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ABSTF.4cT

A sattiruary tylinaricafly symmetric eloctrovac solution

of the Einstuin-Mrawola equations is derived in which the

oloctro,sant:a ii ..Lci is null. The resulting apace—time contains

no
— vtl’ngonal killing fields so that it is non—static.



3

1. IN’n0DUCT ION

Despite the existence of well known bona fide (i.e. non—

static) stationary axially synotric electrovac solutions to the

Einntoin — Maxwell equations, it is difficult to find such solutio.s

for thc ease of cylindrical symmetry in the literature. The

only oxamp3 e in the exhaustive survey of Kramer, Stephani, MacCal lum

and lIcult (1980) is that due to Wilson (1968). However a carefu

cheeP of the latter shows that it in not in fact an eloctrovac

sclution (this has subDoquently boon chocked by M. MacCallum who

comes to the sawe conclusion). The stationary cylindrical

solutions of Arbox and Sent (1073) corrorpond to taking w constant

in (2.1) below aitd, as noted by tho authors themselves, are simply

static fields viewed from a rotating coordinate system.

In the p:esent paper we exhibit a stat ionary cylindrically

symmetric electrovac space—time that has no hypersurface — orthogenl

tinelite killing fields and is therefore non—static. The

integration of the Einstein—Maxwell equations is facilitated by

takir.g the electromagnetic field to be null. In §2 the metric

is derived and in §3 the properties of the resulting space—time

are discussed.
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2, 7fTE IflTjtIC.

The metric of a stationary cylindrically symmetric

electronic space—time .nay be written in the form

ds2 — fQlt ÷ wdØ2 + fLr2d2
+ e2V (dz2 + dr2)J (2.1)

wher: (6; v1 i) &itC ‘zylSudrical coordinates and f, w and v are

functio a if a- cnn y • The only non—zero compononts of the

electro;aac,ict1 fasid ten: or with respect to thc obvious orthonormal

basis

= Cdt : wC”), rd, 02 1 1edz, = fodr (2.2)

are F P4, tinct F = — F • The Einstein—Maxwell equations
13 31

are

d*F0, (2.3)

Rb t E, $ (2.4)

where

F Fb 6A
=
1%iircd

F’
0a0b (2.5)

and

= 2iC3 (FcFb — 411 abTci ), it = 8w • (2.6)
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The indicor rotcr to the oithonormal bvss throughout.

We seek rolutions of those ouations for which

F13 u(r) (say). This moans tat the electromagnetic

afield is null with It = (1, l, 0, 0) as the degenerate principal

null direction and the only non—zero components 01 are S00,

and with
-

2t1° . (2.7)

mci equations (2.4) reduce to

r2ff’ — r21’2 + rfl’
÷
f4 w’2 ar”°’? c7, (2.8)

-i-- (r f2 w’) = —4u2o2 (2.9)

and

= -

CrC2 f2 — r f2 w’2) , (2.10)

while the equations (2.3) yield

& + ui,t = 0 (2.11)

and

f2uw’ — rf (ii’ + ui,t) — u Cf — rf’) = 0 , (2.12)

where prime denotes derivative with respect to r.
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while clearly the vc.luc of a would be a measure of the charge.

it v’ould obviously be desirable to match the metric (2.1, 2.13)

to a phyuict..lly reasonable interior solution, but this has not

yet been dnne.
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3. PROP)WTXflS OF THE SPI’CE-TIPSE

Since g dot (gjj) — r2 e2V / F < o the

signature of the metric is correct overywtere. The coefficient

2of d is given by

f1 (r2 f2w2) = ..r&ahr + bTh £0! (pr) •‘ •ibJ , (3.1)

so that for sufficicutly large valuoc eY r the “e.tor field

an is certain’y timeLike, which impl±o. Ui. erfstcnce nf closed

timtliko curves. The oxiut’,nce of suo% ounce cr sasflor values

of r will depend on the positive or nogat; uharacter of b, c

and (r — p1). For the correapondic pur&:y gi3vltational vacuum

case (a 0) considered by van Stockum, 7iper aa Pruor (Case II

of l3onnor, equation C3b) of ‘fipler) where th vacuum exterior is

matched to a dust interior solution, the comtant. b and c are

negative and r > p_i so that closed timeitke ‘urves are excluded.

However, even in the purely gravitational case (Case III of Bonnor,

equation (3c) of Tipler) such lines do occur. Note that if

b = 0, is null for all valuos of r.

I one oi the van St&ckum spac-times (Case I of Bonnor,

equation (3a) of Tipler) therc are timelike bypersurface—orthogonal

(1100) killing fieids which means that the field is, at least locally,

static. For the metric (2.1, 2.13) with b + 0 if one considers

a general killing field of the form
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4. CONCLUSION

The space—timo presented above is an example of a

strictYy (i.e. non—static) ctationa’y cylindrica3ly symmetric

electrovEc Liolci. Tbe pousibility of matching this solution

to a physically reaaonable source is being investigated.
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