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Abstract. This paper concerns the dynamics of local correlation

functions in dissipative mean-field systems. We extend the abstract

notion of a mean-field dynamical semigroup on a C*algebra given in

[1] , from an evolution on site-averaged observables, to one on a class

of local observables. Conditions are established under which this

generalized mean-field dynamics factorises, in the thermodynamic

limit, into contributions from disjoint regions. Correspondingly, the

nested correlation functions factorise into contributions for single site

observables in this limit. We demonstrate that these conditions are

satisfied for a large class of model systems.

In this paper we extend the theory of mean-field dynamical semigroups, as described in [1],

to include the mean-field dynamics of local observables. We formulate general conditions

under which all nested local correlation functions factorize into contributions for disjoint

regions in the thermodynamic limit. We show that these conditions are satisfied for a large

class of model systems. First we recall the main features of mean-field dynamical systems,

and summarize the results on which the present work relies.

Mean-field dynamical semigroups are used, implicitly or explicitly, to analyse the

dynamics of dissipative quantum systems in the thermodynamic limit. Following the ex

ample of Hepp and Lieb [2] in their treatment of the dynamics of the laser, many other

models have been treated by various authors. These include, for example, the BCS model

[3] , H. Fröhlich’s model of non-equilibrium boson condensation [4,5] , and the boson gas

relaxing to thermal equilibrium [6,7] . Although these models differ in detail, they have

the following common features: (a) a sequence of systems indexed by a volume parameter;

(b) for each volume a dissipative quantum dynamics, and (c) a relationship between the

generators of the dynamics for different volumes, which essentially specifies the mean-field

nature of the model. At each volume, the dissipative quantum dynamics is obtained from

the hamiltonian dynamics of a larger system (the system + thermal reservoirs) by isolation

of the dynamics of the system variables through some limiting procedure (for example, the

weak-coupling and long-time limit). A review of these matters can be found in [8]

Building upon some of the original notions of [2] , and their abstract generalization in

[9] , a general theory of mean-field dynamical limits has been obtained in [1] , as we shall

describe shortly. First we outline the mathematical description of intensive observables,

as given in [9] (but using the notation of [1] ). The sequence of systems is labelled by

the positive integers. The n’ system comprises n sites, at each which sits a copy of some

C*algebra A with identity I. The observable algebra of the nth system is A’1: the tensor

product of n copies of A (completed in the minimal C*crossnorm). If Xrn E Atm an

rn-site observable for some m E t’T, then for each n > m we can form the observable X,

by averaging X over all n sites i.e. by averaging X 0 ‘n—rn over all automorphisms

of A’1 corresponding to permutation of the n sites. We shall denote this process by the

operator nm, so that in the above case X,., = jnmXm. To illustrate, if X1 E A then

= (X1 o I + I® X1) E A2.

The sequence of resymxnetrized observables (jnrnX,n)n>rn will be called strictly sym

metric. From the mean-field point of view, we can say that an arbitrary sequence n ‘—‘

with each Y, in A”, represents an intensive observable if it can be approximated uniformly
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in n by strictly symmetric sequences, i.e. if for all e > 0, there exists a strictly symmetric
sequence n ‘—‘ X and an tie E ti such that lY — X,I{ < for all n Such sequences
will be called approximately symmetric. Of course, all strictly symmetric sequences are

also approximately symmetric.

From the thermodynamic point of view one expects that multiplication of intensive

observables should be commutative in the thermodynamic limit. Correspondingly, it is a
combinatorial result from [9] that for two approximately symmetric sequences X. and Y.,

n IIXnYn - YnXnhIAn =0

This is a reflection of the fact that for approximately symmetric sequences, most of the

factors in the tensor product are occupied by simply the identity element I. Now, we can

consider limits of approximately symmetric sequences as follows. In [9] the existence of

the limit X,,,(p) lim.,,(p”, X) is shown for all approximately symmetric sequences

X. and states p in space K(A) of states on A. (Here, pZ denotes the n-fold tensor product

state p 0 . . . p on A”, and (.,.) denotes the canonical bilinear form between a C*algebra

and its dual). If we consider the set of approximately symmetric sequences as an algebra

with n-wise addition and multiplication, the the map X. -‘ X, becomes a homomorphism

from the set of approximately symmetric sequences onto the algebra C(K(A)) of weak*

continuous functions on the state space of A. That this latter algebra is commutative is

simply a reflection of the limiting commutativity of approximately symmetric sequences.

Having set up the general framework for intensive observables, we know turn to the

question of dynamics, as described in [1] . Suppose that for each n E IN as strongly

continuous semigroup of completely positive maps (T,)>o on A” is given. We naturally

say that the sequence Ti,. has good mean-field properties if it preserves the set of intensive

observables i.e. if it maps the set of approximately symmetric sequences into itself. It

is natural then to attempt to define a limiting semigroup on C(K(A)) via (r,,)>o via

the formula = (T .X.). In [1].tis shown that this can be done when

T. satisfies a reasonable continuity condition. Moreover, a complete theory of mean-field

dynamical semigroups on C*algebras is obtained, paralleling the theory of contraction

semigroups on Banach spaces.

In certain cases the limiting evolution is implemented by a continuous flow (Ft):>o

on the state space: (T,X,)(p) = X,,,(Ftp). (The non-linear differential equation for

the flow is just the Hartree equation). So it follows that the limiting evolution is a homo

morphism: (Tt,,(X,,,,Y,))(p) = In this case the correlation

functions for intensive observables in product states factorise in the limit n — oo. For

example, for approximately symmetric sequences x’,. X. k,

lim(p”, . .
.

(Li)

= . . .

= (Ti, ,X,,j(p) (Ti, +t,X,)(p)... (Ti, +,+...+tX)(p)

We remark that in all the physical examples mentioned, the generators C,, of the

semigroups Ti,,, are polynomial in the sense that each C,, is obtained by symmetrization

over n-sites of some fixed generator acting on the algebra of a finite number of sites. General
theorems establishing a limiting dynamics obeying the factorisation conditions (1.1) had
been given previously only for classes of models in which the generators are polynomial in

the sense described, and bounded (possibly with the addition of an unbounded hamiltonian

one-site term), [10,11] , sometimes with the requirement that A be finite dimensional [12]
or that evolution be hamiltonian [13,14,15] . As is shown in [1] , the class of models for
which the limiting evolution is implemented by a flow is somewhat wider, and includes

models in which the generator is not polynomial. Generators of this class occur in lattice

systems for which the interaction does not link just finite numbers of sites. We emphasize,

however, that mean-field dynamical limits need not be implemented by flows: in [1] an
example is given in which the limit is diffusive.

We turn now to the central matter in the present paper, namely local correlation

functions. By this, we mean that we want to consider expressions like eq. (1.1), but

when the X) are not approximately symmetric. In certain cases, and for certain choices

of the X’, the existing framework suffices. For example, if Ti,,, is itself invariant under

permutation automorphisms, then we can estimate the correlation functions for two single

site observables in a product state as follows:

(p”,(A 0I,,1)T,(I 0 B® I,,_2)) = (p”,(j,,iA)T,,(j,,1B))+ O(n) . (1.2)

Thus we could estimate the RHS of eq. (1.2) by using expressions of the form in eq. (1.1).

The estimate relies on the fact that A and B lie in the algebras of different sites in the

tensor product A”. To treat arbitrary correlation functions is an awkward combinatorial

problem. What we do in this paper is to introduce a mean-field dynamical formalism
which takes care of the combinatorics for us. It has the added advantage that we are able

to treat states which are not simply products (or linear combinations of such states): we

may also consider suitably local perturbations of such states. In this way we are extending
the formalism of [1] which was was designed to treat only the dynamics of approximately

symmetric sequences. We finish the introduction by summarizing outlining the contents

of the remainder of the paper.
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In section 2 we give the theory of partially symmetric sequences. Briefly, this is a

follows. Let I be a finite subset of IN. For n m, maxeI{i}, we define the restricted

averaging operators Jm A” by setting jmXm to be the average of Xrn ® ‘n—rn over

all automorphisms of A” corresponding to permutations of {1,. . . n} which leave the set

I pointwise invariant. For example, if I = {1}, then for any X1 E A it follows that

j)Xi = X1 0 In_i. A sequence of observables (jmXrn)n>rn will be called strictly I-

symmetric, and we have a corresponding notion of approximate I-symmetry. Using some

ideas from [RWa] , we show that the limiting objects of such sequences form the algebra

C(K(A), A’), of weak*continuous functions on the state space of A which take values in

A’. For the sequence n ‘—‘ j,)X1 this limit is X1 ® Ic(K(A))• Now the limit algebra is

no longer abeian in general. However, we show when I and J are disjoint finite subsets

of IN, and X and Y are approximately I-symmetric and J-symmetric, then their product,

regarded as an (I U J)-symmetric sequence, has a limit in C(K(A), A”-’’) which takes the

form Xj, ® Y, for some X, E C(K(A), A’) and Y, e C(K(A), As).

In section 3 we turn to the question of dynamics of approximately I-symmetric se

quences. We formulate the notion of a mean-field dynamical limit on C(K(A), A’) for each

finite I C II. We say that a family of semigroups Ti,. is approximate I-symmetry pre

serving if it maps approximately I-symmetric sequences onto approximately I-symmetric

sequences. One constructs a general theory of these mean-field limits in a way entirely

analogous to that used for the case I = 0 in [1] . The limiting evolution, which we will

denote by T(, is a contraction semigroup on C(K(A), A’). The analogue of the homo

morphism property for the present case is the factorisation of the limiting evolution on for

disjoint finite subsets of IN i.e. T’’ = TIm ® Tj’,0 when In J = 0. In section 4 we show

that when this factorisation holds, all multi-time and nested correlation functions factorise

into contributions over single sites. Note that the present method does not give any easy

method for calculating multi-time correlation functions for one site alone. However, there

are certain systems for which these can be calculated for a sufficiently large subalgebra of

one-site observables [16]

In section 5 we show that that mean-field dynamical semigroups with bounded poly

nomial generators have the disjoint homomorphism property. In fact, it is possible to show

the same for the class of approximately polynomial generators described in [1]

In an appendix, we return to the subject of mean-field dynamical semigroup for fully

symmetric sequences. We investigate the conditions under which limiting flows preserve

the set of normal states when A is isomorphic with a von Neumann algebra.

Finally, we mention the fact that the present work is not limited in application to

homogeneous mean-field models. Following [17] , one replaces the one site algebra .4 by

the algebra C(X, A) of A-valued continuous function on some compact space X. In this

way one can treat (for example) lattice models with a spatially varying interaction. The

thermodynamics of such models has been treated in [18,19] , while their (fully symmetric)

mean-field dynamics is treated in [20]

2. Sequences with partial symmetry.

We start this section by generalizing the notion of symmetric sequences, to sequences which

are symmetric only under a subgroup of permutations. In what follows, for any C*algebra

A with identity I, A’ denotes the dual of A, (-,) : A x A —f C denotes the canonical

bilinear form between A and A, K(A) = {p E A’ p 0, (p, I) = 1} is the state space

of A, and A+ denotes the set of positive elements in A.

Let A be a C*aigebra with identity I. Let us associate with each positive integer

i a copy, A{2}, of A. Let I be an finite subset of IN, I = {i1,. .. ,i111}, where III denotes

the cardinality of I. Denote by Imz the largest element of I: Imz = ma.xk=i I,i{ik}.

All subsets of IN specified henceforth will be taken to be finite, but we shall occasionally

reiterate this. For every such set I, A’ will denote the tensor product of of the (A{,})2e,,

completed in the minimal C*crossnorm [21] . Ij will denote the unit in A’.

The choice of completion has important consequences for the continuity of certain

linear functionals on the tensor products. For any finite I c IN and any collection

{Wi,.. .w1,1} c K(A), the linear functional w1 ® . . .w11 on the algebraic tensor prod

uct A°”t has an extension to A’ which is a state. If ali w2 are equal to some w we will

write the corresponding state on A’ as w’. It follows from Corollary 4.25 of [21] that

for any finite I c IN and X A’, the map (K(A))”I 3 (‘i,...w1,j) — (w1 ® . . .wj1)(X)

is weak*continuous. In particular, this means that for any disjoint finite subsets I and

J of IN and state w in K(A’), then for any B E A1 there is an A E A such that

(w 0 i,B) = (u,A) for all E K(A). In the following, for a C*algebra B, C(K(A),B)

will denote the space of continuous functions on the state space of A (with the weak*

topology) taking values in B (with the norm topology). C(K(A), C) will be denoted by

C(K(A)).

We will adopt the convention on lower case subscripts and superscripts as follows:

A” denotes the algebra p” is the state p{1fl} A”.

Let S,, be the set of permutations of the numbers {l, 2,. . . , n} and for each -y E S,,
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we define to be the automorphism of A” induced by it. Thus for A’,... , A” E A we A sequence X. : n i—p A” is called approximately I-symmetric if for all e > 0
have ?r7(A’ 0... 0 A”) = A”’ 0... 0At”. For I with ‘mQx Ti we define S(I) to be there is an ne such that IlXn — e for all n m n5 Im. For the latter
the set of permutations in S,, which leave I pointwise invariant, statement we also write

urn IIn jXmlj =0
For each n and each I with ‘m <n we define the injection i, : A’ —i A” by nm-.oo

The set of approximately I-symmetric sequences will be denoted by Y1.
ijX = X 0 I{1 ,...,n}\1

Now, for each strictly I-symmetric sequence X, we can think of X as a element
i.e. by tensoring with the identity on all A{,} for j I with j <n. For n m and I with

of A’ 0j(_1Ij)(_1I1)A”H’I. This means that for each fixed I, the set of approximately
Imaz n define : Atm —‘ A” by

I-symmetric sequences are approximately symmetric in the general sense of [9] . Having

3nm’m = 7r.yinmXm
. established this correspondence, we quote the following result from [9,4] , but using the

(n — present terminology.vE S, (1)

Thus is the average of nmXm when operated on by the set of all permutation au
Theorem 2.1. [9] Let I be a fixed finite subset of N. Then

tomorphisms of A” which leave A’ invariant. The operators are identical with the

operators jrn as defined in [1] for all ii, m E IN.
(1) For all X e i’, IXII = IIXIl exists, and 5’ is the completion of))1 in the

seminorm (2.1). Furthermore, 3)1 is closed within the set of all sequences n i-4 X” E
For each fixed finite I, the operators are consistent in that they satisfy

A” in this seminorm.

)nm ° Jnr = 3,r
(2) 3)’ is an algebra with the operations of n-wise addition (X., Y.) F-* X. +Y. and n-wise

for r m fl with .Imaz m. Restricted to each Jm is injective. Thus we multiplication (X., Y.) i—* X.Y.. Furthermore, 32 32e is commutative under the

can consider abstractly the spaces jA” together with the maps as an inductive seminorm (2.1) in the sense that

system of vector spaces. Since each Jm is a contraction in the given norms on Atm and A”
the inductive limit carries a natural seminorm: for an arbitrary sequence with XV — YXII IKn’”' — YXII = 0

X,, E A” we write

IXW = urn sup iixii . (2.1) for all sequences X. and Y. in Y.

(3) For all X j)’, X,(p) = lim_.,,,(jjX)(p) exists in the norm topology of A’,
For each finite I C N we single out from the set of all sequences (Xfl)flEN those in uniformly for p E K(A).

the inductive limit space: those sequences X. : n ‘—k jA” for which for some m0 E N,

X,, = jm0Xmo for all n> m0, Imax. Such sequences will be called strictly I-symmetric, (4) The map 3)1
—+ C(K(A), A’) : X —+ X, is an isometric *.homomorphism from Y’

and the number m0 will be called the degree of the sequence X as defined above. The onto C(K(A), A’).
set of all such sequences will be denoted by 3)’. Let p e K(A) and let u be an arbitrary

element of (A’), the dual of A’. For X E A” we definejj3Xn E C(K(A), A’) by

(cr,(j,X)(p)) =
(.®{‘

Note that in future we shall omit the label “0” when I is empty: in this case our

For strictly I-symmetric sequences this is independent of n for n sufficiently large. Trivially, notation becomes identical with that of [1]. We remark that the proof of (2) given in [9] is

Xj, lim,,.,,jj,,,X,, exists as an element of C(K(A), A’). based on a decomposition of the product of two strictly symmetric sequences X, =
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— x!y!(n — z)!(n —

cn(x,y,r)
— — r)!(y — r)!(n + r — x

—
y).

is the proportion of permutations 7 of {1,. . . n} such that the intersection of {1,.. .

and {7(1),. . . -y(y)} has r elements. The size, r ,of this intersection will be called the

overlap. The result (2) follows from the observation that except for r 0 all c go to

zero. One shows readily that cn(z,y;r) ‘-. — — r)!). Entirely similar

decompositions are made when dealing with I-symmetry.

For any I c I and S c Y’ we shall define S, C C(K(A), A’) to be the set

{X I X S}. A subset V c 5”, will be called dense, if all elements of Yan be

approximated in seminorm by elements of V. This is equivalent to saying that V, is

dense in C(K(A), A’). We define 1” = y. Clearly 1” is an algebra in C(K(A), A’) and

since Y’ is dense in 3”, 1” is dense in C(K(A), A’).

Proposition 2.2. Let I C J C !. Then

(1) Forn Imaz andm Jni,iz

(2) Let X. 5’S’. By Proposition 2.2(1) above, jnXn — jmi,’nmXm jn(Xn —

jmXm). Thus, since j is a contraction

lim IIj,LXn — jmXmII lim IIXn — jmXmII = 0
n>m—.oo n>m—.oo

so that n i—* jX is approximately I-symmetric.

(3) First note that it suffices to prove the assertion for all X. which are strictly

I-symmetric: for then any approximately I-symmetric sequence can be approximated

uniformly for large enough n by sequences which are approximately J-symmetric, and

is hence itself approximately J-symmetric.

For notational clarity we will set a = Il and b = IJI Let X. be strictly I-symmetric,

so that X,. = jXm for some m and all n > m. Clearly we are free to pick m to be not

less than Jmiz. Then

and

>2 ir7inmXm(n a)
yES,(I)

>2 ir.yinmXm

“I

>
,(JI)r{+1..

derives from those -y E S(I) for which the A’ component of ir7inmXm is simply

‘J\I. We will show that the sequence n i—*
1) is approximately J-symmetric, while

(2)hxn,S =0.

and Y, = as

Here

= >2 c(x, y; ?)jn (z+— ((Xi ® Ig_r)(Iz_r ® Yy))

Since IC J C JU{m+1, . . . ,n}, every permutation in S,, whichleaves JU{m+1,.. . ,n}

pointwise invariant also leaves I pointwise invariant: S(I) D Sn(J U {m + 1,. . . , n}).

Furthermore S(I) is a subgroup of S,., so that for any 7’ E S(J U {m + 1,. . . ,n}) the

set {r.ir.s : E Sn(I)} has the same elements as the set {ir7 : 7 E S(I)}. Thus

. ..
1

.
.j

mm °)mi = ‘
—

>2 -y2nr = mr
“ yES,(I)

., .J — 1
mm o )mr — Jnr

(2) Let the sequence X. be approximately J-syinmetric. Then the sequence n ‘—‘ jXn

is approximately I-symmetric.

(3) Let the sequence X. be approximately I-symmetric. Then X. is also approximately

J-symmetric, and X X 01 J\I.

Proof: (1)

3nm °
= (n

— IID!(m — IJI)! >2 >2 1r.yinm1ry’imr

7ESn(I) 7’ES,,(J)

= (n IID!(m — IJI)! >2 >2
7ES.(I) y’ESn(Ju{m+i n})

where

= 1) + 2)

1
c(i) —

______

‘‘

1c(2)

______
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Now the number of terms the sums2 is precisely (n — a)!(1 — cn_,,(b — a, m — a; 0).

Sinceim.,cn_a(b—a,m_a;o) = 1, we have that lim ,,,,,S = 0.

Then
Let y’ be any element of Sm+b_a(I) for which 71(J \ I) = {m + 1,... ,m + b — a}.

(n — m)!
71n (m+b-a)1y’(m+b-a) mXm

yES,, ( J)

But (n — b)!(n — m)!/(n + a — m — b)!(n — a)! = c_,,(b — a, m — a; 0) which converges to

1 as n —, co. Comparing with the definition of we see that

Thus

X,, = cn_a(b — a, m — a; 0)j (m+b_,,)lr.y?i(m+b_o) mKm + s2

ln00lIXn 3n(m+b_a)y’1(m+b—) mXmII 0

so that X. E $. The particular form of X derives from the fact that in each si’ the
AJ’r factors are occupied by IJ\I.

Corollary 2.3. Let I . .
.
I be a finite collection of disjoint finite subsets of IN and set I =

U,1Ik. Let £ E IN and let a be any map of {1,..., £} into {1,... ,k}. Let ,xt]
be a collection of sequences such that x.t’ E V’’ for alit’ E {1, . . . ,t}. Define the

sequence Y. by

= x’]x1 . . . xl (2.2)

For each k’ e {1,, . ., k} form the sequence Z.’1 from the right hand side of equation (2.2)

by replacing all X for which a(t’) lc by the identity I,. Then Y. lies in Y1, ZJc1 lies

in Y1”, and
(2.3)

Proof: By Prop. 2.2(3) for each £‘ E {l,... ,t]} the sequence x.[L’l is approximately I-

symmetric, and as a product of approximately I-symmetric sequences, so is Y. By Proposi

tion 2.2(3) each lies in C(K(A),A”(’) ®II\I,,,). Since the Ik’ are disjoint x[L’],

and X[L 1 commute when a(t’) a(t”). For each k’ we gather together the contributions

to Y,j for all £‘ such that a(t’) = k’ together as Z”’ 0 So Y,, factorises over the

A’h yielding equation (2.3).

3. Mean-field dynamical limits and the preservation of I-symmetry.

We continue the conventions of the previous section. For each n E IN and t E 1 let

: A’1 — A’1 be a completely positive, identity preserving contraction, such that for

fixed n, = e” )>o is a strongly continuous one-parameter semigroup on A’1 with

generator G.

From a physical point of view one can say that the family (T,fl)flEN has good

mean-field properties if is maps approximately symmetric sequences into approximately

symmetric sequences, i.e. if for all X j) and t 0 the sequence n — T1,X lies

in ).. If this is the case, one naturally tries to define a limiting evolution on

the limit space C(K(A)) by = It not a priori clear that T,00 is

well defined as a strongly continuous contraction semigroup on C(K(A)). However, in

[1, Theorem 2.3] , it shown that this is the case if and only if the set of sequences

{X. X, E Dom(Gn): 11G11X1111 uniformly bounded } is dense in )2. We will not repeat

the proof of this result: it occurs as a special case of the generalization which we will make.

We now seek to extend the general results of [1] to sequences of semigroups which

for some finite subset I of 14 preserve approximate I-symmetry. We will say that a se

quence n —+ T, of uniformly bounded linear maps on A’1 is approximate I-symmetry

preserving if for all X E Y1, the sequence n ‘— T11X11 is approximately I-symmetric.

Lemma 3.1. Let I be a finite subset of IN and let T. be a sequence of approximate

I-symmetry preserving maps. Then T,, : X — (T.X.) is well defined.

Proof: Let X E j with Xj, = 0. Then

II(T.X.)II = lim 11T11x11W sup IITII lim IIXII = 0
11—’OO nEN

As remarked in [1] , the existence of a limit for sequences of unbounded linear op

erators is not so clear. For each n E IN let F,, be an unbounded linear operator on A’1

with domain Dom(P11). For each finite subset I of IN, we denote by Von’(P) the sequence

space

n’(P){XES”lXnEDomPnforallnandP.X.ES”}

In view of Proposition 2.2(4) we see that when I C J, Ikxn’(P) C
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If Ti,. is approximate I-symmetry preserving, then by Lemma 3.1 the map T( on
C(K(A), A’) is well defined. For X E Vem’(G) we can try to define a limiting generator on
C(K(A),A’) by G : X, (G.X.), with domain (Thm’(G)). We see in the following
theorem, that under very reasonable conditions on the C,,, G, is not only well-defined,
but that T( is a strongly continuous contraction semigroup on C(K(A), A’) which has
G, as its generator.

Theorem 3.2. For each n e N let (Ti,,, e” )i>o be a strongly continuous semigroup
of completely positive contractions. Let I be a fixed finite subset of IN. Then the following
conditions are equivalent:

(1) For each t, Ti,. is approximate I-symmetry preserving, and the set of sequences X
with X,, E Dom(G,,) and tG,1X,, uniformly bounded is dense in Y’.

(2) The operator G with domain (Vcm’(G))’ is well-defined, closed, and generates a
semigroup of contractions on C(K(A), A’).

Moreover, if these conditions are satisfied, = et, and Ti,. will be said to have a
mean-field limit on C(K(A),A’), namely, T(00.

We omit the proof of this theorem, since it can be obtained by repetition of the steps
of the proof of Theorem 2.3 in [1] , using I-symmetry and I-symmetric sequences and
operators instead of their symmetric counterparts. For I = 0, the above result reduces
to the equivalence (2).==.(5) of the theorem in [1] . Although the above statement is
sufficient for our present purpose, note that all the statements in the theorem of [1] , and
their proofs, generalize to the I-symmetric case.

For the case the ordinary mean-field limits on the commutative algebra C(K(A)), it
was demonstrated in [1] that for certain classes, T,00 is implemented by a flow on K(A).
(Note, however, that there are mean-field limits which are implemented by diffusions,
rather than flows). For such limits, the generator C00 is a derivation on its domain. If
the C,, are sufficiently local (in the sense that they are approximately polynomial) this
can be seen as a reflection of the combinatorial fact that commutators of approximately
symmetric sequences are null in the seminorm (2.1). If I 0 this is no longer the case,
and the G need no longer be a derivation even if C00 C is. However, we shall see
that some classes of generators do behave as derivations on certain sequences.

In the following definition we shall retain the usual assumptions that for each n E N,

t i— Ti,,, = etQ, is a strongly continuous one-parameter semigroup of contractions on A”

with generator C,,.

Definition 3.3. For all finite I C N, let Ti,. have a mean-field limit T, on C(K(A), A’)

with generator G,,. We shall say that the family of generators {G, I I C N: hI <oo}

has the disjoint derivation property if for all finite disjoint subsets I and J of N and

if for all X E Voin’(G) and Y E Thm(G) then X ® Y E Dom(C) and

Y) = GX ® Y + ® (3.1)

The strength of the disjoint derivation property is that if it is satisfied, we are able

to prove a factorisation property of correlation function for strictly local observables (i.e.

those of the from i,,1X for some fixed finite I and X e A’), rather than just completely

syrnmetrized observables (i.e. those of the form j,,,X). This property can be seen in its

simplest form in the following proposition.

Proposition 3.4. For all finite I and t 0 let Ti,. have mean-field limits on

C(K(A), A’) and let the corresponding family of generators have the disjoint derivation

property. Then for I and J disjoint, xj, C(K(A), A’) and Y E C(K(A), Al then

T(’(Xj, ® Y) = T’00Xj, ® T/Y (3.2)

Now IITihI is bounded, and it follows from the general theory of contraction semigroups

(e.g. [22] ) that 8ince Xi,,, lies in Dom(G,) (resp. Y, in Dom(G)) so does

(resp. Thus the above expression is zero by virtue of equation (3.1).

Proof:

rI
00
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dsTi(T’.,,00X,®T00Y00
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ds,{Cu1(T1 Xø7,,00Y)
00 t—i,oo
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We shall say that the semigroups Ti,. have the disjoint homomorphism property
Proposition 4.2: Nested correlation functionals. Retain the assumptions of Propo

if for all finite I C ! they have mean-field limits on C(K(A), A’), and if furthermore
sition 4.1, but define instead

equation (3.2) is satisfied for all t 0, for all finite I, J C I with X E C(K(A), A’) and

and Y E C(K(A),A). A brief density argument shows that this is the case if and only =T31,(XiT32,(X4.] . . .r3,,x1)...)) . (4.2)
if

For each Ic’ E {1,.. . , k} form the sequence Z.[k’l from the right hand side of equation (4.1)
= T 0 t,oo by replacing all X for which cz(’) k by the identity In. Then Y. lies in Y’, Z.[k’l jj

in )2” a.nd
YZ[’]j,o...®Z1

4. Correlation functionals.
Proof: Let U. E 5”i for some j {1,. . . k}, and let s 0. Assuming the truth of the
proposition, then by Corollary 2.3 the sequence n p—’ U,,)!,, lies in j, and

In this section we shall show how, for a mean-field dynamical semigroup (T,)flw with

the disjoint derivation property, the evolutions of I-symmetric sequences for disjoint I C I (U.Y.) z’1,®... ® uz[’] ®... o
become independent in the limit n — 00.

Since Ti,. has the disjoint homomorphism property, we can use the factorisation of equation
(3.2) to conclude that

Proposition 4.1: Multi-time correlation functionals. Let Ti,. be a mean-field dy
— “r” z[’]” ® ... ® (Tu,,z[i],) ® . .. ® ‘T” Z1”.a,00 00)a,00 00)namical semigroup which has the disjoint homomorphism property. Let I . . . I, be a finite

collection of disjoint finite subsets of t and set I = Let £ Ic and let a be aiiy Since I, is trivially approximately I-symmetric, we can use this argument for m taking
map of {1,. .. , £} into {1,. . . , k}. Let . . , XLI] be a collection of sequences such that in turn the values £, £ — 1,. . . , 2, using Ts,,,m(X4”1...T3,,,Xk1)...) in place of Y,,, with

E (*‘) for all € {1,... , £}. Let (sjs)j’ be a collection of non-negative real
A,, in place of U,, and 8m—1 in place of a, and hence conclude the statement of the

numbers. Define the sequence Y. by proposition.

Yn = (T .. .(TsjnX1) . (4.1)

For each Ic’ E {1,... , k} form the sequence Z.[k’] from the right hand side of equation (4.1) Example 4.3. Perhaps the simplest application of Proposition 4.3 is when Ik’ = {k’}

by replacing all X for which a(t’) k by the identity I,,. Then Y. lies in Y’, z.[k’l lies for all Ic’, and x’ = i{kI}W[’’l for Ic’ = a(t) and some w[L’l E A{k’}. From Proposition

in y1h’ and 4.2 we obtain the factorisation of the nested one-site correlation functionals.

= z[h]ht 0... 000 00 00

Now for any p € K(A) and ci K(A’) we have

Remark: Since the Tc,n are identity preserving, replacing any X by I,, in Proposit lim (ci ® {l...n}\I, Y,,) = (ci, Yj(p))ion

4.1 amounts simply omitting the factor T,, ,x41 from the definition of Xv” for Y. given in either Proposition 4.1 or Proposition 4.2. So the limiting correlation func

tions on sequences of products states on A” with local perturbations on A’ may be calcu
Proof: This follows immediately from Corollary 2.3 upon noting that since T, is ap- lated. Note that the results also extend to wealdy convergent sequences of states as defined
proximate I-symmetry preserving for all I, the sequence is ‘—b T,t,,nXJi1 is in S”(”) for Def. 111.2 of [9] . In our extended formalism, these become sequences of states ‘pn on A”
aUL’E{l,...,L} suchthatforagivenIandforallXE’,

I lim (ço,,,X,,)
= f d.c(p)(ci,Xj,(p))

—‘00 JK(A)
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where is some probability measure on K(A), and for each p e K(A), o is some state

on A’.
each finite I c t define C 32 by

Although Propositions 4.1 and 4.2 ve a factorisation of correlation functions over ‘
= {X E = jm(X), n m,limX Xm E Am}

different sites, the mean-field formalism does not furnish any easy method for obtaining the

one site correlation functions. However, there are systems for which these one-site correla-
We shall call m the degree of X E and km its limiting element, as so defined.

tion functions may be calculated for a sufficiently large subalgebra of one-site observables

Proposition 5.2. Let C. be a bounded polynomial generator of degree g, and let I be[16].

any finite subset of I’l. Then j)’ c Thrn’(C) and GJ)’ C 37g. Let the sequence X E ii be

5. Example: bounded polynomial generators.
of degrees. Then G.X. is of degree g + s—i, and j(G.X.)j011 511C,IIlVzlI•

In this section we ve an example of a class of mean-field dyncal semigroups which
Proof: For notational simplicity we take the case that I {i, 2,... , I}. This involves

has the disjoint homomorphism property. This is the class in which the generator is
no loss of generality since we can map any I onto this set with a suitable permutation, the

obtained for all n larger than some fixed g, by resymmetrization of C,, and multiplication
corresponding automorphism leaving the permutation symmetric operator G invariant.

by a scaling factor (n/g). Gg itself will be the generator of a norm-continuous semigroup
of completely positive maps. These are discussed in [23] and [24]

. Since we are free to choose Z ‘maE,

Definition 5.1. A sequence of operators C. = (G)>,, with C E B(A) will be called
Sym GgjXz Sy

a bounded polynomial generator of degree g if We collect together all terms in C,X,,, into terms of the same overlap between C, and Xm.

C,, — Syni,, ,
First note that since is identity preserving, the terms of overlap zero vanish identically.

Second, note that since c,,(z, y; ,.) = O(n), the contribution to G,,X,, of terms of overlap

where C, is the generator of a norm-continuous semigroup of completely positive unital
between 2 and min{g, z} — 1 is O(n1). This leaves the terms with overlap 1, and one

calculates that
maps on íP, and the symmetrization operator Sym,, U 13(Atm) —+ L3(A”) is defined

Sby n

SymCm ir1(Gm ®idn_m)
CDX,, = —c(g,x,1)j >ic1(idz_i ®G,)ir.(X’ ® I,_i)+ O(n’)

g

ES

for all m n and Cm e 8(Atm). where -y5 is the element of S,_1 which exchanges y and z. (y is just the identity). Since

lim,,.+m(n/gs)cn(g, x; 1) = 1, and since the terms of overlap greater than 1 have degree

This type of generator occurs frequently in applications. However, the bounded
less than g + z — 1, GX lies in and is of degree z + g — 1. Finally,

polynomial generators are certainly not the broadest class of generators possessing the
disjoint derivation property. Indeed , one can extend the results of this section to treat

(C.X.)I = IICnXnlI xIIGgIInIIx:I = iGgItIvzII.

approximately polynomial generators, as defined in [1]. One can show (see [1] ) that each
C,, is also the generator of a norm-continuous semigroup of completely positive maps on
An.

We will fix a dense subset of each j)’ with which it will be convenient to work. For
Recall now that c C(K(A), A’) is defined to be Y,. The proof of the following

Proposition is adapted from one in [1]
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Proposition 5.3. Let G be a bounded polynomial generator with Tt. = e for alit O
Fort <r = we can take the limit m —* oo and conclude that can

Then
be approximated uniformly for large n by approximately I-symmetric sequences and so
(T,X) E P. Note that T is independent of X.

(1) For a.ll finite I C 14, T. is approximate I-symmetry preserving.

We extend to the whole of j)’ by continuity, and finally for all L E R by joining
(2) For all finite I C 14, Ti,. is a mean-field dynamical semigroup on C(K(A), A1) with

together the solutions on successive intervals of length less that T.
limit 7’ =

(2) From Proposition 5.2, IIGX,, is uniformly bounded in n for each X E LV’. Since
(3) 7” is a core for G’ )‘ is dense in 5’, the conclusion follows from (1) above and the implication (1)==(2) of

Theorem 3.2.
(4) The family ofgenerators {G I I c 14: l <oo} has the disjoint derivation property.

(3) By taking the limits n and then m — co in equation (5.1) we conclude from the
power series approximation that all polynomials p e 7” are analytic for G when t <r, in
the sense that T’p can be expressed as the convergent power series Eo(r!)_i(tGjTp

Proof: (1) Let g be the degree of G. and let X E LV’ be of degree z. Iterating the integral when t <T. Each term in this sum is itself a polynomial, so the partial sums of the series
equation for we write are polynomials approximating Replacing p with the polynomial Gp in the series,

we we find that
TXfl £,n t,n ‘

where
= lim (Gj,)T+1p = lim G %(Gyprn—i

—

, rn
r=O r=O

t,TI —

We conclude that for t <r, p 7’ and e > 0 we can find pE such that
and

I.S

= I darn... / diTaj,n(Gn)mXn . T’00p— pj1 <e and IG(T’p — pE)JI <c . (5.2)
Jo Jo

By Prop. 5.2 (G.m)X. E for all m 14. is a contraction. Thus
In fact, this conclusion holds for all t > 0. We demonstrate for t <2T: the argument

trn -
lim IITt,X —x)ii < — lim I(G)mXnII may be iterated fort < 3r, t <4T and soon. Let s,t <r. Given p we can choose

m!
rn—i p E 1” satisfying equation (5.2). Since pE E 7”, then for all 6> 0 we may pick q5 E

_ Ggjjmnxz fl(z+p(g—1)) . such that
m

IITi — q’5j <6 and IIGi(T,0/
— q6)j <6

Nowfora,b,mE1N Thus
rn—i rn—i

— qII IT, (T’,0p pE)j + jTpE
— q611 E + 61

—j fl(a+pb)< --j fl(a+(m—1)b—p)
p=o p=0 while

= (a + (rn— 1)b) 2(m
IIGT1,p— Gq6lI IITG(p — pE)Il + IIG(TpE

— qHI e +6

Thus

lim IITt,X — x’l 29(2’tIIG9II)mIIXII . (5.1) where we have used the fact that T’ is a contraction. By choosing and then 6 sufficiently

small, we see that the desired approximation is possible.
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The set = U0TfP’ is a dense T’-invariant subset of Dom(G,), and is hence
a core for From this and the above argument, we conclude that the subset P’ of Il

is also a core for G,.

(4) Since, by Proposition 5.2, the action on G. is determined by terms of overlap 1,
it follows that

® jY,) = ® (5.3)

= +jj,X ®(GjY)

Thus there are no mixed terms involving C. acting on both X. and Y. Since by (3) above,

P’ is a core for Gj, for all I, we can approximate any sequences X in Thrn’(G) and I’
in Thm(G) by polynomials, then take the limit of the expression (5.3) to conclude that
Xj, 0 Y E Dom(G) and that equation (3.1) holds.

By Propositions 3.4 and 5.3 we see that the hypotheses of Propositions 4.1 and 4.2
arc satisfied mean-field dynamical semigroups with bounded polynomial generators.

Appendix: Invariance of the predual under limiting Rows.

An interesting special case of the theory of mean-field dynamical semigroups, which turns

out to be important for applications, occurs when A is * isomorphic with a von Neumann

algebra. In this case will not distinguish notationally between A and the von Neumann

algebra to which it is *isomorphic According to [25] , the *isomorphism exists if and

only if A is the dual of a Banach space. If this is the case, we will denote this preduai of

A by A,. A, can be viewed canonically as a closed subspace of A’.

For certain classes of mean-field dynamical semigroups, the mean-field dynamical

limit is implemented by a flow: for X E Y and all p E K(A),

lim(p’,TtX) = (T,X,,)(p) = X(Ftp)

for some continuous flow (F)>0 on K(A). The following main result of this section
establishes conditions under which the set of normal states K(A) n A, is invariant under

the limiting flows of mean-field dynamical semigroups.

In the following, we will denote the dual of any T E 5(A) by T’ i.e. T’ is the element
of B(A’) such that (T’w, A) = (w, TA) for all w E A’ and A E A.

Proposition A.1. Let A be a C* algebra with predual A,. Let T be a mean-field
dynamical semigroup such that T is implemented by a flow (F)>o. For each n E t
let have the property that its dual T action on (A’s)’ leaves the closed subspace
(Aj. invariant. Furthermore assume the following continuity condition on Tt,.: that for
all e > 0 there exists an nE such that for all n ne and A E A

IITtnjni4 — jnmTt,mjmiAlf <eIL4U . (A.1)

Then the set K(A) fl A. of states in the predual of A is invariant under each F.

Before we proceed with the proof we will note that the same conclusion was reached in
[10] for the class of (in our terminology) mean-field dynamical semigroups with bounded
polynomial generators (with the possible addition of an unbounded polynomial hamiltoman
generator of degree 1). As is well known [23] , these have the property that each
preserves (A”),. Indeed, the treatment in [10] was carried out entirely in the pre-dual
spaces. We will see that the mean-field dynamical semigroups of bounded polynomial
generators satisfy the continuity condition of Proposition A.1.

To prove our result we will need the following technical result, in which we quote
without proof some results from [26, p77]

Proposition A.2. Let A be a C*algebra with predual A.. Let w E K(A). Then w is
normal if and only if w(A) = sup (Aa) for each increasing net (Aa) in A with least
upper bound A.

Proof of Proposition A.1: Let (Au) be an increasing net in A with least upper
bound A E A. Since the net is increasing we have that IAaj hAil for all cz. By the
continuity assumption in equation (A.1), then for all e > 0 we can find an ne such that
for allnne,BEAand pEA.

(Ftp, B) — (Tt*pn,jniB)I <ellBhl

0 (Ftp, A — Aa) 2ehlAhi + (Tp”,jiA
— jniAcx)

= 2ellAhl + (jT*p,(A
— A) 0 In_i)

Since ,,p” is normal, the restriction of its symmetrization j,,,F’,,p” to the subalgebra
A® ‘n—i of A” is also normal. Thus we can take the supremum over o on both sides and
use the “only if” part of Proposition A.2 to conclude that

0 (Ftp, A) — sup(Fp, Aa) 2ehiAhl

Thus for n a6
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Since e is arbitrary we conclude again by the “if” part of Proposition A.2 that Ftp is

normal.

Proposition A.3. Mean-field dynamical semigroups with bounded polynomialgenerators
satisfy equation (A.l) for all tin some compact interval. Hence if A is *..isomorphic with
a von Neumann algebra, the limiting flows preserve the set of normal states.

Proof: Let = with G, = (n/g) Sym C9 for some g and for all n g, and let

F be the continuous flow implementing From equation (5.1) we see that equation

(A.1) is satisfied for all positive t < r = (29111G911)’. If A has predual A., then by

Proposition A.1 the flow F preserves the set of normal states for all t <r, and hence for

all t 0 by composition.
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