DIAS - STP - 8i-28

THE GRAVITATIONAL TIELD CF 4 ROTATING INFINITE CYLINDRICAL SHELL

8. R. JORDAN

Department of Mathematical Physics,
University Collicge, Belfijeld,
Dublin, 4,

and .
‘Carlowv Regional Technological College.

AND

~d. D. MCCREA
Department of Mathematical Physics,
University College, Belficld,
Dublin, 4.
and
School of Theoretical Physics,
Dublin Institute for Advanced Studies,

Physics Abstracts Classification: ‘04420

®



ABSTRACT,

Israél‘s method for treating surface layers is applied
té determine the gravitational field due to a rotating cylindrical
shell. . The interior space-time is flat while the exterior
metric can be one of tbrrc typec. For a given ﬁalué of the
streés in the cylinder, the type of the exterior metric depends

on the mass per unit co-cordinate length of the cylinder.
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1. INTRODUCTIGH

The préblem of determining the‘gravitaﬁional field due td’a
votating infinite eylindrical shell has béen discussed by Ffehland (1972)
and Pépapetrou, Macedo and Som (1978). However in these papers the
authdrs have restricted their attention to one form of the exterior metric
whereas it is known {Van Stockum 1937, Tipler 1974, Bonnor 1980) that
%here'are three real forms fZor the exterior metric depending on whether
a certain.constant cf integration is positive; negative or zero.
In the present work we ;hall uéé Israél's (1866) method for constructing
ghell sources to matck i their most general form, the tﬁree exterior
forms éf the metric to the interior metric, which is necessarily flat
(Davies and Caplan, 1873, it is shswn that the form of the exterior“
metrié depends on wheﬁher ibe mass per unilt coordinate length of the
cylinder is less .than, cquak %o.or;gre&tew than a certain critical value.A
As a particular example we dilscuss briefly the case of a shell composgd

of dust. oo

In Section 2 we calculate the three exterior and the interior
vacuum metrics for a stsationary cylindrically symmetriclfield in their
mnost géneral form. In Section 3 we apply these metricé to tﬁggproblem
of an infinite cylihdrical shell of coordinate radius r = a andAfind
the surface energy tensof and mass peg unit coordinate length of the
shell f£or each of the tﬁree exterior metrics. In Section 4 we give
the restrictions on the metric constants, imposed by physical considerations.
In Section 5 we evaluate the proper density and the principal stresses

on the sheil, which we then use in Section 6 to show that for a given



stresg, the value of the mass per unlt coordinate length determines

‘the type of exierior metric.

§2, - GENERAL SOLUTION FOR A STATIONARY CYLINDRICALLY SYMIETRIC

VACUUM FIELD,

& stationary field with cylindrical symmetry has a metric

of the fora
o 2 -
(ds)z = - ezk(dt + vd¢)2 + e,zx[eZY(dr2+dz2)+ r d¢zj . (2.1}

wvhere r, z, ¢ are cylindrical coordinates and A, v and y eare

functions of 1r only. The vacuum field equatiocns Rij = 0 7reduce
to ‘
.2 2
d 1 d :
—--——-; P8 +---—12 et & = o ) = , (2.2)
dr r dr 2r dr '
é%y 1 dv gy dv ' ’ ﬁ
Soos Faats 2 = 0 . (2.3)
dr r dr dr dr
oy 2 2 . : '
and gy ¥ CEA) +-j; eéx(g!) = 0, (2.4)

ar dr 4y dx



The first integral of (2.3) is

dy . -4
dr«szre ;

where b is a constant and substituting this into (2.2) yields .

a®y 1 an s L o
dpy Py dpy '
‘where py = br. The transformation pi = e s ¥ =X~ 3x

then gives

sz = e 20”4y
2
dx

which has a first integral of the form

\

where P is a constant. - . -

Ve distinguish three different types of solution as follows :

“Case (i) where P > 0, Caée (ii) where P < 0 and Case (iii) where

P = 0 L

In each of the thrce cases equatiesn (2.8) is easily integrated and on

substituting the sunsequent expression for A in equations (2.4) and

(2.5) wc eventually obtain the following three forms for the metric :

(2.5}

(2.6)

(2.7)



: i- 1+ 2
Case (1) (ds)? = «~§ [p77% = 7771 at

2 a~2G,  l+e o+2G 1 -C

) + @, [ e + ] d¢dt
‘ ‘ 2 1-¢ 2
1 a~23G 1+c +2G
+ fc-¢5 o - = o ] dd .
vt 2w S
i .
1. .?’__ 2 :
+ D p‘(c 1 (dx +dz2) 4 . ‘ (2.9
where alz = a22 = uz ; P = lmlr gnd o, ¢; D, G and w are
constants ;
Cavo (1), (@s)% = - ZE oingat® + 2% coss - 22 sinp] apdt
o 0. o
i ) 2 .
‘.2:‘1{51 g.% inf + G ‘B]dz
. - "y (4 o yain cos ¢
«%(1+02) 2 2

+pp° Jdr® 4 dz") : , (2.10)
where p = Im[r, 8 =2 logp and o, ¢, D, G and w are constants
énd again « 2 = o 2 = az ;

1 2

!

Case (111), (ds)2 = 2br logp dtz + 2er (1-2CG logp) d¢dt

2Gr

[1-¢ 1ogp]d¢ + Dp %(drz + dz?y (2.11)

where p = lw[r, € =+1 and b, D, G and w are constants, NN



The above three cases correspond'to the three types of
cylindrically symmetric metric discussed by Van'Stockuﬁ (1937},
Tipler (197@) and Bonnor (1280). In constructing = cyliﬁdrical
shell source, Frehland (1972) and Papapetron et al. (1978);consider
only Case (i)}, In the following sections all three casges will be

gtudied.

Ve notice'that, by means of the complex tf;nsformation

c+ic, o ia, a, > ial, o, * lo

5 ot we can obtain the Case (ii)

3
A

1

metric from Case (i), as has been mentloned by Kramer, 3Stephani,

MacCallum and Herlt (1980).

Case (i) is Petrov type I for all non-zero values:or ¢,
except ¢ = %1 when it ig £lat and ¢ = *3 when it is Petrov type D,
Case (i1} is Petrov type I for all non-zero values of ¢ and Case

(i1i) dis Petrov type II.

The three cases above giﬁe the cogplete gencral solution for a'
gstationary vacuum‘field exterior to a cylindrically symmetric source,
For the inferior vacuum solution we can simplify these conslderably
using the. requirements that the curvature invariants be non-singular

along the axis r = 0 and that elémentary flatness holds along this

axis.

In Case (iii) both the metric and its curvature invariants

are singular at r = O,

In Case (11i) the curvature invariants are non-singular at

r =0 only if c2 2 3, but the metric does not satisfy elémentary

flatness there.



-

In Case (i) both the metric and its invariants are non-
. . . 2 N
singular on the axis r = 0 only if ¢ =1, in which case the
metric is Minkowskian. Applying the elementary flatness éonditicn
at ¥ = 0 we obtain the metric
2

2 ' .
%—dt +Dr? & at + d6)2 + D(ar> + dzo). (2.22)

(ds)z = —

Without loss of generality we can take w =0 in (2.12) since the

transformation
(O]
[ Rl
ot = ot ¢

will reduce (2.12) to the form

@s)? = - il)— at? + Dr? 4§ + D(r? + dz7) , .19

which is the most general interior vacuum cylindrically symmetric
Y

metric., This is the interior metric used by Papapetron et al.

{1978 .

To avoid confusion with the constants in the exterior metric

we will use the interior metric

@aH? = - at? + Lorz as? + Lo(drz + dz). (2.14)



§3. INFINITE CYLINDRICAL SHELL.

We.apply Israel's (1966) method for surface layers-to the
interior metric (2.14) and the three exterior metrics of the nrevious
séctipn and thus construct, iz ifs most general fofm, the gravitational
field of an infinite shell. We assunme that.éhé coordinates

(t, r, z, ¢) are the same both inside and outside of the shell.

Case (1) :

Let the history, 2, of the shell be given by r = a,
The metric on Z induced by its embedding in the interior space-
time is
2

+ L§ a2d¢2 + L. dz N - (3,1}’,

2
t 0

and that due to its embedding in the exterior space-time i3

2 1 1-c 1l+c 2
ds, = oy g P 2 4t
2. . 0-2G. ltc  a+2G.  1-c,
+ aé-[( 70 2P0 G ey ] dgadt
1 a-2G 2 i4c a+2G 2 ec 2
ta, L P07 Con? Po 1
2
1(c“- ‘
+ D pO‘(c D42 (3.2)
where Po = lm]a‘ The condition =
as % = das”? | . O (a.3)



yields three independent equations for the six unknowns

LO, ¢, ¢, D, G and w. v These are
b
Z(c”-1)
Lo = D p0 s
f-c _ a1(u—2G) ]
0 v .
» P ‘ | ZaLO
ané - e _ al(a+2G)
0 2qL0
. i, i .
In general, if %, (i. = 0, 1, 2, 3) are the exterior
3 - ' i - i u A.... \‘. PA ’
coordinates and x, = X, (") =20, 2, 3y is the equation

of the shell regarded as embedded in the exterior space-time, then

the second fundamental form of X due to this embeoedding is

i

ex ij

i + +

K = n —— e
BT /3 ag“ ag”

to the exterior metric and n+i

) \
where the vertical stroke indicates covariant derivative with respect

is a unit vector normal to z.

the same way the interior second fundamental form is

In

where the minus signs refer in an obvious way to the interior space-

time, Defi N
e efining (NV by

the surface energy tensor S
Yy ' '

of the shell is given by

10

(3.4)

(3.5)

(3.6)

{3.7)

{3.8)

(3.9}



Y, ' (3.10)

where guv' is the intrinsic metric on Z, Y o= yuu and' K = 8m.
. The calculation of Suv is considerably Simplified here since we

are taking
CX,’x*,x,x)E(x,x’,vx,x)’:‘(t,r,z,q)) (3.11)

and hence the intrinsic coordinates on X are

@ %% = om0 “ | BERTS

&fter some manipulation using {3.4), (3.5) and (3.6) we find that the

non-zero components of the surface energy tensor are

-1 . ’ .
= 4Ge 2 .
So0 = 3/2 [3, tTy o ¢ ] 5 (3.13)
4ral, .
0
%
achO aw . awcLo
&= = - ——— s 2 - 4
S30 S03 uzaK - oK (3.14)
&
al ,
_ 0 4Ge 2 ‘ : :
and Sy = oo [+ -+l . . (3.15)

Adapting Whittaker's (1935) theorem to the case of a surface
layer (see McCrea 1876) we define - the total mass, M, of the shell

to be

oM o= fi (- SOQ + 329 + ssé)'V~g(3) dzdé  (3.16)



P

Clearly the mass will he infinite, but we can calculate the mass

per unit length of .z, AMI, to be
U< § . 2Gce ‘ : o
' My = @ T 7 G | | | (3.17)

Thisg agrees with the results of Papapetrou et. al. (1978).

Case (ii):

In this care we take (2.14) as the interior and (2.10) as the
exterior metric. Concition (3.3) yields the following three

independent equations »or ihe gix unknowns L o, ¢, D, G and w:

O)

oy :
gin BO | = oL, (3.18)
COs 80 = a—;:{;b ’ ' - ) (3.19)
Q
2. ,
end b = p TGN | : (3.20)

where po = ]w[a and BO = ¢ logpo .

Continuing as in Case (1) we can calculate the surface energy
tensor, Suv and find the only non-zero components to be

‘ o R
1 . 4Ge ‘ :
s, = B+ =2, 3 L (3.21)
00 4ral 3/2 a : ' :
- O ' T o
aicamLO§ .camLi ‘ P
- = = e e 4 3.22
f;03 S30 a_0 K T ak ! : ( )

2



%
al, T
i 0 4Ge 2 .
- ar { = — g — 5 '(r’l
and 933 e [? o c.J s (3.23)
where again. g = 8f. The mass per unit length of =z, as defined

in (3.16) and (3.17), for this caso is

- 1 2Gc - ' :
M, o= 7 @+ =) - . : (3.24)

Case (iii):

Matching the interior netric (2.14) to the c¢xteriors metric

(2.11), as in the previous cases, yields threec independent eguations

for the five unknowns _LO’ b, D, G and . These are
Lo = be“% o (5'25)‘
2 G 1ogp0 = ] "‘ | ) | : (3.26)
and G = abr, . ' {  (B.27)
where éO = lwfa. Using thesé, the nonwzer? compoge;ts of fhe

surface energy tensor S v can be shown to be
' H

1

T 3/2
0o 4K&LO /

[+ 4a] , o (3.28)

i
€ abLO

(3.29)

Bz T 83y = -



% ;

: aLO _

and S., = [+ + 4(;7. o (3.30)
4K :

The mass per unit length of =z vreduces to

[1+ 2@ : | , C(3.31)

ot
EEES

84, RESTRICTIONS ON THE SURFACE ENERGY TENSOR.

Following Hawking and Ellis (1873) we require that for any

vector ui such that

gij uiuj £ 0, an energy tensor Tij' must

satisfy the following restrictions : -
i 3 : .
= 4.1
Tij u u o, 4 (4.1)
Tij uj is non-spacelike , ) (4.2)

B T i i

a o }‘ & oz ‘1:3
an Tij u u' 2 % T ui), where T = T g { )



- Taking the non-zero components of the surface energy tensor, Suv

with respect to the orthonormal base

u _ % cn u _ o1 u

. < (0) - LG é o 2 e (3) _% . 5 3 ’ . : (4.4}

al

4]

the above réstrictions take the form
S0y % 0 . | : ) ‘ !(4.5)
S(oo) z 18(3.:;)’ 5. (4¢G)
S0y * Seagy * 215(03>|
>

and S(OO) > IS(GS)’ . (4.8)

]

Applying these to the suriaCe energy tensors in each of the three

cagses one obtains the following results @

Case (i)' _ ' - , | .

? ¢ 1 ' . ‘ . (4.9)

wa

e 1+52 407 s o0 | L : (4.10)
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Case (ii)

1+~—-0¢c 20 ; Co . (4.11)
Case (43ii)

1+ 4G 2 0 . . - T - T (4.12)
Clearly these restrictions ensure that the mass per unit coordinate

length 1s positive for each of the three cases, as given by (3.17),

{(8.24) and (3.31) .

85, THE SURFACE DENSITY AND PRINCIPAL STRESSES O THE SHELL.

We calculate the eigenvalues of the surface energy tensor
and hence obtain the proper surface density, p, and the.principal
stresses in the =z and ¢A~ directions, written Uz and O;

respectively, . . - e

For convenience we use the orthonormal components S(uv)

= 0, ¢ = 0 in all three cases

of Bection 4. Since =

S 2w

and so the eigenvector equation reduces to the simple 2 x 2 tensor

equation



B _ .. B
Sapy © T Ayp

where A, B = 0, 3 and N5 = diag. (-1, 1). Solving {5.1)

yields {wo eigenvectors, one timelike and one spacelike with the

corresponding eigenvalues A(G) and A(B) respecﬁlvely. The
proper surface density uy = =~ ACO) and the principal stress in
the ¢-direction 0¢ = - k(3>.” It is found that fcr all three
cases
g = plg +2¢8Ml—-q} .
Ty = plq - 2V 8M, - Q) ,
where p = 1 4
L
4rea o
and

for Case (1) g = L.~ c ; 1 zxzc¢c >0,

for Case (ii) q = 1+c¢° , c >0,

-~ for Case (iii) q = 1 .

Ml is given by (3.17), (2.24) and (3.31) for Cases ary, (i and

(1ii) vespectively.

A simple calculation in each of the three cases_shows that
the limitations on the constants contained in the previous section
ensure that y is real and positive and that o is real 3in ecach case,

¢

80 the densities and stresses are physically reasonable,

(5.1)

(5.4

(5.6)

(5.7



§6., GENERAL DISCUSSION.

In.Cases (1) and (ii) matching the interior and exterior
metrgcs for a given radius yields threetequafions for six unknowns,
g0 we require three further conditlons to completely determine the
metric, This is reasonable since the pﬁysical guantities such as
.maas and stress will affect the metric. If we fix the mass per

unit length Ml, the density y and the stress o we can determine

¢

all the constants and so both interior and exterior metrics are

known,

In Case (iii) however we have only five unknowns and so for
& given radius, 3f two of the physical quantities are fixed we can

evaluate all the constants and hence the metric.

A Zurther interestiﬁg point is that given o, /p, the value

¢

of the mass per unit length, Ml’ ~determines whether the exterior

metric is Case (i), (i) or (iiil). We can show this by writing

M in terms of G¢ using (5.3), which results in the equation

-

4 _ 1 2 . ‘ _ .
ouy o= e - g | (6.1)
%
where =z = }T s and 0 £ g < 1 idn Case (1), q > 1 din Case (ii)
and ¢ = 1 in Case (diii). Since, by (5.3), 2z £ g in &ll three

ases, we obtain the following general classification:



For

I'ox

For

For

A

. <

In'Case
in Case

in Case

In Case

in Case

in Case

Case

in Case

in Case

{iy, -gg zz < H, < ia-(zz - 27 + 5)

(ii), M. > = (2% - 2z + )

17 32
- i, 2 .
(iiiy, Ml 35 (z 2z + B)
‘ I L2,
(i) 5 % § Ml < 32.(5 2z + 5)
(ii) MI > 'gg (zz - 2z + B)
(1ii) M, = 1 (z - 2z + 53
i 22 Zomo

(i) is not possible since z < q <1,

. 1
(ii) Ml > 3
(iii) My o= -%

1

Only Case (ii) can occur and M, > o z .

1 8

(6.2)
(6.3)

(6.4)

(6.5)

(6.6)

6.7)

(6.8)

(6.9

(6.10)
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We can sece that provided =z is fixed, then the value of
Ml determines whether the exterior metric is Cuse (i), (ii) cor

(iii%

YFor the purpose of comparison, consider a cylindrical
shell composed of dust, as discussed by Pépapetrou et al. (1878).

The stress o will, by definition of a dust, be zero (this is

¢
. L ) _ 2
equivalent to the condition in the above paper ipat TOO'TSB TOS h)

.and the inequalities (6.2), (6.3), (6.4) reduce to

0 < M, < S for Case (1) , L

1 39
Moy 2 for Case (ii)
1 32 6o
end M. = —- for Case (1ii)
1 39 , .

The extension of the solution to three exterior metrics
completes. the picture and allows a full range of values for the
mase per unit length Ml’ rather than the restricted range of Case

(i) as studied by Papapetrou et al. (1978) .

) .3
We note finally that if uw? = (uo, 0o, ¢, u ) are the orthonormal
tetrad components of the timelike eigenvectof (i.e. the four-velocilty)

then



3, 0.2 — )

@ /w” =, - /sml ~q) / (Mg +/8Ml -q) ' (6.11)
, 3,02 L

go that (u /u) =+ 1 as =+ 8M1° From (5.2) and (5.3) it

follows that in all three cases the four-velocity bhecomes pull as

g, . U .

¢
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