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A B S T R A C T,

Israe1s h3tbod for treating surface layers is applied

to determine the gravitational field due to a rotating cylindrical

shell, The in’erior space—time is flat while the exterior

metric can be one of tbrec typea. For a given value of the

stress in the cylinder, ‘the type of the exterior metric depends

on the mass per imit co-ordixatc length of the cylinder.



I. INTRODUCTiON

The proDlem of determining the gravitational field due to a

rotating infinite cylindrical shell has been discussed by Frehland (1972)

and Papapetrou, Macedo and Som (1978). However in these papers tile

authors have restricted their attention to one form of the exterior metric

whereas it is known (Van tockum 1937, Tipler 1974, Bonnor 1980) that

there are three real £ovms for the exterior metric depending on whether

a certain constant c integration is positive, negative or zero.

In the present work we ha12 use Israel’s (1966) method for constructing

holl sources to match i their most general form, the three exterior

forms of the metric to the ntorio metric, which is necessarily flat

(Davies and Caplan, l97) It is shown that the form of the exterior

metric depends on whether -the mass per unit coordinate length of the

cylinder is less .than, equal to or.. greater than a certain critical value.

As a particular example we discuss briefly the case of a shell composed

of dust. -

In Section 2 we calculate the three exterior and the interior

vacuum metrics for a stationary cylindrically symmetric field in their

most general form. In Section 3 we apply these metrics to the problem

of an infinite cylindrical shell of coordinate radius r = a and find

the surface energy tensor and mass per unit coordinate length of the

shell for each of the three exterior metrics. In Section 4 we give

the restrictions on the metric constants, imposed by physicalconsideratiOns.

In Section 5 we evaluate the proper density and the principal stresses

on the shell, which we then use in Section 6 to show that for a given



• stress, the value of the mass per unit coordinate length determines

the type of exterior metric.

GENERAL SOLUTION FOR A STATIONARY CYLINRICALLYSYMETRIC

VACUUM FIELD.

A stationary field with. cylindrical symmetry has a metric

of the form

= — e2dt + d4)2 +e2’[e2(dr2+dz2+
22

(2.1)

‘here r, z, are cylindrical coordinates and A, and y are

functions of r only. The vacuum field equations Ej, 0 reduce

to

+ -

+2j e () 0 (2.2)
dr r dr 2r dr

-

(2,3)

and — r + L 4Xd’
0 •

- (2.4)



The first integral of (2.3) is

2bre
4X

(2.5)

where b is a constant and substtuting this into (2.2) yields

d2X.1 dX -4X
— ÷ — — + 2e 0 , (2.6)dp1 p1 dp1

where p1 br. The transformation p = eX

then gives

2
= —

204y
, (2,7)

clx

which has a first integral of the form

dx
-

where P is a constant.

17e distinguish three different types of solution as follows

Case (i) where P > 0, Case (ii) where P < 0 and Case (iii) where

P=o

In each of the thrc cases equatn (2.8) is easily integrated and on

Substituting tj ansequent expression for ?. in equations (2,4) and

(2,5) we eventually obtain the following three forms for the metric
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The above three cases correspond to the three types of

• cylindrically symmetric metric discussed by Van Stockum (1037),

Tipler (1974) and Bonnor (1980). In constructing . cylindrical

shell source, Prehland (1972) and Papapetron et al. (1978) consider

only Case (i). In the following sections all three cases will be

studied.

We notice that, by means of the complex ttapsforna’cion

c + Sc, a + ici, a1 + ia , a2 + ia2, we can obtain the Case (ii)1

metric from Case (i), as has been mentioned by Kramer, Bte;hazii,

MacCallum and Herlt (1980).

Case (i) is Petrov type I for all non—zero valueó’ oC c,

except c = ±1 when it is flat and c ±3 when it L Petrov type D.

Case (ii) is Petrov type I for all non—zero values of c and Case

(iii) is Petrov type II.

The three cases above give the complete genoral solution for a

stationary vacuum field exterior to a cylindrically symmetric source.

For the interior vacuum solution we can simplify these considerably

using the, requirements that the curvature invariants be non—singular

along the axis r = 0 and that e1ementar flatness holds along this

axis. . .

In Case (iii) both the metric and its curvature invariants

are singular at r = 0.

In Case (ii) the curvature invariants are non—singular at

r 0 only if c2 3, but the motric ddes not satisfy elementary

flatness there.



E

In Case Ci) both the metric and its invariants are non—

singular on the axis r 0 only if c2 = 1, in which case the

metric is Minkowskian. Applying the elementary flatness condition

at r = 0 we obtain the metric

(ds)2 —tdt2 + Dr2 (dt +d$)2 + D(dr2 + dz2). (2.12)

Without loss of generality we can take w = 0 in (2.12) since the

transformation

will reduce (2.12) to the form

(ds)2 =
—

dt2 + Dr2 ct2 + D(dr2 + dz2) , (2.13)

which is the most general interior vacuum cylindrically symmetric

metric. This is the interior metric used by Papapetron et al.

(1978).

To avoid confusion with. the constants in the exterior metric

we will use the interior metric

(ds)2 = - f dt2 + %r2 dt2 + L (dr2 + dz2). (2.14)

0
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i0

yields three independent equationS for the six unknowns

a, c, D, G and w . These are

D
(c2—l)

(34)

a1(a—2G)

p0 2aL0

a (cx+2G)
and p01° =

— 2aL0
e (36)

In gene3al, if 0, 1, 2, 3) aie the txwrioi

coozdirates and x — X (&‘) (i 0, 2, 3 is tne equation

of the shell regarded as embedded in the exterior space—time, then

the second fundamental form of due to this embeddirg is

j3x 2x
K n (37)

jlV i/i it

where the vertical stroke indicates covariant derivative with respect

to the exterior metric and n js a unit vector normal to In

the same way the interior second fundamental form is

K = n ‘-
X (38)

—

where the minus signs refer in an obvious way to the interior space—

time Defining - by

y = K iC (39)
1_tv 1JV liv

the surface energy tensor, S, of the shell is given by



—K y\) — g, Y
- (3,10)

whore g is the intrinsic metric on , y = and K 8n

The calculation of S is considerably simplified here since we1-’\’

are taking

01 2 3 0 1 2 3
-(x+ x , x4 x1 ) Cx , x , x , x ) = (t, r, z,q) (3.11)

and hence the intrinsic coordinates on are

0 2 3)
= , ) . (3.12)

After some manipulation using (3,4), (3,5) and (3.6) we find that the

non—zero components of the surface energy tensor are

oo *
E3 02]

(343)
4KaL0

a1cL 2aw awcL,
S = —

- 0
= (344)30 03 XK

and 533 0
[i 4aGO + c2] (3,15)

Adapting Whittaker’s (1935) theorem to the case of a surface

layer (see McCrea 1976) we define the total mass, M, of the shell

tobe

M
_

0 + 2
÷

53)
dzd - (3.16)



Clearly the mass will be infinite, but we can calculate the mass

per Uflit length of z, M1, to be

= (1 +
2Gc

(3.17)

This agrees with the results of Papapetrou et, al. (197$)

Case (ii):

In this caEe take (244) as the interior and (2.10) as the

exterior metric. Cndition (3.3) yields the following three

independent equations ,:or the six unknowns L0, , c, D, G and t:

(348)

cos = —— , (3.19)0 awL.

and p0 , - (3.20)

where p0 = and f30 c logp0

Continuing as in Case (i) we can calculate the surface energy
tensor, S and find the only non-zero components to be

00 3/2 E +
+ c (3,21)

4KaL0

ccacL cafi)L
S s 0 0

, (3.22)03 30 ac



J. 4)

aLt
and 833 = [1+2!ac2J ,

• (3.23)

where again t = 8w. The mass per unit length of •z, as dofinect

in (3.16) and (3.17), for this case is

(3.24)

Case (iii):
-

Matching the interior motric (2.14) to the exterior metric
(2.11), as in the previous cases, yields three indopendent equations
for the five unknowns %, b, 3), G and to. These are

(3.25)

2Glogp0 = 1 H (3.26)

and G ab%,
. (3.27)

where = Iwla. Using these, the non—zero components of the
surface energy tensor S can be shown to be‘lv

=
+ 4G3 , - (3.28)

caMs
-

O3 3O = ° (3.29)
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Tahing the non-zeio conmonexcs of the surface energy tensor,

with respect to the ortlionormal base

11 1 cV
0

(0)
= L0

0 ‘ (3) d , (4.4)
a0

the above lesLrLctlonc tate rhe foim

5(oo) 0 , (4.5)

(00) I(3I (4 6)

S -‘S >
(00) (33) - 03)

and SC00) I(O3)1 (4.8)

Applying these to the surface oneigy tensors in each of the three

cases one obtains the following results

Case (I)

C2 1, (49)

and 1
÷

+ c2 ; - (4.10)
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Case (ii)

(411)

Ciso (ii) -

1 + 4G • 0 , (4.12)

Clearly thcse restrictions ensure that the mass per mit coorr1iaLe

length is positive for each of the three cases, as gien by (3.17),

(3.24) and (3.31)

THE SURFACE DENSITY AND PRINCIPAL STRESSES ON THE SHELL.

IVe caJculabe the eigen.rtlues of the surface energy tensor

and hence obtain the proper surface density, i , and the principal

stresses in the z and • directions, written a and

respective1

For convenience we use the orthonormal components

of Section 4. Since S 0, a 0 in all three cases
(2ii) z

and so the eigenvector ecuation reduces to the simple 2 x 2 tensor

equatio’
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SCAB) uB
=. ÀbAs - : (54)

where A, B = 0, 3 and a diag. (-1, 1). Solving (5.1)

yields two eigenvoctors, one tinelike and one spacelké with the

corresponding eigenvalues A and 1(3) respectively. The

proper surface density p a —

1W)
and the principal stress in

the •—direction a, = — A. . It is found that for all three

cases

p = p(q+2té—q)
,

(5.2)

= p(q 2/8Zkll — -
(5.3)

where p
=

-
(5.4)

4icaL0

and

forCase(i) q Z—c2 , 1cc2>O, (5.5)

for Case (ii) q n j + c2 , ct> 0, (5.6)

- for Case (iii) q a 3 (5.7)

is given by (3.17), (3.24) and (3.31) for Cases (i), (ii) and

(iii) respectively.

A simple calculation in each of the three cases shows that

the limitations on the constants contained in the previous section

ensure that p is real and positive and that a1 is real in each case,

so the densities and stresses are physically reasonable.



GENERAL DISCUSSION

In Cases (i) and (ii) matching the interior and exterior

metrics for a given radius yields three equations for six unknowns,

so we require three further conditions to completely determine the

metric, This is reasonable since the physical quantities such as

mass and stress will affect the metric. Ii we fix the mass per

unit length M1, the density i and the stress we can determine

all the constants and so both interior and exterior metrics are

known,
-

In Case (iii) however we have only five unknowns and so for

a given radius, if two of the physical quantities are fixed we can

evaluate all the constants and hence the metric.

A further interesting point is that given the value

of the mass per unit length, M1, determines whether the exterior

‘ metric is Case Ci), (ii) or (iii). We can show this by writing

in terms of using (5,3), which results in the equation

(6.1)

where z , and 0 q < 1 ifl Case (i), q > 1 in Case (ii)

and q I in Case (iii). since, by (5.3), z q in all three

-ases, we obtain the following general classification:



For zO:

In Case
() 1 2

(z2 — 2z ± 5) (6.2)

in Case (ii), > (z2 — 2z + 5) (6.3)

in Case () M
1 c2 — 2z -p 5) (6.4)

For O.< z <. ‘.

In Case (i) z < - (z2 2z ÷ 5) (6,5)

in Case (ii) > - (z 2z + 5) (6.6)

in Case (iii)
1 (2

— 2z + 5) (6.7)

For z 1:

Case (1) is not posble since z q <1

in Case (ii) > (6.8)

in Case (iii) -- (6.9)

For > 1:

Only Case (ii) can occur and
> j z (6.10)
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1e can see that provided z is fixcd, then the value of

determines whether the exterior metric is Case (i), (ii) or

(iii )4

For the purpose of comparison, consider a cylindrical

shell composed of dust, as discussed by Papapetrou et al. (1978),

The ttes will, by definition of a dust, be zero (this is

equivalent to the condiion in the above paper that T00.T33 T032)

anc the inequalities (62), (6 3), (64) ieduce to

< for Case (i) ,

> - for Case (ii)

and = - for Case (iii)

The extension of the solution to three exterior metrics

completes, the picture and allows a full range of values for the

mass per unit length M1, rather than the restricted range of Case

(1) as studied by Papapetrou et al, (1978)

We note finally that if u’ u°, o, o, U3) --are the orthonormal

tetrad components of the timelike eigenvector (i.e. the four—velocity)

then -



(u3/u0)2
= (4M1 / (4M1 +/8M1 -q) (6.11)

o that (u3/u0)2 + 1 as q SM1, From (5.2) and (5,3)

follows that in all three cases the four.-velocity becomes null as
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