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ABSTEACT

& staticnary cylindrically symmetric electrovac solution
of the Dinstein~Maxwell cyuations is derived in which the
electromagnotic iizid is null, The resulting space-time contains

no hypersursece - ovihepgonal killing fields so that it is non-static.
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Deepite the existence of well known hona fide (i.2. non-
gstatic) stationary'axially gymmetric electrovac solutions to the
Finstein -~ Maxwell egquations, it is difficult to find such solutioLs
for the case of cylindricel symnetry in the literature. The
only example in the exhaugtive gurvey of Kramecr, Stephani, MacCallum
and Herlt (1980) is that due to Wilson (1968). However a careful
check of the latter shows that it is not dn fact an electrovac
sclution (this has subseguently been checked by M. MscCallum who
comes to the same conclusion). The stationary cylindrical
polutions of Arbex and Som (1873} correspond to taking w = constant
in (2.1) below ard, as noted by the authors themselves, are simply

static fields viewed from a rotating coordinate system.

In the present paper we exhibit a gtationary cylindrically
gymmetric electrovac space~time that has no hypersurface — orthogonsl
timelile killing ficlds and ig therefore non-static. The
integration of the Einctein-Maxwell eguations is facilitated by
taking the electromagnetic field to be null. In §2 the metric
in derived and in §3 the properties of the resulting space-tine

gre discussed.



2. THE METRIC.

The metric of a stationary cylindrically symmetric

electrovac space-time may be written in the form
. L2 12 2 2v 2 2
as” = - 2t 4 wde)” + 2 [x7ag” + e (az” + ax’y]
whers (b, 7, vy wure syliudrical coordinates and £, w and v are

functiors of ¥ ouhy. The only non~zero componcnitg o¢f the

electromagnotic fi2id tensor with respect to the obvious orthonormal

bagsis
i i -1 . -2 3 R R
0% = 1% fav woAY, 87 = £ % rdd, 6”2 = 1 “eVdz, 67 = £ ZoVar
are FGS = - ECQ anG Fls = F31‘ The Finstein~Maxwell eguations
are
oz
ar = 0 , d¥ =20,
= ~ K K
Rab & o
where
= a b * 1 cd ,a b
i Fa’b 0 A 0" ¥ Moyed I 6/\6
and
- -1 c 1 cd
E = 2K ¥ i - ¥ ¥ = o
ahb K (a be 2% b ed ¥y K BT .

(2.1

(2.2)

(2.8)

{2.6)



The indices vefer to the orthonormal begeils throughout.

We seelk soluticna of thesge eguations for which

FOB = F1° = u(r) (say). This mesns that the electromagnetic
s
a
field 1s pull with k = (1, -1, 0, 0) as the degenerate principal

null direction and the only non-zeroe cownponents oi Eab are EOO’
EQE an By with w
c R =gk B = KE . = 949 . 2.7
I . i o1 11 24 (2.7
The equations (2.4) reduce to
2 . 2 .2 4 ‘ 2,2 T :
r?ffu< - r?f*/ 4 rELT - f w‘z = oar’ 2’ o s (2.8)
d 1.2 2 2v
e o = y 1))
ar & v 4u”o (2.9)
and
’ "‘2 ’: - /1
v o= i— e g% LT 2% e ? , (2.10)
while the eqguations (2.3) yield
u' +ouvy!' = Q (2.11)
and
2
Faw' - rf (' + uv') = uw (£ -~ r£') = 0, {(Z2.12)

vhere prime denotes derivative with respect to v,



Integration cf equatiocns (2.11) and (2.12) determine u
g8 & Function of v and w ag & function of r and Z£. On
subgtituting in (2.8) and (2.9) it ig found that these two give

the same equation fer £, so that what at first sight appeared to

he an over@eﬁermined systen ig in fact not so. Eqguation (1,10} is
then ezsily integrated, The final rgsult is :

£ o= 4azr2 4+ cr log {(pry ,

w = b+ rfwl s

ev = qrm% f% R

u o= aqml r%ﬁué s

where &, b, ¢, p and g - are constante of integration with p > 0,
qg > 0. For the cage in which b + 0 we can put b = *1 without
logs of generality, by simply rescaling the coordinates t, r and =

and the remaining constants of integrastion.

Hote that i£ a = 0, go that there is no electromagnetic
tield, we recover one of the three types of van Stockum (1937) vacuum
metrics (see also Tipler 1974, Bonnor 1980), A thin skell source
has been constructed for this purely gravitational case by Jordan

end McClrea (1981) and the mags per unit coordinate length of 1z,

calculated in accordance wit g standard definition, was found to
be (I + c) / 4 in the notation of the present paper. Thisg would

suggest that in the electrovac case the value of the constant ¢ in

(2.13) is a measure of tho materiel masg of the presumed source;
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while clearly the value e¢f a would be a measure of the charge.

It would obviously be degirable to match the metric (2.1, 2.13)

t0o a physicelly reasonable interior solution, but this has not

vet been done.
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PROPERTIES OF THE SPACE-TIME

(g (>3 2
Since g = det (gij> = e r& eav / £ < 0 the

gignature of the meiric ig corvect everywhere. The ceoefficient

2
of dg is given by

. 2 2 Z A L~
g =1 (r = iw )= ~rjda b r + bz log (pri = a1 , (3.1}

so that for sufficiently large values or x tue velitor Ffield

8/d¢ ds certainly timelike, which implie: iLe eristence of closed
timelike curves, The exigtence of guch curves 1oy gmarler values

of » will depend on the poaitive or negat:ve character of b, ¢
=1 < . s
and {(r -~ p ). For the corregponding purely giavitational vacuum
caze {(a = 0) considered by ven Stockurn, Tinier and Ecnunor (Case II
of Bounor, equaticn (3b) of Tipler) where the vacuum exterior is
matched to a dust interior solution, the constazte b and ¢ sare
. -1 ey

negative and v > p 80 that closed timelilxe ~urves are excluded,
However, even in the purely gravitational caese (Case III of Bonuor,

equation {(3c) of Tipler) such lines do occur. Note that if

b =0, 09/0¢ dis null for all values of r.

fﬁ.éﬁé of thé van Stéckum‘spaééwfimGS'(Case I of Bomunnor,
equation (3a) of Tipler) there are timelike hypersurface~orthogonal
(HS0) killing fields which meang that the fiéld is, at least locally,
static, For the metric (2.1, 2.13) with b % 0 if one considers

a general killing field of the form



Y
i1
=
-+
=
..;..

ot 190 7 "o 9z (3.2)

where =n n_ and i, earce constants, it is found to be HSO if

o’ 1 p2
n, = no/b, n., = 0 ovr if no =n, = 0, nz % 0. In the former
cage it is nall and ia the latter spacelike. For b =0, £ 1is

. S s s . = = £ = .
3 ither ¥ . n r = 0 3 =
HSO  if eithes nl ¥ 0, n or i # 0, n n 0 and

therefore ¢ 1o egrin either null or spacelike, Thus the metric

(2.1, 2.83) yileids o non-stetic stationary space~tinme,

The VWeyl ienszr is of Petrov-type II, the degenerate
principal »u31 dircertuen being the same as that of the electromagnetiic

field, Ji the Lo curvaiure scalarsg {See, for instance, Campbell and

/

Wainwright 1677} only 1we ore non-zero, namcly

cd X 4 3
[, 2 L c = 4¢
I 5% e 8/(4q x )
and (3.2
o ed o, ef 6 _9/2
13 = bab Ced Cef~-3/(16q bA )]
vhers Cabcd is the Weyl tensor. The remaining two pure Weyl

gcalars vanish identically togethsr with all the pure Rigei and

mixed gcalars,



The space~-time presented gbove 1s an example of a
strictly (i.e. non~static) stationary cylindrically symmetri
electrovac field.  The pegsibility of matching this solution

to a physgically reasonshle source is being investigated.
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