converges to the point measure at j(X)().

Proof of Theorem 11.4(5):

Clearly, for 4’ a maximizer SM(flp4’I) =

lim sup n1S(H).4’I) is finite, and hence s= S(wI,4’I)

must be finite for all sufficiently large n. By the monotonicity

property of S, 5 15 an increasing sequence, and is hence finite

for all n. By [13] this implies that 4’) extends to a normal

state on i()’’, where it denotes the GNS—representation of

with respect to flI as claimed.

Proof of Proposition 11.5:

Let F(q)=ço0{j(H)(co))—S(p,co). By convexity of S(p,’), we have

F((l—X)qi+Xip) F(q.) + X( p(—q(I) +S(p,p)—S(p,ip) ) + o(X)

for all ip€K() and all XE[0,l]. If the expression in braces is

strictly positive for some ip, then the left hand side must be

strictly larger than F(cp) for some small A, contradicting the

maximality of (ip0,p). Hence, for all p we have

ip()-S(p,) q(&)-S(p,q). Taking the sup over tp and using Lemma

111.1, we find q(Pt)-S(p,q)=log p(1), and hence

-1
=Norm p

Proof of Theorem 11.6:

In what follows, we drop the index p and the superscript x

from I and G. Notice that E is compact, convex and contained

inxspec(x’). For tE’, we write
(t.x(1))1t.x

€ K(), and

remark that, in an obvious vector—notation, p(x)=’G(t), and

moreover, S(p,p)=tp(x)—G(t) due to Lemma 111.1.

We first prove that VG() and dom(I) have the same closure,

which is E. By [17, Corollary 26.4.1], ri(dom(I)) c VG(I?”) c

dom(I), where ri denotes the relative interior [17, p.441. By

[17, Theorem 6.3] ri(dom(I)) and dom(I) have the same closure, so

since VG(’) c E and E is closed, VG(&’)=dom(I) c E. For the

converse inclusion, suppose udom(I). There exists [17,

Theorem 13.1] tEa?” such that tu > sup{t’v vEdom(I)). Since I is

non—negative, we have for every nEti

nG(nt) = SUP (v.t — n11(v)) = sup (v•t — n1I(v)) tu — c,

vEIR vEdom(I)

f or some c>0. Applying Theorem 11.3 in the case and we

have lim nG(nt)=sup{qi(t.x)=t.q(x qi€K()). Hence uE
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by [17, Theorem 13.1]. This completes the proof of VG(&’)=dom(I)=E

The second part of Lemma 111.1 implies that S(p,ip) I(tp(x))

(take h=tx and vary t). tising this, and Proposition 11.2,

sup j(H)(p) — S(p,q) = sup f(q(x)) — S(p,q)

) qEK().

sup ftx> - I((x)) = sup ff(u) - I(u) s2
q€K() i ) uEE 1 )

Since I is +o outside dom(I) which has closure E, we may rewrite

On the other hand,

S = sup f(u)-I(u)
uEdom(I)

{fP(xH_S(P.P)} = sup {fvG(t))_t.vG(t)+G(t)} s3

If uEVG(&<), then u=VG(t) for some t€&, and [17, Theorem

I(u)=t.VG(t)—G(t). Thus, S3 = sup (f(u)—I(u)I uEVG(&)).

ri(dom(I)) cVG(&c), S3 sup(f(u)—I(u)I uEri(dom(I))). We

established that

sup ff(u)_I(u) S1 sup ff(u)_I(u)

u€ri(dom(I)) i. ) uEdom(I) 1

Due to lower semicontinuity [17, Corollary 7.5.1],

lim I((1-A)v+Xu) = 1(u) for every uEIRk and vEdom(I). Moreover

At 1
[17, Theorem 6.1], if vEri(dom(I)) and uEdom(I) then (1-A)v+Au €

ri(dom(I)) for every OA<l. This implies that given usdom(I) and

E>O, there exists vEri(dom(I)) such that I(u)—I(v)(c. Since f is

continuous, it follows that the left and right hand sides of (***)

are equal. This completes the proof.

IV. A C*—ALGEBRA OF SYr,1E:TRIc TENSORS

B

In this essentially self-contained section we develop the

theory of symmetric and approximately symmetric sequences. This

provides a systematic background for the energy estimate 111.3, as

well as the necessary information for showing the equality of the

two variational expressions in Theorem 11.3. However, we also

prove some results of independent interest. The central idea is to

equip the set 71 of approximately symmetric sequences with the

structure of a (semi—) normed *_algebra in two prima fade

different but equivalent ways.

The first product on 71 ( in the case of trivial i Q ) is

simply the symmetrized tensor product *:x—_÷Ø

Clearly, this product is commutative. Any symmetric state EK()

defines a state on the algebra (71,*), and the product states of

become homomorphisms, i.e. pure states on this algebra. This is

the basic observation behind Stermer’s Theorem [181, which says

that any symmetric state has an integral decomposition into

product states (compare Proposition IV.5).

The second product on 71 is the elementwise product of

sequences. It is not immediately obvious that this operation takes

tjx71 into 71. However, the elementwise product turns out to be

asymptotically equal to the k-product. This equality will make it

possible to treat mean field hamiltonians, which are defined for

each n as some arbitrary function of a set of sequences from 71.

We shall continue to use the notation introduced in sect.II.

On the set 71 the operations of scalar multiplication, adjoint, and

addition will simply be defined elementwise, e.g. (X+Y)= X+YE

for all n such that both X and Y are defined. We shall set JXI(=

lim (K II. This limit exists since ((K
k” = (Isym (X®lø”.sl)ll

llXn®l®•®1II =flX(( , i.e. the sequence of norms is decreasing. It

is worthwile to note that this sequence is in general strictly

decreasing ( unless X is defined for all nl ), but that it never

decreases to zero for XO. (This can be shown with the help of

Lemma IV.4 and the fact that product states on separate points

of sym(); we shall not use this observation)

The product in 71 , which we shall denote by X,Y—’ X*Y, will

be the symmetrized tensor product in the following sense:

for X= a®x1®x® . x € and Y= b®y1y2. •y €2 let

23.5]

Since

have
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X*n,mY sym ab®x15x2x ®y10y2®. •Y)} n+m

Clearly, this extends by linearity and norm continuity to a

bilinear map * : xØ —+ . Moreover, this product is

associative, and elements of the form commute with

all others. Note that a sequence XE is symmetric 1ff for all Ic

Xk= where
k

denotes the unit element in 0. The

product *:VxJ-_-_-*J is now defined by (X*Y) : X * Y for all
nim n n,m m

n,m such that both X arid Y are defined. Since K * Y =
n m n÷k n+k,m m

(K * 1 )* y = ) * (1 * Y )= )( * ‘f the value
n n,k k nik,m m n n,k4m k k,m m n n,k+m kim

(X*Y) of the sequence X*Y does not depend on the representation

r=n+m, and by a similar argument one finds that indeed X*YE’I. It

is easy to verify that with these operations !J becomes a

serni-normed i_algebra with unit, and we shall call ,I the jgja

of symmetric s&valued tensors over 8.

It is crucial for our application to relate the algebraic

properties of the elements X€0 to the properties of the sequence

XEIJ. The key to such questions is the following combinatorial

lemma, which will allow us to transfer the full “elementwise

functional calculus” from the algebras 0 to the functional

calculus of J.

IV.l Lemma: Let X,YEIJ and k,m€U such that K and
m

are defined.

Then for nk+m ii - (X*Y)n 1 NXkII•1IYII.

In particular, urn (I XY — (X*Y)n II

Proof: Let ni—i cz€Aut(0) denote the action of the permutations

of {l,...n) on 0. Then X= sym(X)= (n!) cxfl(Xk) and XY=

(n!)2 a(X)cx,(Y). Moreover, (X*Y) is represented by the

sum over only those terms in the same sum, for which

7r({l,...k))nn’((l,...nlH= 0. Let w(k,m) denote the relative

weight of these terms in the sum. Then II KY (X*Y)n

l-w(k,m)l.IfXklI.IIYI(. Thus it remains to be proven that

1—w(k,mH km/n.

The number of permutations a such that

n((l,...k))nn’((l,...mH= 0 does not depend on t’. Therefore

n!.w(k,m) is the number of permutations a with

n({l,...k))n{l,...m)= 0, i.e.[tmJ.k!.(n_k)!. Hence

Ic
— (n-k)!(n—m)! — (n—m)(n-m--l)...(n-m-k+l)

= k-I
n-rn—a

w( ,m)— n! (n-k-rn)! — n (n-i)... (n-k+i) n—a

The bound w(k,m) 1-km/n is obviously true for k=O or m=O.

Therefore we may assume mi and proceed by induction over Ic. Using

the induction hypothesis we find

w(k+l,m) = w(k,m)’(i—m/(n—k)) (1—km/n)(l—m/(n—k)) =

1 - rn(k+1)/n + km(m-1).n.(n-k)1 l-m(k+l)/n, as long as n<k.

Our next aim is to show that there is a natural one—to—one

correspondence between the symmetric states of 0 and the states

of I. A state on I is by definition a linear functional •:1—4JD,
*

such that (l)=l, and t,(X *x)O and 41(X)IflXII for all X€tJ. The

set of such functionals will be denoted by K(1), and coincides

with the state space of the separated completion of J. It is

useful to introduce the following map :U0—÷!j: for x€0 4.(x)

will be the sequence 4.(x) = sYm (x®l( @1). Note that 4.

is compatible with the injections Øc__Ø, and maps U0 onto I,

because (X ) =X for all X€lI and n€t4 such that K is defined. Due

to the estimate II4.(x)IIIIxli, 4. has an adjoint 4., taking continuous

linear functionais on 1 to the dual (0)

IV.3 Lemma: .:K(7,/)—4K (0) is an isomorphism of compact convex

sets. The inverse is given by (4.iM(X) = 0(X) for

XE1J, and n large enough for K to be defined.

Proof Let K (0)—4 denote the map described in the lemma

21

* 2
IV.2 Corollary: The seminorm defined on ,I satisfies ilK *Xil

Proof: IX *XIl = urn II(X *X) II = lim (X XI = urn flX liz = ilX112

n
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which is well defined since for symmetric • and XE/ ct’(X) =

(symk(X)) = (X). The functionals A are indeed continuous on

/, since 1tP(X)I = urn j(X )I urn IIX U = IXII. If t is positive,

then so is A1, since (4)(X*X) = urn *X) ) = lim q(X X) o

by lemma IV.l. Since for every XEV the map 1— (X ) is
* -‘

*

w —continuous, A is continuous for the w —topologies and maps

K() into K(V).

*

We show next that A maps K(J) into K(00). It is clear that

A is always a symmetric functional on Suppose that w EJ is

positive. Then I wfl jwfl = w(l) = (A w)(l), which implies that

*

A O. From the definition of A and A it is clear that for

xE U and çt’€ K() cP(x) = (Ap)(Ax). Hence is the identity

on K(3). On the other hand, for XE1,/ and WEK(71) we have

(A’A w)(X) = (A w)(X) = w(A(X)) = w(X). Hence A and A are

inverses of each other.

This characterization of the symmetric states of is useful

only if we can give a concrete representation of K(7J) or,

equivalently, of the completion of the algebra (j,*). The

following lemma shows that this completion is canonically

isomorphic to (K(),4), and that the embedding of j into its

completion is just the map j:V——’(K(),4) introduced in sect.II.

We defined j:—*(K(),s4) by j(a®x1®.-.®x)(q)= a flp(x), and

j(X) limj(X). The existence of this limit will be established

for general X€1 in Lemma IV.6. Here we only need the trivial case

XEIJ, in which the sequence ni—*j(X) is constant.

IV.4 Lemma: j:V—(K(),4) is an isometric *homomorphism of J

onto a dense subalgebra of I(K(),4). The pure states of

(K(),4), which are of the form fc(K(),4)i— •(f()) for a

pure state 40€K(si) and an arbitrary state • €K(), are mapped by

to the product states49®flEK().

Proof: J contains two special subalgebras, namely an isomorphic

copy of 4 consisting of the sequences A = a®l ® . with
n (1) (n) n

aE4, and another algebra, isomorphic to consisting of the

elements A(1uX) with XE. The algebra !1(C,) belongs to the

center of J /(4,), and since , the finite linear
n a

combinations of elements AX with AE4 and XE1j(C,) are norm dense

in V(). Consequently, J(4) /(C4). As an abelian unital
*

C -algebra, the completion of /(C,) is isomorphic to (r) for

some compact space P. Hence the completion of ](4,) is isomorphic

to 4(T) 9(F,4) by Proposition IV.7.3. and Theorem IV.4.l4. of

[19]. It remains to be shown that the space F is canonically

isomorphic to the state space K(). Thus in the remainder of this

Putting together these two lemmas we obtain the following

generalization of Sterner’s Theorem [18]. Our proof is an

expansion of the proof given in [6] for the case of separable 4

using the theory of liftings [9].

*

proof we can take 4 =cC.

For any abelian C-algebra , F is the set of pure states of

?, or, equivalently, the space of unital -homomorphisms i:—*t,
*

equipped with the w -topology. Let i be a homomorphism of /(U).

We claim that Ai is then a product state of For let x€ and

yc , and x5yE Then A(xy) = A(x)*A(y), and
a m

(A ‘)(xy) =(A(x)*A(y)) = i(A(x))(A(x)). Conversely, suppose that

is a product state. Then according to Lemma IV.3 we have

for all X,YE1j and k,n€1 sufficiently large:
*1

(A - 4)(X*Y) = (sym (XaY )) = •(X®Y ) = •(X )ct,(Y
* *

a k n- k n-k k a-k

(A - )(X)(A - 4)(Y). Hence (A 4) is a product state of /(U).

Hence the extreme points of K(,I) correspond exactly to the product

states fl , and since the map q i— fl is a homeomorphism for the
*

w -topologies, the completion of )(E,) is isomorphic to (K(i)),

with K() taken in this topology.
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IV.5 Proposition: Any state has a w-integraJ.

decomposition = fp(da) ®l1,,, where p is a probability measure

on K(), qEK(sd) for all a€K(), and ui—(a) is measurable for

all a€. Moreover, for each aEs4, ip(a) is uniquely determined by j’

almost everywhere with respect to p. If sd is separable, then is

uniquely determined by • a.e..

Proof: By the previous two lemmas we have to show that any state ‘P

on C(K(),) has an integral decomposition ‘V(f)=fp(da) q(f(a)),

for p and cr’—’ p as specified above. For any aE& with aO,

consider the functional f —i ‘I’(af) on scalar functions

fE(K(),t). Clearly, this is positive and hence of the form

‘P(af) = fp(da) f(a) for a unique probability measure Since

‘V(af) flail ‘P(lf) for all positive f, we have h1ail p1. Hence

is absolutely continuous with respect to p1, and has a

Radon-Nikodym derivative R(a)EL1(K() ,p1), which is essentially

bounded by flail. Hence R(a)EL0, and aI—*R(a)EL5(K(),p1)extends

to a positive linear map of norm l. Note that R(a) is not a

single function, but an equivalence class with respect to a.e.

equality. However, there exists a ‘lifting’

which associates in a linear and

positive manner a single bounded measurable function to each class

[9]. Thus for each aEK() the map a’—’ R(a) i—* (R(a)) f—*

(pR(a))(a) is linear and positive, an takes 1E to lEfl?. That is to

say there is a state q’0EK() with q0(a) = (pR(a))(a). For

discussing the uniqueness statements, let and be families of

states satisfying the conclusion of the proposition. Then since

q(a) and rp(a) both represent the Radon—Nikodym--derivative RCa)

they must be equal a.e.. If is separable and is a dense

sequence, let N={alrp(a)rp(a)). This is a null set, hence

acr
UN is also a null set.

As a simple example showing that separability is essential

for the final uniqueness statement, consider two dimensional, so

that K()= [0,1], and s=L5([0,l]). Let • denote the state on

([0,1])®L0([0,l]) given by t’(fg)= fda f(a)g(a) for

f€([0,l]) and gEELu([0,1]). Thus the function a—)q)0EK() in

Proposition IV 5 must satisfy g(a) almost everywhere and

hence two such functions, say q and q, have to coincide a.e. f or

every g. However, the exceptional null—set may depend on g, and we

+ - + —

shall construct q and q such that for all a. By

[9, Theorem VIII.6] we can find a lifting

p+:LD([0,1])
— f([0,1]) such that p(f) f for all functions f,

which are continuous from the right. Set (g)= (p(g))(a). Then

if XL([0,1]) denotes the characteristic function of [0,cr], we

have q(0)=0. If p is a lifting fixing left—continuous

functions, and q is defined similarly, then for all a

and hence

The following result states that 7,1 modulo the equivalence

relation limflX-Yfl0 for X,YE7,1 is exactly the completion of 7,1.

IV.6 Lemma: Let X€7J. Then the limit I1XII :‘limflXfl and the norm

limit j(X) := urn j(X) in (K(),) exist. The map

j:—+ (K(),) thus defined maps isometrically onto (K(),).

Proof: Let c>0. Then according to Definition 11.1, there is some

exactly symmetric YE7,I, and n0, such that for nn hlX,-Y,,ll . Thus

for n,mn0: I IIX,,IHIX=hl I 2 +1 hlYhl—1IY=II I 3 for

sufficiently large n0, since the sequence llYhl is convergent.

Similarly, hIin(Xn)_Jm(Xm)hI 2 +flj (Y)—j (Y)II =2E, since

n’— j (Y ) is constant for nn
n ri 0

By Lemma IV.4 jl7,1 is an isometry, and since hIi(X)II=

limIIj(X)fl lirn IX 1= IIXII, this property carries over to 7,1. To

show that j is onto, let E(K(),sE). Then by Lemma IV.4 there is

a sequence (X)€E7,1 such that j(Xa), as cx—’. We may assume

that iaa+li, 2a, and pick some increasing sequence w—+m(a)

such that hlX:_X1ll for nm(a). Now set y= xa for

rn(cz)n<m(cx+1). Then for nm(a), say m()n<m(+1) with cz,

hIY—xil= fl_:i 2” 22. Hence YE7,I, and iycrji 22.

This implies IlJ(Y)—lI hhi(Y)_(Xa)ll+hIi(X)hI const 2, i.e.

j(Y)= .
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e are now ready to prove the convergence of the mean energy

of the models under consideration:

Proof of proposition 111.3:

First let XEI be strictly symmetric, i.e. X= y for some

XEk. Then •)(Xv()) 4v(a)(sYmv(a)(Xk)) •()(Xk) —‘

The limit is equal to the right hand side of 111.3 due to

Proposition IV.5 and the definition of j. Now let XE./, and YE’J

with IX—YI)E for nm. For any cluster point of

o€A}, )—fp(do)(j(X)(cJ)) —lim ‘P(YH +

€ + Hi(Y—X)ll 2s. Since E is arbitrary by

definition of , the proof is complete.

V. DISCUSSION

In this paper we have focussed only on those features of mean

field systems which are thermodynamically relevant, i.e. have an

influence on the free energy in the thermodynamic limit. If two

hamiltonian densities H and I satisfy IIH—iII —‘ 0, then they

are thermodynamically equivalent. It is clear that in each

equivalence class the convergence of the states Norm1G?ln to a

limit state can be arbitrarily slow. Hence, the asymptotics of the

fluctuations of expectation values around the limiting value

cannot be discussed at the thermodynamic level [8].

Another question, which cannot be treated at the purely

thermodynamic level is the convergence of effective Hamiltonians.

Recall that we defined the effective hamiltonian in Proposition

11.5 as a derivative of the energy density 0{j(H)(q3)) with

respect to q. Now for suitable sequences H we can express

= as limi(H), where the (q0,)-dependent operator

J:—’ is given by

J(a®x®.5X) (x-(x)) q(a)

27

These maps in are compatible with symmetrization and the

canonical injections
<—+

0. Hence, for a strictly symmetric

sequence HEtJ, J(H ) is eventually constant, and in fact equal to

. On the other hand, convergence of J(H) may fail for other,

thermodynamically equivalent hamiltonians. To see this, let G=

E l®x® .cx for some sequence £ going to zero and some

hermitian x€0 with IlxH=l. Then IIGll—’O and J(G)=

£ flq3(X) (x—(x)). Now if we choose x so that q(x)

converges rapidly to 1, without x converging to isO, we can

construct Gs71 such that Ii (G HI diverges.

On the other hand, the condition limJ(H)’ for all (q0,q)

may be of physical interest. For example, if one computes

that limfl(A [nH,B] C — A 8(B) C)=O for all stricly local

A,B,CEUO, where 8(B) denotes the commutator of B with

J(H)511 + •+ l®i(H). In other words, if J(H) ,

then the generators of the time evolution in the system of size n

converge to a derivation of 0, which corresponds to a

one—particle evolution generated by Pt. Hence in this case Pt can be

given a dynamical meaning. This has been exploited in [7,15) to

characterize the equilibrium states of mean field systems by an

energy-entropy inequality.

We would like to point out a characteristic difference

between the scope of the above results in the quantum and the

classical cases. Consider the two functions

-1 n(Hn+tXn) -i nHn tXn
G (t)= n log t (1), and C (t)= n log u (e ) for

n h
tsR. In the classical case, i.e. when and 0 are abeiian, w (l)=

h
w(e ) holds for all states w and all hermitian h, and hence C=G,

Thus, in the classical case, the function G (respectively the

limit) not only contains all the thermodynamics but also — via

derivatives with respect to t — information about expectation

values of X with respect to the state
=

Norm iw1I. Here,

convergence of G(t) for all t is an asymptotic property of the

probability measures 0< on R, given by J1K(dx)f(x)= P(f(X)) for

bounded continuous f:IR—.R. In fact, if G(t):= lim G(t) is

differentiable, then the measures 0< converge to the point measure

at G’(O) exponentially fast in the sense made precise by the Large
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Deviation Principle [10, Theorem 4]. In the non—commutative case,

G still encodes all thermodynamics, but no longer contains direct

information about expectation values. This is contained ir C,

which acts as the cumulant generating function of the measures UK.

By Theorem 11.4(4) the measures UK still converge to point

measures in any pure phase of the system, but the proof [10] of

the Large Deviation Principle for differentiable G carries over to

the non—commutative case only if the reference states p0EK(s) and

pEK() are traces and X is an approximately symmetric sequence

such that [H,XJ=0 for all n. However, in general, the

Golden—Thompson inequality G(t) C(t) remains a strict

inequality in the limit, even though ( for =U ) limfl[H,X])I =0.

It would be interesting to find asymptotic properties of p, H,

and X that would allow the control of the limit of C(t), and the

proof of the Large Deviation Principle for the measures UK.

However, such properties will again depend on H more sensitively

than the thermodynamic properties.

The models we have considered here should perhaps more

appropriately be called homogeneous mean field models. Indeed, no

local features enter the interaction hamiltonian at all. One can

also consider “heterogeneous mean field models” (e.g. the BCS

model treated in [4]), where the interaction between particles may

depend on their location in some compact space X, and in which the

global scaling behaviour of the interaction is of the mean field

nature. For each particle number n the locations of the particles

are held fixed, and one is interested in the limit in which their

density converges to some given measure on X. Extension of our

results to this class of models is presently under consideration

[161.

define “the same function” in different algebras. The first is

abstract, and requires only some transformation behaviour with
*

respect to C —morphisms. The second approach starts directly from

the algebraic structure and the evaiuation of “the same

polynomial” in different algebras, and extends to all functions,

which can be approximated by polynomials in a sufficiently strong

sense. We shall start from the abstract definition and show the

equivalence to the second approach in Lemma A.2.

A.l Definition: Let T be a compact convex subset of U, the set of

real valued sequences with the product topology. Then a C—function

on r is a family of functions f, for every unital Calgebra ,

with

A=A v€K )((A1)?(A2) )EP } _
such that for any unital *homomorphism ct —, into a unital

C -algebra ,

*

f((A1),4(A2) , . . . )=(f(A1,A2,. . . )

A C -function is called hermitian, if the values of all f are

hermitian for all arguments in its domain. For notational

convenience we shall from now on drop the subscripts , and will

sometimes abbreviate the sequence (A,A2,...) of arguments by

We remark that this definition is strictly speaking not

legitimate, since it contains a quantifier over the proper class
*

of C -algebras. However, it always suffices to define f on the
*

separable C —subalgebra generated by its countably many arguments.
*

Since every separable C —algebra can be faithfully represented on

a separable Hubert space, it suffices to define f on the set of
*

separable C -algebras on a fixed Hilbert space.

*

APPENDIx
The C -functions depending only on a single variable are just

the continuous real valued functions on some interval, evaluated

In this appendix we collect the results on the calculus of in the functional calculus. The interval on which f is defined in

Cfunctions referred to in sections II and IV. These functions the single variable case becomes the set P in the many—variable

are best seen as a many-variable generalization of the ordinary case. Often one can choose P to be an infinite product of compact

functional calculus in C-algebras There are two natural ways to
intervals which amounts to imposing a constraint on the spectrum
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*

of each A separately. The composition of C —functions, where it

*

is defined, is again a C -function. Hence f(X,Y,Z)=

exp(IILX,YJj)/cosh(Z) is a legitimate C—function for any choice

of Tc? . As this example shows, a C -function of several arguments

is not determined by its values on scalars

*

A.2 Lemma: Let f be a C -function on rcR . Then for any >O there

exists a polynomial g depending only on finitely many of the

non-commuting variables A,A2,• such that If()-g(X)

Moreover, there is a constant c such that llf()Ilc, and

>o36>o3iEt4’p IIA—A,lI 5) = 1f()—t(’ )II E

These statements are valid for any C -algebra , any admissible

sequences of arguments and ‘, and the choices of g, c, 6, and i

can be made independently of s, and

Proof: Let denote the free unital *algebra over countably many

hermitian symbols X,X,..., i.e. the algebra of polynomials in

X1,X2,... with complex coefficients. Then any choice of a sequence

=
of hermitian elements in some C—algebra induces a

unique unital S_homomorphism : — such that (X)A, for

all i-’EtI. Define on the seminorm 1III := sup{ H()ll ), where the

-4
*

supremum is over all sequences A in separable C -algebras such

that ():= (Q(A),q(A2),”.)EP for all qEK(). This is clearly a

C -seminorm, and we shall denote by the separated completion of

with respect to this seminorm. By definition of the norm on ,

each is continuous, and hence extends to a unique

5homomorphism 4

We prove next that (X,X,.. is an admissible

sequence of arguments for f, i.e. for any t’EK() we have

For any continuous linear functional on , i.e. any functional

of the form (x) :1cx for some finite m, let M4()= sup ()

and M()= inf (I’). Since r’ is compact and convex xEF is

equivalent to xc [M(),M()J for all . For any continuous ,

let X€F denote the element X= mX —

Then, by definition of and the norm in :

31

iXll= sup(jq((X))j)= sup{1q(m1A) —

where the supremum is over all admissible sequences AEs4 and all

states CpEK(9L). Therefore q()Ef, so that (HE [M(),M(e)],

and (l/2)(M()-M()). Hence for any 4€

P(H= m1(X)= Ø(X) + (l/2)(M÷()÷M())

The lower bound (I’(X))M() follows similarly, so that (X)EF.

Now let f be a C—function. Set f:=f()EF. Then since F is

the completion of , we can find gEF (iciN) such that jf-gjfE. Thus

llf()-g()II = II(f)—4(g)H If—gNc uniformly in . Boundedness

and uniform continuity are obvious for the polynomials g and

follow for f by straightforward estimates.

The final result of this section is the complete

transformation of the elementwise functional calculus of

approximatively symmetric sequences into the functional calculus

of (K().) stated in section II:

Proof of Proposition 11.2:

Consider first the case f(X1,X2)= X1X2 and fix c,2>O. Let

Z1,Z2EJ such that i’—z £ for i=l,2 and nm, and set Z=

Z1*Z2. Then by Lemma IV.1, there is some mcIi, such that

(Z1 z2 -z j c for nm . Hence for nmax(m ,m ) AX1 X2 —z ll

(llX2II+IIZ1I)+c, which can be made arbitrarily small by choice

of E and
.

Thus by definition Y= X1X2 is approximately

symmetric, and jj (Y)—j (X1 )j(X2 )lI NY —z If+

Ni((Z1*Z2))-j(Z1)j(z2)I)+ jj(Z1)j(Z2)- i(X1)i(X2)N.

The first and last term on the right hand side are estimated as

before, and the middle term vanishes, since for ZE1,/ j(Z)j(Z)

and j is a homomorphism for the *—product. Hence the left hand

side becomes small for sufficiently large n, and we find j(Y)=

j(X1)j(X2).

The case of a monomial f(X1,X2,..’X’) X1X2••X’ now follows

by induction over r, and the case of general polynomials by
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