T. D. MCCNEA

Department of Mancationg Thysics, Unavereity Coluce',
Belfield,
Dublin, $\quad=$

- and -

School of minorotinnt piycica Dublin
Inctitute for Adrmeda Stucies.

ABSTEACY

A stationary cylindrically symmetric electrovac solution of the Einstein-marweli cuuations is dexived in which the eiectronagnotio ilaid ia null. Tho resulting space-time contsins no hosenumoes - mbroconal killing rields so that it is non-static.

Despite the existence of well known bona fide (i.e. nonstatic) stationary axially symmotric electrovac solutions to the Einatein - Maxwell cquations, it is difficult to find such solutions for the case of cylindrical symmetry in the literature. The only example in the exhaustjve survey of Kramer, Stephani, MacCalium and Howlt (1980) is that due to W11son (1968). However a carofuj check of the latter shows that it is not in fact an electrovac solution (this has subseguently beon checked by M. MacCallun who sones to the same concIustion). The stationary cylindxiral Bolutions of Axbex and Som (19\%3) correspond to taking $w=$ constant in (2.1) below axd, as noted by the authors themselves, are simply static rields viewed from a rotating coordinate system.

In the p:esent paper we exhibit a stationary cylindrically symetric electrovac space-time thet has no hypersurface - orthogongl tinelife killing fields and is therefore non-static. The integration of the Einstetn-Maxwoll equations is facilitated by baking the electromagnetic fiold to be mull. In $\$ 2$ the metric is derived and in $\S 3$ the properties of the resulting space-tine are discussed.
2. THE METEIC.

The metric of a atationary cylindrically symmetric

electrovac space-time nay be written in the form

$$
\begin{equation*}
d s^{2}=-f(d t+\mathrm{Nd} \phi)^{2}+\mathrm{i}^{-1}\left[\mathrm{x}^{2} d \phi^{2}+e^{2 v}\left(d z^{2}+d x^{2}\right)\right] \tag{2,1}
\end{equation*}
$$

where (d, z, y, we quindxical coordinates and f, w and v are function of x oniv. The only non-zero compononts of the electronagnetic fieic tensor with mospect to the obvious orthonomat basis
$0^{0}=f^{\frac{2}{2}}(d t: w h), \theta^{2}=x^{-\frac{1}{2}} r d \phi, \theta^{2}=f^{-\frac{1}{2}} e^{v} d z, \theta^{3}=f^{-\frac{1}{2}} e^{v} d x$
nie $F_{03}=-\mathrm{F}_{36}$ sut $F_{13}=-F_{31} \quad$ The Einstein-Maxwell equations are

$$
\begin{align*}
& d F=0, \quad d^{*} E=0, \tag{2.3}\\
& R_{a b}=-k E_{a b} \tag{2,4}
\end{align*}
$$

where

$$
\begin{equation*}
F=F_{a b} \theta^{a} A \theta^{b}, \quad *_{F}=M_{a b c d} F^{c d} \theta^{a} \theta^{b} \tag{2,5}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{a b}=2 K^{-1}\left(F_{a} c_{b c}-\frac{1}{4} r_{a b} F_{c d^{c d}}^{c}\right), \quad k=8 \pi \tag{2.6}
\end{equation*}
$$

The indices xofer to the oxthonomal begis throughout.
We seek solutions of thess equations for which
$r_{03}=F_{13}=u\left(z^{2}\right)$ (say). This monns that the electromagnetic
fleld is mull with $\mathrm{k}^{\mathrm{a}}=(1,-1,0,0\rangle$ as the degenerate principal
null dixection and the only non-zero components oi E ab are E_{00},
Eol and E_{11} with
${ }^{K E_{00}}=K E_{0 I}=K E_{11}=23^{2}$.

The equations (2.4) reduce to

$$
\begin{align*}
& x^{2} f x^{\prime}-x^{2} x^{2}+x f^{4}+f^{4} w^{2}=x x^{2} \operatorname{tu}^{2} a^{2} \tag{2.8}\\
& \frac{d}{d x}\left(x^{-1} x^{2} w^{\prime}\right)=-4 u^{2} v^{2 v} \tag{2.3}
\end{align*}
$$

and

$$
\begin{equation*}
v^{\prime}=\frac{1}{4}\left(r^{-2} f^{2}-v^{-1} f^{2} w^{2}\right), \tag{2,10}
\end{equation*}
$$

while the equations (2.3) yield

$$
\begin{equation*}
u^{\prime}+u v^{\prime}=0 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2} u w^{\prime}-x f\left(u^{\prime}+u v^{\prime}\right)-u\left(f-x f^{\prime}\right)=0, \tag{2.12}
\end{equation*}
$$

Where prime denotes dexivative with respect to r.

Integration of equations (2.11) and (2.12) detemine u es a function of v and V as a function of r and r. Or substituting in (2.8) and (2.0) it is found that these two give the sane equation for f, so that what at first sight appeared to be an ovexdetemmed systen in in fact not so. Equation (1, 10) is then easily integrated. The final result is :

$$
\begin{aligned}
& x=4 a^{2} x^{2}+c r \log (p x) \\
& w=b+x^{-1} \\
& e^{v}=q x^{-\frac{1}{4}} x^{\frac{1}{2}}, \\
& u=a q^{-1} x^{\frac{1}{2} x^{-x}},
\end{aligned}
$$

where a, b, c, p and q are constante of integration with $p>0$, $a>0$. For the case in which $b \neq 0$ we can put $b= \pm 1$ without Ioss of generality, by simply rescaling the coordinates t, x and z and the remaining constants of integration.

Note that if $a=0$, so that there is no electromagnetic. field, we recover one of the three types of van Stockum (1937) vacum metrics (see also Tipler 1974, Bonnor 1980). A thin shell source has been constructed for this purely gravitational case by Jordan end Mccrea (1981) and the mass per unit coordinate length of z, calculated in accordance with a standard definition, was found to be $(1+c) / 4$ in the notation of the present paper. This would euggest that in the electrovac case the value of the constant c in (2.13) is a measure of tho matorial mass of the presuned source,
whlie cleaxly the value of a vorid be a measure of the charge. It would obviousiy be desizable to match the metric (2.1, 2.13) to a physically reacomable interion solution, but this has not yet been dme.

Since $E \equiv \operatorname{det}\left(g_{i j}\right)=-r^{2} e^{2 v} / f^{2}<0$ ihe signature of the metric is cornect everywhere. The coefficient of d ϕ^{2} is given by

$$
\begin{equation*}
\mathrm{g}_{\phi \phi}=x^{-1}\left(x^{2}-x^{2} w^{2}\right)=-r\left[a^{2} b^{2} 1+b^{2} 0 \log (p 1)+20\right] \tag{3.1}
\end{equation*}
$$

so that for suffieicntly large values or in tioe vestor field $\partial / \partial \phi$ is certainly timetike, which implies the extatince of chosed timolike curves. The exigtence of sur: dives iox smalleq values of x vill depend on the positive ox nezativi ciaracter of b, c sud $\left(x-p^{-1}\right)$. Tor the coxrespondins puraly pravitationat vacuum case ($a=0$) considexed by ven Stoclum, tinier and Heauox (case IT of Bonmox, equation (3b) of Tipler) where the vacimm exterior is matched to a dust intexior solution, the conctants b and c axe negative and $r>p^{-1}$ so that closed timeifine ourves are excluded. However, even in the purely gravitational case (Case III of Bonnox, equation (3c) of Tiplez) such lines do occur. Note that if $b=0, \quad \partial / \partial \phi$ is null for all felues of. r e

In one of the van stockum space-times (Case I of Bomor, equation (3a) of Tiplex) thexe axe timelike hypersurface-orthogonal (HSO) kiling fields which means that the field is, at least locally, static. For the metric (2.1, 2.13) with $b \neq 0$ if one considers a genexal killing field of the form

$$
\begin{equation*}
\xi=n_{0} \frac{\partial}{\partial t}+n_{1} \frac{\partial}{\partial \phi}+n_{2} \frac{\partial}{\partial z} \tag{3.2}
\end{equation*}
$$

where
Where $n_{0} n_{1}$ and n_{2} ane constants, it is found to be HSO if $n_{1}=-n_{0} / b, n_{2}=0 \quad 0 \sim i f \quad n_{0}=n_{1}=0, n_{2} \neq 0 \quad$ In the former case it is nall and in the latter spacelike. For $b=0, \quad \xi$ is HSO if ether $n_{1}+0 ; n_{0}=n_{2}=0$ or $n_{2}+0, n_{0}=n_{1}=0$ and therefore ξ in dgatu ethex null or spacelive. Thus the metric (2.1, 2.1.3) yeids nun-atcsto thationary space-time.

The Vegi iensax is of Petroy-type II, the degenerate principai nai direcra beirg the same as that of the electromagnetiic field. U tha is ourvoiure sealara (See, for instancc, Campbeij and Wainwaght isty my iwo are non-rexo, namely

$$
x_{2} \equiv 0_{a b}^{c d^{2}} c^{\operatorname{son}}=3 /\left(4 a^{4} x^{3}\right)
$$

and

$$
\begin{equation*}
x_{3}=C_{a b}{ }^{11} \underbrace{}_{c d} e^{f} C_{f f}=-3 /\left(16 q^{6}{ }_{2}^{9 / 2}\right) \tag{3,3}
\end{equation*}
$$

Where Cabed is the Weyl tensor. The remaining two pure Weyl scalars vanish jdentically together with all the pure Ricei and mixed scalars.
4. CONCLUSTON

```
The space time presented above is an example of a strictly (i.e. non-static) stationary cylindrically symmetric electrovac field. . The possibility of matching this solution to a plysically reasonable source is being investigated.
```

ACKMOWLDDGBENT

I am greteful to Dr. P.A. Hogan and Mr. S.R. Jordan for helpful discussions.

References.

Arbex in and Som M 1973 Huovo Cinento 133 AO-5A.
Bomor $H \mathrm{~B} \quad 1980$ J.Dhys.A:Math. Gen. 13 212 - 2132.

Jozdan S E and Mccrea J D 1981 (Papos abmitted to J. Priss.A: Math. Gen.)
Kramer D, Stephani H, Herlt E and RacCallum 1980 Exact Solutions of

van Stockum V 1937 Proc. R. Soc. Edin. 57 3.3=-IEt.
Tipler J 1974 Phys. Reve D 9 2203 - 2006.
Wilson $S J \quad 1968$ Canad. J. Phys. 46 2367-2562.

