S. R. JORDAN

Department of Mathematical Physics, University College, Belfield, Dublin, 4. and Calloy Regional Technological College.

AND
J. D. MCCREA

Department of inathematical Physics, University College, Belfield, Dublin.
1.
and
School of theoretical physics,
Dublin Institute for Advanced Studies.

ABSTRACT.

Israel's hizthod for treating surface layers is applied to determine the gravitational field due to a rotating cylindrical shell. The inverior space-time is flat while the exterior netric can be one of trorec fyper. For a given value of the stress in the cylinder, the type of the exterior metric depends on the mass per unit co-ordingtc lengtl of the cylinder.

INTRODUCTIGN

The problem of determining the gravitational field due to a rotating infinite cylindxical shell has been discussed by Frehiand (1972) and Papapetrou, Macedo and Som (1978). However in these papers the authors have restricted theix attention to one form of the exterior metric Whereas it is known (Van stuchum 1937, Tiplex 1974, Bonnor 1980) that there axe three real forms for the exterior metric depending on whether a certain constant of integration is positive, negative or zero. In the present work we shal2 use Isracl's (1366) method for constructing gholl sources to matck in thoix most general form, the three exterior Corms of the metric to the fintexior metric, which is necessarily flat (Davies and Caplan, 1971). It is shown that the form of the exterior netric depends on whether tho mass per linit coordinate length of the cylinder is less than, equal to or greator than a certain critical value. As a particular example we discuss briefly the case of a shell composed of dust.

In Section 2 we calculate the three exterior and the interior vacuum metrics for a stationary cylindrically symmetric field in their most general form. In Section 3 we apply these metrics to the problem of an infinite cylindrical shell of coordinate radius $r=a$ and find the surface energy tensor and mass per undt coordinate length of the shell for each of the three extertor metrics. In Section 4 we give the restrictions on the metric constants, imposed by physical considerations. In Section 5 we evaluate the proper density and the principal stresses on the shell, which we then use in Section 6 to show that for a given
stress, the value of the mass per unit coordinate length determines the type of exterior metric.
§2. GENERAL SOLUTION TOR A STATIONARY CYLINDRICALLY SYMAETRIC

VACUUM FIELD.

A stationary field with cylindxical symmetry has a metric of the form

$$
\begin{equation*}
(d s)^{2}=-e^{2 \lambda}(d t+v d \phi)^{2}+e^{-2 \lambda}\left[e^{2 \gamma}\left(d r^{2}+d z^{2}\right)+r^{2} d \phi^{2}\right] \tag{2.1}
\end{equation*}
$$

where x, z, ϕ axe cylindrical coordinates and λ, ν and γ are functions of r only. The vacuum field equations $p_{i j}=0$ reduce to

$$
\begin{equation*}
\frac{d^{2} \lambda}{d r^{2}}+\frac{1}{x} \frac{d \lambda}{d r}+\frac{1}{2 r^{2}} e^{4 \lambda}\left(\frac{d \nu}{d r}\right)^{2}=0 \tag{2.2}
\end{equation*}
$$

end $\frac{d y}{d r}-x\left(\frac{d \lambda}{d x}\right)^{2}+\frac{1}{4 x} e^{4 \lambda}\left(\frac{d v}{d x}\right)^{2}=0$.

The fixst integral of (2.3) is

$$
\begin{equation*}
\frac{d v}{d x}=2 b x e^{-4 \lambda} \tag{2.5}
\end{equation*}
$$

Where b is a constant and substituting this into (2.2) yields

$$
\begin{equation*}
\frac{d^{2} \lambda}{d \rho_{1}}+\frac{1}{\rho_{1}} \frac{d \lambda}{d \rho_{1}}+2 e^{-4 \lambda}=0 \tag{2,6}
\end{equation*}
$$

where $\rho_{1}=$ br. The transformation $\rho_{1}=e^{x}, y=\lambda-\frac{1}{2} x$ then gives

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=-2 e^{-4 y} \tag{2.7}
\end{equation*}
$$

Which has a first integral of the form

$$
\therefore d x= \pm \frac{d y}{\sqrt{e^{-4 y}+p}}
$$

where p is a constant.

We distinguish three different types of solution as follows:

Case (i) where $p>0$, Case (ii) where $p<0$ and Case (iii) where $P=0$.

In each of the three cases equation (2.8) is easily integrated and on substituting tho ounsequent expression for λ in equations (2.4) and (2,5) wo eventually obtain the following three forms for the metric :
$\operatorname{Case}(1)(d s)^{2}=-\frac{1}{\alpha_{1}}\left[\rho^{1-c}-\rho^{1+c}\right] d t^{2}$

$$
\begin{align*}
& +\frac{2}{\alpha}\left[\left(\frac{\alpha-2 G}{2 \omega}\right) \rho^{1+c}+\left(\frac{\alpha+2 G}{2 \omega}\right) \rho^{I-c}\right] d \phi d t \\
& +\frac{1}{\alpha_{1}}\left[\left(\frac{\alpha-2 G}{2 \omega}\right)^{2} \rho^{1+c}-\left(\frac{\alpha+2 G}{2 \omega}\right)^{2} \rho^{1-c}\right] d{ }^{2} \\
& +D \rho^{\frac{1}{2}\left(c^{2}-1\right)}\left(\alpha^{2}+d z^{2}\right) \tag{2.9}
\end{align*}
$$

where $\alpha_{1}{ }^{2}=\alpha_{2}{ }^{2}=\alpha^{2}, \rho=|\omega| x$ and α, c, D, G and ω are constants ;
Case (i1), (ds) ${ }^{2}=-\frac{2 \omega x}{\alpha_{1}} \sin \beta d t^{2}+\frac{2 r \alpha}{\alpha_{2}}\left[\cos \beta-\frac{2 G}{\alpha} \sin \beta\right] d \phi d t$

$$
\begin{align*}
& \therefore \frac{\alpha r N}{\omega C_{1}}\left[\left(\frac{\alpha}{4}-\frac{G^{2}}{\alpha}\right) \sin \beta+G \cos \beta\right] d \phi^{2} \\
& +D \rho^{-\frac{1}{2}\left(1+c^{2}\right)}\left(d r^{2}+d z^{2}\right) \tag{2.10}
\end{align*}
$$

where $\rho=|\omega| r, \beta=2 \log \rho$ and α, C, D, G and ω are constants ind again $\alpha_{1}{ }^{2}=\alpha_{2}{ }^{2}=\alpha^{2}$;

Case (ili), $(d s)^{2}=-2 b r \log \rho d t^{2}+2 \varepsilon r(1-2 G \log \rho) d \phi d t$

$$
\begin{equation*}
+\frac{2 G r}{b}[1-G \log \rho] d \phi^{2}+D \rho^{-\frac{1}{2}}\left(d r^{2}+d z^{2}\right) \tag{2.11}
\end{equation*}
$$

where $\rho=|\omega| x, \varepsilon= \pm 1$ and b, D, G and ω are constants.

The above three cases correspond to the three types of cyIIndrically symmetric metxic discussed by Van Stockum (1937), Tipler (1974) and Bonnor (1980). In constructing p cylindrical shell source, Frehland (1972) and Papapetron et al. (1978) consider only Case (i). In the following sections all three cases will be studied.

We notice that, by means of the complex transformation $c \rightarrow i c, \alpha_{1} \rightarrow i \alpha, \alpha_{1} \rightarrow i \alpha_{1}, \alpha_{2} \rightarrow i \alpha_{2}$, we can obtain the Case (ij) metric from Case (i), as has been mentioned by Kramex, Stephani, MacCallum and Herlt (1980).

Case (i) is petrov type I for all non-zero values or c, except $c= \pm 1$ when it is flat and $c= \pm 3$ when it is petrov type D. Case (ii) is Petrov type I for all non-zero values of c nnc Case (iii) is Petrov type Ix.

The three cases above give the complete gencxal solution for a stationary vacuum field exterior to a cylindrically symmetric source. For the interior vacuum solution we can simplify these considerably using the requirements that the curvature invariants be non-singular along the axis $r=0$ and that elementary flatness holds along this axis.

In Case (iii) both the metric and its curvature invariants are singular at $r=0$.

In Case (ii) the curvature invariants are non-singular at $s=0$ only if $c^{2} \geqslant 3$, but the metric does not satisfy elementary ILatness there.

In Case (i) both the metric and its invariants are nonsingular on the axis $x=0$ only if $c^{2}=1$, in which case the metxic is Minkowskian. Applying the elementary flatness condition at $r=0$ we obtain the metric

$$
\begin{equation*}
(d s)^{2}=-\frac{1}{D} d t^{2}+D r^{2}\left(\frac{\omega}{D} d t+d \phi\right)^{2}+D\left(d r^{2}+d z^{2}\right) \tag{2.12}
\end{equation*}
$$

Without loss of generality wo can take $\omega=0$ in (2.12) since the transformation

$$
\phi^{\prime}=\frac{\omega}{D} t+\phi
$$

will xeduce (2.12) to the form .

$$
\begin{equation*}
(d s)^{2}=-\frac{1}{D} d t^{2}+D r^{2} d \phi^{2}+D\left(d r^{2}+d z^{2}\right) \tag{2.13}
\end{equation*}
$$

Which is the most general interior vacuum cylindrically symmetric metric. This is the interior metric used by Papapetron et al. (1978).

To avoid confusion with the constants in the exterior metric We will use the interior metxic

$$
\begin{equation*}
(d s)^{2}=-\frac{1}{L_{0}} d t^{2}+L_{0} x^{2} d \phi^{2}+L_{0}\left(d r^{2}+d z^{2}\right) \tag{2.14}
\end{equation*}
$$

33: INFINITE CYLINDRICAI SMELL.

We apply Israel's (1966) method for surface layers to the interion metric (2.14) and the three exteriox metrics of the previous section and thus constxuct, in its most general form, the gravitational field of an infinite shell. We assume that the coordinates (t, x, z, ϕ) are the same both inside and outside of the shell.

Case (i) :

Let the history, \sum, of the shell be given by $r=a$. The metric on \sum induced by its embedding in the interior spacetime is

$$
\begin{equation*}
d s_{-}^{2}=-\frac{I}{L_{0}} d t^{2}+L_{0} a^{2} d \phi^{2}+L_{0} d z^{2} \tag{3,1}
\end{equation*}
$$

and that due to its embedding in the exterior space-time is

$$
\begin{align*}
\mathrm{cs}^{2}= & -\frac{1}{\alpha_{1}}\left(\rho_{0}^{1-c}-\rho_{0}^{1+c}\right) \mathrm{dt}^{2} \\
& +\frac{2}{\alpha}{ }_{2}\left[\left(\frac{\alpha-2 G}{2 \omega}\right) \rho_{0}^{1+c}+\left(\frac{\alpha+2 G}{2 \omega}\right) \rho_{0}^{1-c}\right] \mathrm{d} \phi \mathrm{dt} \\
& +\frac{1}{\alpha_{1}}\left[\left(\frac{\alpha-2 G}{2 \omega}\right)^{2} \rho_{0}^{1+c}-\left(\frac{\alpha+2 G}{2 \omega}\right)^{2} \rho_{0}^{1-c}\right] d^{2} \\
& +D_{0}^{1\left(c^{2}-1\right)} d z^{2} . \tag{3.2}
\end{align*}
$$

where $\rho_{0}=|\omega| a . \quad$ The condition

$$
\begin{equation*}
\mathrm{as}_{-}^{2}=\mathrm{ds}_{2}^{2} \tag{3.3}
\end{equation*}
$$

yields three independent equations for the six unknowns L_{0}, α, C, D, G and ω. These are

$$
\begin{align*}
& L_{0}=D \rho_{0}^{\frac{1}{2}\left(c^{2}-1\right)} \tag{3.4}\\
& \rho_{0}^{1-c}=\frac{\alpha_{1}(\alpha-2 G)}{2 \alpha L_{0}} \tag{3.5}
\end{align*}
$$

$$
\begin{equation*}
\text { and } \rho_{0}^{I+c}=-\frac{\alpha_{1}(\alpha+2 G)}{2 \alpha L_{0}} \tag{3.6}
\end{equation*}
$$

In general, $i f x_{+}^{i}(i=0,1,2,3)$ aze the exierior coordinates and $x_{+}^{\perp}=x_{4}^{2}\left(\xi^{\mu}\right) \quad(\mu=0,2,3)$ is tile equation of the shell regaxded as embedded in the exterion space-ime, then the second fundamental form of \sum due to this embeddirs is

$$
\begin{equation*}
K_{\mu \nu}^{+\sigma}=n_{i / J}^{+} \frac{\partial x_{+}^{2}}{\partial \xi^{\mu}} \frac{\partial x_{+}^{j}}{\partial \xi^{v}} \tag{3.7}
\end{equation*}
$$

Where the vertical stroke indicates covariant derivative with respect to the exterior metric and n_{1}^{+}is a unit vector normal to \sum. In the same way the interior second fundamental form is

$$
\begin{equation*}
X_{\mu \nu}^{-}=n_{i / j}^{-} \frac{\partial x^{1}}{\partial \xi^{\mu}}-\frac{\partial x^{j}}{\partial \xi^{\nu}} \tag{3,8}
\end{equation*}
$$

Where the minus signs refer in an obvious way to the interior spacetime. Defining $\gamma_{\mu \nu}$ by

$$
\begin{equation*}
\gamma_{\mu \nu}=K_{\mu v}^{+}-K_{\mu \nu}^{-} \tag{3.9}
\end{equation*}
$$

the surface energy tensor, $S_{\mu} V^{\prime}$ of the shell is given by

$$
\begin{equation*}
-k S_{\mu \nu}=\gamma_{\mu \nu}-g_{\mu \nu} \gamma \tag{3.10}
\end{equation*}
$$

whexe $E_{\mu \nu}$ is the intrinsic metric on $\sum, \gamma=\gamma_{\mu}^{\mu}$ and $k=8 \pi$. The calculation of $S_{\mu \nu}$ is considerably simplified here since we are taking

$$
\begin{equation*}
\left(x_{+}^{0}, x_{+}^{1}, x_{+}^{2}, x_{+}^{3}\right) \equiv\left(x_{-}^{0}, x_{-}^{1}, x_{-}^{2}, x_{-}^{3}\right) \equiv(t, x, z, \phi) \tag{3,11}
\end{equation*}
$$

and hence the intrinsic coordinates on \sum are

$$
\begin{equation*}
\left(\xi^{0}, \xi^{2}, \xi^{3}\right)=(t, z, \phi) \tag{3.12}
\end{equation*}
$$

fiter some manipulation using (3.4), (3.5) and (3.6) we find that the non-zero components of the surface energy tensor are

$$
\begin{align*}
S_{00} & =\frac{1}{4 K a L_{0}^{3 / 2}}\left[3+\frac{4 G c}{\alpha}-c^{2}\right] \tag{3.13}\\
S_{30}=S_{03} & =-\frac{\alpha_{1} c_{0}{ }^{2} a \omega}{\alpha_{2} \alpha K}= \pm \frac{a \omega c L_{0}}{\alpha k} \tag{3.14}\\
\text { and } \quad S_{33} & =\frac{a L_{0}}{4 K} \quad\left[1+\frac{4 G c}{\alpha}+c^{2}\right] \tag{3.15}
\end{align*}
$$

Adapting Whittaker's (1935) theorem to the case of a surface Iayer (see McCrea 1976) we define the total mass, M, of the shell to be

$$
\begin{equation*}
M=\int_{\Sigma}\left(-5_{0}^{0}+s_{2}^{2}+s_{3}^{3}\right) \sqrt{-g^{(3)}} d z d \phi \tag{3.16}
\end{equation*}
$$

Clearly the mass will be infinite, but we can calculate the mass per unit length of z, M_{1}, to be

$$
\begin{equation*}
M_{I}=\frac{C M}{C z}=\frac{1}{4}\left(1+\frac{2 G c}{\alpha}\right) \tag{3.17}
\end{equation*}
$$

This agrees with the results of Papapetrou et. al. (1978).

Case (ii):

In this case we tale (2.14) as the intexior and (2.10) as the exterior metric. CCindition (3.3) yields the following three independent equations ror the gix unknowns L_{0}, α, C, D, G and ω :

$$
\begin{align*}
\operatorname{cin} \beta_{0} & =\frac{\alpha_{I}}{2 a \operatorname{LL} L_{0}}, \tag{3.18}\\
\cos \beta_{0} & =\frac{\alpha_{1} G}{\alpha a \omega L_{0}}, \tag{3.19}\\
\text { and } \quad D & =\rho_{0}^{-\frac{\alpha}{2}\left(1+c^{2}\right\rangle}, \tag{3.20}
\end{align*}
$$

Where $\rho_{0}=|\omega| a$ and $\epsilon_{0}=c \log \rho_{0}$.

Continuing as in Case (1) we can calculate the surface energy tensor, $S_{\mu \nu}$ and find the only non-zero components to be

$$
\begin{align*}
& S_{00}=\frac{1}{4 K a L_{0} 3 / 2}\left[3+\frac{4 \mathrm{Gc}}{\alpha}+c^{2}\right] \tag{3.21}\\
& S_{03}=S_{30}=\frac{\alpha_{2} c^{2} \omega L_{0}{ }^{\frac{1}{2}}}{\alpha_{2}^{\alpha K}}= \pm \frac{c^{\alpha} L_{0}^{\frac{1}{2}}}{\alpha k} \tag{3,22}
\end{align*}
$$

$$
\begin{equation*}
\text { and } S_{33}=\frac{\mathrm{aL}_{0}^{3}}{4 k}\left[1+\frac{\angle \mathrm{Gc}}{\alpha}-c^{2}\right] \tag{3.23}
\end{equation*}
$$

where again $k=8 \pi$. The mass per unit length of z, as defined in (3.16) and (3.17), for this case is

$$
\begin{equation*}
M_{1}=\frac{1}{4}\left(1+\frac{2 G c}{\alpha}\right) \tag{3.24}
\end{equation*}
$$

Case (iii):

Matching the interior metric (2.14) to the exterior metric (2.11), as in the previous cases, yields three independent equations for the five unknowns L_{0}, b, D, G and w. These are

$$
\begin{equation*}
L_{0}=D \rho_{0}^{-\frac{1}{2}} \tag{3.25}
\end{equation*}
$$

$2 \mathrm{G} \log \rho_{0}=1 \quad 1$
and $G=a b L_{0}$,
where $\rho_{0}=|\omega| a . \quad$ Using these, the non-zero components of the surface energy tensor $S_{\mu \nu}$ can be shown to be

$$
\begin{align*}
& S_{00}=\frac{1}{4 K \mathrm{aL}_{0} 3 / 2}[3+4 \mathrm{G}] \tag{3.28}\\
& S_{03}=S_{30}=\frac{\varepsilon \mathrm{abL}_{0}^{2}}{\kappa} \tag{3.29}
\end{align*}
$$

and $\quad S_{33}=\frac{\mathrm{LL}_{0}^{\frac{1}{2}}}{4 k}[1+4 \mathrm{G}]$.

The mass per unit length of z reduces to

$$
\begin{equation*}
M_{I}=\frac{1}{4}[1+2 G] . \tag{3.3I}
\end{equation*}
$$

54. RESTRICTIONS ON THE SURFACE ENERGY TENSOR.

Following Hawking and Elizs (1973) we require that for any vector u^{i} such that $g_{i j} u^{i} u^{j} \leqslant 0$, an energy tensor $T_{i j}$, must satisfy the following restrictions :

$$
\begin{equation*}
T_{i j} u^{i} u^{j} \geqslant 0 \tag{4.I}
\end{equation*}
$$

$$
\begin{equation*}
T_{i j} u^{j} \text { is non-spacelike } \tag{4.2}
\end{equation*}
$$

and $\quad T_{i j} u^{i} u^{j} \geqslant \frac{1}{2} T\left(u^{i} u_{i}\right)$, where $T=T_{i}^{i}$.

Taling the non-zero components of the surface energy tensor, $S_{\mu \nu}$ With respect to the orthonomal base

$$
\begin{equation*}
e^{\mu}(0)=L_{0}^{\frac{1}{2}} \varepsilon_{0}^{\mu}, e_{(3)}^{\mu}=\frac{1}{a L_{0}^{\frac{1}{2}}} \delta_{3}^{\mu} \tag{4.4}
\end{equation*}
$$

the above restrictions take the form

$$
\begin{align*}
& S_{(00)} \geqslant 0, \\
& S_{(00)} \geqslant\left|S_{(32)}\right| \tag{4.6}
\end{align*}
$$

$S_{(00)}+S_{(33)} \geqslant 2\left|s_{(03)}\right|$
and $S_{(00)} \geqslant\left|s_{(03)}\right|$.

Applying these to the surface onergy tensors in each of the three cases one obtains the following results :

Case (i)

$$
\begin{equation*}
c^{2} \leqslant 1 \tag{4.9}
\end{equation*}
$$

and $1+\frac{4 G c}{\alpha}+c^{2} \geqslant 0$

Case (ii)

$$
\begin{equation*}
1+\frac{A G c}{a}-c^{2} \geqslant 0 ; \tag{4.21}
\end{equation*}
$$

Case (iji)

$$
\begin{equation*}
1+4 G \geqslant 0 . \tag{4.12}
\end{equation*}
$$

Clearly these restrictions ensure that the mass per unit coorrinate length is positive for each of the three cases, as given by (3.17), (3.24) and (3.31).
§5. THE SURFACE DENSITY AND PRINCIPAL STRESSES OIV THE SHELL.

We calculate the eigenvalues of the surface energy tensor and hence obtain the proper surface density, μ, and the principal stresses in the z and ϕ-dixections, written σ_{z} and σ_{ϕ} respectively.

For convenience we use the orthonormal components $S_{(\mu v)}$ of Section 4. Since $S(2 \mu)=0, \sigma_{z}=0$ in all three cases and so the eigenvector equation reduces to the simple 2×2 tensor equation

$$
\begin{equation*}
S_{(A B)} u^{B}=\lambda \dot{\eta}_{A B} u^{B} \tag{5,1}
\end{equation*}
$$

whexe $A, B=0,3$ and $\eta_{A B}=$ diag. ($-1,1$). Solving (5.1) yields two ejgenvectors, one timelike and one spacelike with the corresponding eigenvalues $\lambda_{(0)}$ and $\lambda_{(3)}$ respectively. The proper surface density $\mu=-\lambda_{(0)}$ and the principal stress in the ϕ-dixection $\sigma_{\phi}=-\lambda_{(3)} . \quad$ It is found that for all three cases

$$
\begin{align*}
\mu & =p\left(q+2 \sqrt{8 M_{1}-q}\right) \tag{5.2}\\
\sigma_{\phi} & =p\left(q-2 \sqrt{8 M_{1}-q}\right)
\end{aligned}, \quad \begin{aligned}
& 4 K_{1} L_{0}^{2} \tag{5.3}
\end{align*}
$$

and

$$
\begin{align*}
& \operatorname{sor} \operatorname{Case}(i) \quad q=1-c^{2}, 1 \geqslant c^{2}>0, \\
& \operatorname{sor} \operatorname{Case}(i i) \quad q=1+c^{2}, \quad c^{2}>0 \tag{5.6}
\end{align*}
$$

$$
\begin{equation*}
\text { for Case (iii) } q=1 \text { : } \tag{5,7}
\end{equation*}
$$

M_{1} is given by (3.17), (3.24) and (3.31) for Cases (i), (ii) and (iii) xespectively.

A simple calculation in each of the three cases shows that the limitations on the constants contained in the previous section ensuxe that μ is real and positive and that σ_{ϕ} is real in each case, so the densities and stresses are physically reasonable.
§6. GENERAL DISCUSSION.

In Cases (i) and (ii) matching the interior and exterior metrics for a given radius yields three equations for six unknowns, so we require three further conditions to completely determine the netric. This is reasonable since the physical quantities such as mass and stress will affect the metric. If we fix the mass per unit length M_{1}, the density μ and the stress σ_{ϕ} we can determine all the constants and so both interior and exterior metrics are known.

In Case (iii) however we have only five unknowns and so for a given radius, if two of the physical quantities are fixed we can evaluate all the constants and hence the metric.

A furthex interesting point is that given $o_{\phi} f p$, the value of the mass per unit length, M_{1}, determines whether the exterior - metric is Case (i), (ii) or (iii). We can show this by writing M_{1} in terms of σ_{ϕ} using (5.3), which results in the equation

$$
\begin{equation*}
W_{1}=\frac{1}{32}\left[(q-z)^{2}+4 \underline{q}\right] \tag{6.1}
\end{equation*}
$$

where $z=\frac{\sigma_{\phi}}{p}$, and $0 \leqslant q<1$ in Case (i), $q>1$ in Case (ii) and $q=1$ in Case (iii). Since, by (5.3), $z \leqslant q$ in all three ases, we obtain the following general classification:

For $z \leqslant 0:$

$$
\begin{align*}
& \text { In Case (i), } \frac{1}{32} z^{2} \leqslant M_{1}<\frac{1}{32}\left(z^{2}-2 z+5\right) \tag{6,2}\\
& \text { In Case (ii), } M_{1}>\frac{1}{32}\left(z^{2}-2 z+5\right) \tag{6.3}\\
& \text { In Case (iii), } M_{1}=\frac{1}{32}\left(z^{2}-2 z+5\right) \tag{6,4}
\end{align*}
$$

Fox $0<z<7$:

In Case (i) $\quad \frac{1}{8} z \leqslant M_{j}<\frac{1}{32}\left(z^{2}-2 z+5\right)$

In Case (ii) $M_{J}>\frac{x}{32}\left(z^{2}-2 z+5\right)$
in Case (iii) $M_{1}=\frac{1}{32}\left(z^{2}-2 z+5\right)$
$\operatorname{For} z=1:$

Case (i) is not possible since $z \leqslant q<1$,

$$
\begin{array}{ll}
\text { in Case (ii) } & K_{I}>\frac{1}{8} \\
\text { in Case (iii) } \quad M_{1}=\frac{1}{8} \tag{6.9}
\end{array}
$$

EOI $z>1$:

Only Case (ii) can occur and $M_{1}>\frac{1}{8} z$.

We can see that provided z is fixed, then the value of M_{X} determines whether the exterior metric is Case (i), (ii) or (iii)

For the purpose of comparison, consider a cylindrical shell composed of dust, as discussed by papapetrou et al. (1978). The stress σ_{ϕ} will, by definition of a dust, be zexa (this is equivalent to the condition in the above paper that $T_{00} \cdot T_{33}=T_{03}{ }^{2}$, and the inequalities $(6.2),(6.3),(6.4)$ reduce to

$$
\begin{aligned}
& 0 \leqslant M_{1}<\frac{5}{32} \quad \text { for Case (i) }, \\
& M_{2}>\frac{5}{32} \text { for Case (ii) } \\
& \text { and } M_{1}=\frac{5}{32} \text { for Case (iii) }
\end{aligned}
$$

The extension of the solution to three exterior metrics completes the picture and allows a full range of values for the mass per unit length M_{I}, rather than the restricted range of Case (i) as studied by papapetrou et al. (1978).

We note finally that if $u^{a} \equiv\left(u^{0}, 0,0, u^{3}\right)$ are the orthonormal tetxad components of the timelike eigenvector (i.e. the four-velocity) then

$$
\begin{equation*}
\left(u^{3} / u^{0}\right)^{2}=\left(4 M_{I}-\sqrt{8 M_{1}-q}\right) /\left(4 M_{I}+\sqrt{8 M_{1}-q}\right) \tag{0.1x}
\end{equation*}
$$

so that $\left(u^{3} / u^{0}\right)^{2} \rightarrow 1$ as $q \rightarrow 8 M_{1} . \quad$ From (5.2) and (5.3) it follows that in all three cases the four-velocity becomes nuil as ${ }_{\phi} \rightarrow \mu$.
acirnohlmogment.

We axe grateful to Dre. P.A. Hogan and J.V. Pule for helpful cilbcussions.

Bonnox, W. B. 1980 J. Phys. A 13 2121-2132.

Davies, H. and Caplan A. 1971 Proc. Camb. Phil. Soc. 69, 325-327.

Frehland, E. 1972 Commun. Paths. Phys. 26, 307-320.

Hawking, S.W. and Ellis, G.F.R. 1973 The Iarge scale structure of space-time (Cambridge Univexsity Press) pp. 89-95.

Saxael, W. 1966 Nuova Cim. 44 1-I4.

Kramex, D, Stephani, M, KecCallum, M. and Herlt, E. 1980 Exact $\frac{\text { Solutions of Einstein's field equations (Cambridge }}{\text { Univexity ress) p. } 221 .}$

HCCrea; J.D. 1976 I. Piys. A. 9 6S7-707.

Papapetrou, A., Macedo, A. and Som, M.M. 1978 Int. J. Theor. Phys. $17 \quad 975-983$.

Tiplex, F.J., 1974 Phys. Rev. U. 9 2203.

Van Stockum, 1937 Proc. R. Soc.Edin. 57 135-154

Whittaker, E.T. 1935 Proc. R. Soc. A. 149 384-95.

