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1. Introduction.

Local dynamics of mean-field

Quantum Systems

N.G. Duffield and R.F. Werner. 2

Abstract. In this paper we extend the theory of mean-field-dynamical
semigroups given in {DW1,Dul] to treat the irreversible mean-field
dynamics of quasi-local mean-field observables. These are observables
which are site averaged except within a region of tagged sites. In the
thermodynamic limit the tagged sites absorb the whole lattice, hut also
become negligible in proportion to the hulk. We develop the theory in

detail for a class of interactions which contains the mean-field versions
of quantum lattice interactions with infinite range. For this class we
obtain an explicit form of the dynamics in the thermodynamic limit.
We show that the evolution of the bulk is governed by a flow on the
one-particle state space, whereas the evolution of local perturbations
in the tagged region factorizes over sites, and is governed by a cocycle
of completely positive maps. We obtain an H-theorem which suggests
that local disturbances typically become completely delocalized for large
times, and we show this to be true for a dense set of interactions. We
characterize all limiting evolutions for certain subclasses of interactions,
and also exhibit some possibilities beyond the class we study in detail:
for example, the limiting evolution of the bulk may exist, while the
local cocycle does not. In another case the hulk evolution is given by a
diffusion rather than a flow, and the local evolution no longer factorizes
over sites.
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The characteristic feature of mean-field systems can be expressed by saying that each par

tide or elementary subsystem interacts in an equal way with every other such subsystem,

and responds to the average of these interactions. In this paper we will he concerned with

the limiting dynamics of such systems as their size becomes infinite. Therefore we will

consider a sequence of models comprising an increasing collection of copies of the basic

subsystem. When we speak of an interaction between the subsystems, we mean that for

each model in the sequence a (generally) irreversible dynamics is specified. The mean-field

nature of the models entails first of all that the interaction is invariant with respect to

permutation of the subsystems; the idea that each subsystem responds to an average is

made precise by the property that the generator of the dynamics of a large system can

be approximated by taking a generator involving only a few (often just two) subsystems,

averaging it over all permutations of the subsystems, and multiplying it by the number

of subsystems. This is in close analogy to lattice systems with translation invariant inter

action: there one obtains the Hamiltonian for a finite region approximately by averaging

terms involving only a few sites over all translations which map these sites into the given

region, and by multiplying with the volume of the region. In this analogy mean-field sys

tems are just lattice systems, whose underlying lattice has permutation symmetry rather

than translation symmetry. This analogy suggests a canonical way of obtaining a “mean-

field approximation” of an arbitrary lattice model with translation invariance: one merely

has to take the Hamiltonians of the lattice model for some sequence of regions going to

infinity in the sense of van Hove [Rue], and symmetrize each with respect to all permuta

tions of the lattice sites. We do not attempt to justify this procedure as an approximation

to the original lattice system. Our aim is rather to obtain as complete an analysis of the

mean-field theory as possible.

The description of mean-field systems in terms of their permutation symmetry be

comes more transparent if one looks at the intensive rather than the extensive observables.

As described above the Hamiltonian of a mean-field system divided by the number of

subsystems, i.e. the intensive variable “Hamiltonian density”, has the property that for a

large system it is approximately equal to the Hamiltonian density of a smaller versi rn of

the system, symmetrized over all permutations. Sequences of observables (indexed by the

system size) with this property were called “approximately symmetric” in [RW1j, and
have become the central notion of a research programme on mean-field systems. The basic
result in [RW1] concerns the thermodynamics of Hamiltonian mean-field systems, and
is a formula for the free energy density in the thermodynamic limit in terms of a Gibbs
variational principle in one-particle quantities. This result was later extended to “inho

mogeneous mean-field systems” in which the permutation symmetry is restricted to sites
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with approximately equal external or random parameters [RW2]. If one starts from a

lattice model with translation invariant interaction, the thermodynamics of its mean-field

version can be written down directly by evaluating the mean energy and the mean entropy

for homogeneous product states.

This prescription is often taken as the definition of the mean-field approximation.

However, it would be impossible to define the dynamics “in the mean-field approximation”

if this is only understood as a class of variational states. In contrast, in our programme

mean-field models are treated as quantum systems in their own right. The dynamics

of mean-field models was treated in [DW1] from the point of view that the dynamics

should map the set of mean-field intensive variables, i.e. it should map the approxiniately

symmetric sequences into itself. A corresponding study of the inhomogeneous case was

undertaken in [DRW], and the special properties of Hamiltonian dynamics, as opposed

to general irreversible dynamics, were described in [DW2j: in this case one obtains in the

limit a flow on the state space of the one-particle algebra, which is Hamiltonian in the

full sense of classical mechanics with respect to a canonical Poisson bracket structure on

the state space. In earlier approaches [Bol] beginning with [HL] this had been noted

only in the case when the ilannitonian is written in terms of the generators of a Lie group

representation so that a symplectic structure can be imported from the coadjoint orbits.

The works described so far focussed entirely on the properties of the intensive observ

ables, which in the mean-field limit become completely delocalized. This leaves Upen the

question how the evolutes of a localized observable behave under a mean-field dynamics.

Intuitively, the picture is that under a completely delocahzed evolution such as a mean-

field dynamics the observable would instantaneously develop a completely delocahzed tail,

while initially still exhibiting a strong dependence on the original localization region. For

very large times one might expect that this dependence on the original localization be-

comes weaker, especially when the dynamics is dissipative. It is therefore natural to use a

concept analogous to the approximately sequences in which the synunetrization operations

leave out all the sites of the original localization region. Put differently these sites are given

a ‘tag” and one aims to study the motion of the tagged subsystems under the averaged

influence of the remaining ones. This programme has been carried out in [Dul] fir any

fixed set I of tagged sites, in this paper we further extend this approach allowing more

and more tagged sites in thermodynamic limit, as long as the proportion of tagged sites

goes to zero. The above intuitive picture is confirmed by our analysis.

A closely related programme for the study of mean-field systems has been based on the

work of Morchio and Strocchi [MS}. Their aim was to show how the dynamics of a system

with long range interactions can be defined in the thermodynamic limit even though the

quasi-local local algebra in the usual sense cannot be invariant uiider such an evolution due

to appearance of delocahzed tails. Their proposal is to enlarge the quasi-local algebra by

suitable weak limits of observables capable of describing delocalized intensive quantities.

It is clear that these limits exist only with respect to a suitably chosen set of states, and

consequently much of the theory centers on this choice. For the case of niean-field theories

their prograniuie was carried out by Bdna [Bol] and Unnerstall [Unl,Un2]. In a sense

their approach is dual to ours, in focussing on the states rather than on the observables. In

particular, the permutation symmetry, which is as central to their approach as to ours, is

built in by choosing the foliuin of permutation symmetric states on the quasi-local algebra,

whereas in our approach it determines the connection between observables of systems of

different sizes. The thermodynamic limit of observables in our approach is always taken

in norm, whereas in the picture of Morchio and Strocchi it is typically taken in the .9-

topology associated with the chosen foliurn of states. Consequently, our limiting object

is a C*algebra, whereas they arrive niore naturally at a W*algebra or a von Neumann

algebra.

The paper is organized as follows. In section 2 we define quasi-local mean-field observ

ables. These are what we call the quasi-symmetric sequences of observables: those which

are delocalized (i.e. site-averaged) except over local regions of tagged sites which become

proportionately negligible in the thermodynamic limit. Such sequences of observables have

well defined “thermodynamic limits” in a space which we construct explicitly.

In section 3 we formulate the notion of a mean-field dynamical semigroup as a se

quence of dynamical semigroups which preserves the set of quasi-symmetric observables,

and which furthermore gives rise to contraction semigroup on the inductive limit space.

We demonstrate that a wide class of evolutions has this property, this class being consid

erably wider than in [HL,Bol,Uri3]. In particular, we include the mean-field versions

of arbitrary translation invariant, possibly dissipative lattice interactions. The existence

of the limiting dynamics is subject to a growth condition which is far weaker than that

required for the original translation invariant interactions [BR] . For this class of models

the liiintiiig dyiiamics is shown to have the following special form: oii initially localized

observables it factorizes over the individual sites of the region of localization, while the

global evolution of the delocalized tail is iiripleineiited by a flow on the oiie-site state space

of the system. The non-linear differential equation for this flow is just the Flartree equa

tion. Such a form was obtained in [Bol], but only for llauiiltonian interactions between

finite iiumnbers of sites. More recently this type of dynaimimcal evolution has becii consid

ered by Bána [Bo2] as a generalization of quaiituin mechanics itself, and was linked to a

modification of quantum mechanics recently proposed by Weinberg fWeiJ. As a special

case, our theory can be applied to classical Markov processes: the factorization of the local

43



evolutions has l)Cefl used to investigate the Poissonian approximation in queueing networks

[Du2].

in Section ‘1 we consider some properties of the limiting evolution in some general

cases. Firstly, we show that if the finite volume dynamics is Ilamiltonian, then the lim

iting dynamics is completely determined by the energy density function appearing in the

Gibbs variational principle for the equilibrium states: a.s a Hamiltonian function in the

sense of classical mechanics it generates the flow which describes the global evolution via a

Poisson structure on the one-particle state space. Its gradient is the Hamiltonian operator

(depending on the gh)bal state) generating the local unitary cocycle. This description is

complete in [lie sense that any Ilamiltonian function can be approximated by one aris

ing from our class of models. The next level of complexity is given by the sequences of

generators which can be written in Lindblad form in terms of approximately symmetric

observables. here the local dynamics is still given by a state dependent Hamiltonian.

However, it can no longer be expressed as the gradient of single function. We show that up

to approximation any state dependent Hamiltonian arises from a model of this type. The

global flow is no longer Hainiltonian, and is essentially arbitrary in the class considered.

The flow, and indeed the whole limiting evolution in this subclass is reversible (exists for

negative times), while all evolutions for finite size systems are strictly dissipative. Finally,

in the full class studied in section 3 we obtain an (up to approximations arbitrary) state-

dependent Lindblad generator. However, we observe that such evolutions do not exhaust

the set of mean-field dynamical semigroups. This is illustrated by describing a sequence

of dynamical semigroups whose mean-field limiting dynamics exists in our sense, but lacks

some of the fundamental features established for the lattice class: the global limiting dy

namics is given by a diffusion on the one-particle state space rather than a flow, a.nd the

evolution of local observables does not. reduce to a product of one-site evolutions. In one

of the classes mentioned above the local dynamics is still Ilamiltonian, while the global

evolution is not, The converse can also happen in the sense that any generator (e.g. a

Harniltonia.n one) may be perturbed in such a way that the global evolution is unchanged,

hut the local evolution becomes dissipative. We construct such perturbations explicitly in

terms of permutation operators.

In section 5 we study the relation between the local and the global dynamics. In fact

we are able to construct an example of a sequence of semigroups which is a mean-field

dynamical semigroup in the global, but not local, sense. A limiting dynamics exists for the

fully site averaged observables only. Finally, we investigate the dclocahzation of initially

localized observablcs for lattice class evolutions, We prove an H-Theorem which suggests

that in the dissipative case all local information should be lost as the local states are drawn

towards the flow of the global state. We show that under the addition of an arbitrarily

2. Quasi-symmetric Observables

In this section we describe the notion of quasi-symmetric observables, which generalizes

on the one hanri the usual quasi-local observables known from lattice models, and on the

other hand the mean-field intensive variables introduced in [RW1]. In order to define the

thermodynamic limit of a physical quantity it is always necessary to define the observable

in question for all system sizes occurring on the way to the thermodynamic limit. For

example, for the usual interactions of lattice systems it is the translation invariance of

the potential which determines the connection between the energy observables at different

system sizes. Quasi-symmetry as defined here is a property not of an observable of a single

system of finite size but of a net of observables indexed by the size. Associated with this

notion is a definition of the thermodynamic limit of a quasi-symmetric observable, and

much of the work in this section will go into the identification of the space in which these

limits lie.

Before taking up the formal development let us clarify the aim of this section by

relating it to a standard construction in functional analysis, the inductive limit of Banach

spaces. There one has a. sequence (AN) of spaces with a system of isometric “inclusion

maps” JNM : AM AN (defined for N > M) satisfying the chain relation jNR JNM

JMR The term “inclusion map” indicates that the elements XR E AR and jNRXR E AN

will eventually be identified. In other words, we are interested only in the sequence N

XN, which is defined for sufficiently large N (e.g. N > R) and satisfies XN = jNMXM

for all N, Al for which fNM and XM are defined. The space of such sequences is then

called the “union” of the AN with respect to the inclusions jNM. It is clear that this set

of sequences forms a vector space under N-wise operations. If we work in the category of

Banach spaces the limit space A of the system (AN,jNM) is taken as the completion of

this union. The elements of the completion can also be represented by sequences, namely

by those for which IXN - jNMXMII becomes arbitrarily small as both N and M become

sufficiently large. Note that in the trivial case where all AN are equal and .1NM is always

the identity these sequences are precisely the Cauchy sequences. So we might call sequences

with this property “j-Cauchy”. Sequences X, X’ for which IXN —
— 0 represent the

same element of the completion. Thus A, is equal to the quotient of the space of j-Cauchy

sequences lip to equality under the seminorm = limN IIXjII.

The quasi-local algebra of a lattice system is an example of this construction. Here

the AN are the observable algebras of an increasing family of regions, and the embedding

.1NM is by tensoring with the identity element on all sites of N \ M. Since the JNM in

small perturbation any lattice class generator has such an evolution.
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A very similar construction was used in [RW1] to define the algebra of intensive

observables of mean-field systems. Here one uses the same spaces AN, but the inclusions

JNM are modified by averaging over all permutation automorphisms of the larger region. It

is easy to check that the resulting maps jNj again satisfy the chain relation, but they are

no longer isometric, nor even injective. Nevertheless, the notions of j-Cauchy sequences

(called “approximately symmetric” in [RW1J) and the limit space A make sense even in

this case. It turns out that the N-wise product of j-Cauchy sequences is again j-Cauchy so

that the limit space becomes an (abelian) c*algebra even though the jNM are no longer

homomorphisms. in this paper we generalize the construction still further: we will allow

the chain relation to be not strictly satisfied but only asymptotically for large indices. In

fact it suffices for a sensible definition of j-Cauchy sequences and the limit space to have

that hmi .,X,limsup_.,,Ij(jNR —JNM ojMR)XRII 0 for every fixed Rand XR EAR.

We will not, however, develop an abstract theory of “fuzzy inductive limits” along these

lines, but instead will focus on the case at hand, the physical motivation for the choice of

the JNM, and the concrete representation of the limit space A,.

We will consider systems composed of many “particles”, each of which has observables

described by the same C*algebra with unit A. For most of the general theory we do not

need any further assumptions on this algebra but in many models of interest A is just a

finite dimensional matrix algebra describing a “spin”. In section 3, in the discussion of

mean-field dynamics in the full lattice class of generators we will make this assuniption fur

simplicity. By K(A) or simply by K we denote the state space of this algebra. We equip

K with the weak* topology. The evaluation of a continuous linear functional U Ofl aiiy

C4-algehra 13 on X E 13 will be written as (u, X). To each particle we associate a “site”

of a lattice V, e.g. V 7/’ for systems on a d-dirnensaoiial cubic lattice. Denoting by

A{1} the isomorphic copy of A “at site x”, we write A1 = ØxEI A{1} for the observable

algebra of the subsystem localized in the finite subset I C V. Here and below we always

use the the minimal C*tensor product, although in applications the algebras concerned

are usually finite dimensional matrix algebras, for which all C*tensor products coincide.

Mappings between finite regions induce homomorphisms between the associated ubervable

algebras. Explicitly, if q : I - J is an injective map we define : A1 Aj by

A2 A111) A,I(1) .. A-I(1J1) (2.1)

with the understanding that on the right hand side A-i() I, whenever is not in the

range of r,. Note that if i is the inclusion map of I into J D I, i is just the usual embedding

(2.2)

Thus for I
_.. 0 we recover the map used in the “global” theory of mean-field systems

[RW1,DW1], and for I Al we get the injection used for the quasi-local algebra. The

family

jj,,,1.1

for fixed I was used in [Dul] to set up a theory of mean-field systems with a

fixed set I of “tagged particles”. in this paper we go one step further, by allowing the set

of tagged particles to become infinite in the thermnodynaniic limit.

Thus we will take the limit not only over an increasing family of regions, we will also

consider in each region a subset of tagged sites, such that in the limit every site of the

lattice eveiitually becomes tagged. We formalize this by using the notion of tagged sets:

a tagged set is a finite subset N C A of the lattice under consideration, together with a

subset N1 C N of “tagged sites”. Rather than denoting a tagged set by the pair (N, N

we will just use the symbol N, in much the same way as a vector space is usually denoted

by the same letter as its underlying set, without explicit reference to the operations defined

on it. Fur tagged sets we define an inclusion relation Al N as “Al C N and Al1 C N

For tagged sets Al (C N we now define

JNM : AM - AN . (2.3)

This is the basic family of inclusions on which our indiictm ye ii mit c’ instruction is built.

Imi applications one usually does not take the observables to be defined for all regions N,

but only along some subsequence of regions (e.g. cubes). ‘l’hereIore we will assume sonic

net (N)ca of tagged sets to be given, and we will only consider liiiiits along this net.

Allowing only sequences at this point would not introduce a smniplificatitmi iii anytliiiig we

this case are homomorphisms of C*algebras, the union becomes a *algebra, and the limit

space A is also a C*algebra, called the C*inductive limit of the AN. A is usually

called the quasi-local algebra of the lattice system, and we will denote it by A10, reserving

the symbol “A” for other limit spaces to be discussed below.

between the subalgebras A1 and Aj used in the construction of the quasi-local algebra of

the lattice system as a C*inductive limit. Since we will be interested in yet another kind

of inductive limit it will be convenient to suppress the imiclusicn maps ij : A1 - Aj, and

similarly the inclusion of each A1 into the quasi-local algebra A10. Thus for I C J we

shall simply write A1 C Aj C A10.

There are INI!/(INI - All)! injective maps from a set of IMI elements into a set of

NI All elements, in [RW1,DW1j time identification between the intensive mean-field

observables at different system sizes was made by the average of all ij, where q runs over all

injective maps. In contrast, only a single map (namely the natural injection i : Al --- N)

is used in the construction of the quasi-local algebra. Here we will use an average over a

subset of mnjective maps, which generalizes both of these possibilities: for I C Al C N we

define ‘IbM as the set of all injective maps T, : Al — N such that q(i) = i for all i E 1,

which isa set of N\MI!/lAl\1l! elements. The corresponding average is

.j M\I! -

JN M : A1 —4 AN
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2.2 Proposition. Let I C J C R C M C N C V. Then

fi’i •1 _._ •1 •J
i I Jr’r -- JNAI 0)MR

•1 Nj + MI
(2) IJNn INM °JMRi 2jRj IJIj 4jRj1

(3) lim lirnSlipN_.,x IIJNR — JNM ° JMRII 0

Proof: All rriaps appearing in (1) and (2) act like the identity on A1, and like their

counterparts with I --- 0 on the remining sites. Therefore it suffices to show (1) for

I 0. Suppose (2) had been proven for this special case. Then we would obtain for

the general case a hound of the same form, but with jIj subtracted from the numbers

appearing in it. The hound as stated then follows from the monotonicity of the function

2 -4 (a f )(b r)(c x) I when (a + ) and (b + x) are positive, and c max{a,b}. It

therefore suffices to show both (1) and (2) only in the case I = 0.

(1) j5f(A) can be computed by taking 7)(A) for any injective map q : M -. N and then

symmetrizing over all permutations of N. It follows that )M ° 7) = JNR for any injective

R •-- M. Equation (1) thus follows by taking the appropriate average over

(2) Consider the map INN (resp. IMP) defined as the equal-weight averages over all i

with 71: R — N (resp. R — M) such that in addition 71(R) fl J 0. Let p J/N

denote the average over all permutation automorphisms of AN of permutations leaving J

pointwise fixed. Then INN 0 i, and INM = ° 7)i where i and m are any of the

maps over which INN and )NM are averages. Hence INN = pj o7)i 0 l2 = JNM 07)2, where

72 R -- A! is injective with i12(R) fl J 0. By averaging over all 72 we find

)NR”jNM°3MR

The rest of the proof consists in establishing the estimate

- . jRjjJj
JNRJNR

Applying the same estimate to JMR, and inserting into the above equation then yields the

result. The second form of the estimate follows because Mi Nj.

Let J denote the set of all injective R —b M, and J the subset withi1(R)flJ 0.
Note that for large N the “probability” ij(R) meeting J goes to zero. More precisely, by

Lemma IV.1 of [RW1]we have that

j:7\:ij < jRjjJj

Ill — Nj

Now both Iip and INN are averages of 7) with different weights. Since jj7)jj I for all q we

can estimate their norm difference by the sum of the absolute differences of these weights.

For q E .‘1 the weight in is IL’, and in INn it is jJj. The difference is ej.JL’.

do in this paper. On the other hand it is convenient to be able to state the theory for a

general net of regions in “j’ going to the lattice in the sense of van I-love, without being

forced to specify a particular enumeration. Therefore we allow the index set to he an

arbitrary directed set. Readers who feel more at home with sequences are invited to take

IN, and to substitute sequence” for “net” throughout. This will be sufficient (though

perhaps not convenient) for all applications. Our only assumptions on the net (Na)

are that it is increasing with respect to the relation , that the tagger! subsets absorb the

lattice, i.e. U,. N -- \, and tha,t in the limit the tagged sites are relatively few, i.e.

lin -0 . (24)

Since the net of regions will be fixer! once and for all there is no ambiguity in writing

N -— oo for a - oo, and lim f(N) for lima f(N) for the limit of any N-dependent

quantity. We will adopt this convention from now on, so in the sequel we will never refer

to the labels a or the set l’l.

We now single out the j-Cauchy nets in the sense mentioned in the introduction to

this section. These net.s N XN with X E AN are the basic ohservahles we consider.

XN will he symmetrized over most sites in N, i.e. over all sites with the exception of the

relatively small subset NT. Intuitively, XN is a local observable wit.h a symmetrized (or

completely delocalized) tail. One should think of XN as a net of observahies “converging

to a quasi-local mean-field limit”. Our formal definition is given below, together with the

corresponding notion [Diii] for a fixed set of tagged sites.

2.1 Definition. Let XN C AN for every N in the given fixed net of tagged sets. Then

(1) the net N — XN is called a quasi-symmetric, or a quasi-symmetric observable, if

lim limsup Ii-’N -- jNMXMjj -= 0
N---.c

The set of such nets will be denoted by Y.

(2) the net N XN is called I-symmetric, if

lim limsupIjXN jNMXMj 0
M---. N--.

The set of such nets will be denoted by Y’.

As noted before the crucial property of the maps j for making quasi-symmetry a

notion of “convergent net” is the approximate chain relation JNR JNM 0 JMP This

relation will now be proven together with some other basic combinatorial facts.
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Thus multiplied with the number .3! of terms we get the contribution e to the error. For

the remaining .3 \Ji eIJj terms the weight in is still 1J11, but is zero in JNR•

Hence these terms also contribute e to the error estimate, and putting the contributions

of these two types of terms together, we obtain the required estimate for IJNR
—

(3) Taking J M and I = NT in (2) we get limsupN iijNR — JNM OJMRI! <2IRj’r,
which goes to zero as M — no by our standing assumption (2.2) on the net of tagged sets.

of removing tags, i.e. to include sites previously exempted from all symmetrizations back

into the bulk. The operator of “removing all tags except those in I” is given by

:= INN AN AN (2.5)

By Proposition 2.2(1) p clearly is a projection. p is the operation of removing all tags.

2.4 Proposition.

In the following Lemma we establish a standard way of showing that a given net X,

is quasi-symmetric, namely by showing that XN can be uniformly approximated for large

N by a net of the special form N
-- jNR1’ for Y C AR. We will call such nets basic nets,

and denote the set of such nets by Yb. In an ordinary inductive limit Ybas corresponds

to the union UN AN, which is dense in the limit Banach space A, by definition. This

density statement carries over to general “fuzzy inductive limits”, that is, whenever the

chain relation holds approximately. Here we establish it first on the level of nets. Since by

Proposition 2.2(1) the chain relation holds for i((M with fixed I we can hence apply the

same reasoning to the inductive system (AN,jj,rM).

2.3 Lemma. Let XN C AN for all N in the given net of tagged sets. Then X. is quasi-

symmetric if for all c > 0 there are a tagged set R and Y C AR such that

limsup I1XN — jNRYII C
N

X. is I-symmetric if in addition one can choose RT

(1) ForICJ,Y’CYCY.

(2) The map p’ X, (p’X) projects 3) onto

Proof: (1) The inclusion 3)1 c 3) for any I is obvious from Lemma 2.3. What remains

to be shown is that any basic net of the form N jf,,,Y can be approximated by one of

the form jMY. By Proposition 2.2(2) we can set Y jMY for some Al C !‘f, and get

5UPN jiY j/7Y <2(IRI iJi)/1MI, which can be made arbitrarily small by taking

Al large enough.

(2) It is evident that the operation p on nets is a projection. By Proposition 2.2(1) with

N Al we have p oj1 = j for I C J. Hence on basic nets j/,RY with J C 1

the projection operation produces again basic nets. Since we can approximate any quasi-

symmetric net by basic nets JNR with RT i sufficiently large, Lemma 2.3 says that p

maps 3) into )‘. Taking I = J it is clear that basic I-symmetric nets are invariant under

the projection, hence p(Y) Y’.

Proof: (1) Let X. be quasi-symmetric. Then by definition there is for any c > 0 some

tagged set Al such that lirnsupN IIXN JNMXM < c. hence we can set 1? Al

and Y XM. Conversely, suppose that 11XN —jNRYII c for N N. Then

I1XN — jNA,XAjji < 2c + 1IjNRY —ThM QjMRY11 for N Al ] N. Taking in this

estimate the limit limsupM limsupN and using the approximate chain relation Lemnmiia

2.4(2) we find that this limit is less than 2c for any e. Exactly the same arguments work

for I-symmetric nets, with all .iNM replaced by Ji’

With the help of this Lemma we can clarify the relations between quasi-symniTietry

and Lsynimnetry for different values of I. intuitively, 3) is the limit of Y’ of I / V, i.e.

the limit of allowing more and more tags. it will be useful also to have a systematic way

We can now proceed to identify the inductive limit space of the system (AN,jNJ).

We will use the following notation: for any tagged set N, and any p C K we introduce the

conditional expectation E\NT : AN ANT with respect to the product state N\NT on

the untagged siL(S. Thus

cu,LN\NT(A)) (a N\NT A) (2.5)

where a is an arbitrary state of ANT, and A E AN. Since we identify AN r with a

subalgebra of AN we can consider lE\N T as a prujectiuil of norimi omie on AN, i.e. a

conditional expectation in the sense of U megaki [U me]. If we identify A N iii turn With a

subalgebra of A10 we can also consider IE\NT as a map N\NT : AN — -4Ioc This is the

point of view taken in the following Theorem, We recall at this point that K, being the

state space of a unital C*algebra, is weak*comnpact. For any C*algebra B, C( K, B) will
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denote the S9CC of ‘e’k cc ntinuous functions on K taking values in B and $opologl7ed

with the supreintim n’)rrn Ifli S1Ip K If(p)II

2.5 Theorem.

(I) Let X be a quasi-symmetric net. Then for all p E K the norm limit

X(p) lm1lE\NT(XN) Aioc

eXists unifnr,iily for p C K and p X,(p) is weak*to norm continuous.

(2) The hap X C Y X t’(K, A,0) is onto, and isometric in the sense that

IIXJI — urn IliII
N

It is also a. homomorphism taking the N-wise product of nets into the product of

t’( K,

(3) A quasi-symmetric net X is I-symmetric if and only if X(p) C A, C Ajoc for all p.

Proof: The core of this result has been proven in section IV of [IIW1]. There “approx

imately symmetric nets” ( in our terminology “0-symmetric” nets) were allowed to take

values in a net of algebras of the form B AN for a fixed “initial algebra” B, and AN
as above, Symmetrizations were only to l)e applied to the tensor factors of AN, and not
to B. But taking B - A,, this is precisely a description of I-symmetric nets. Therefore

we can immediately apply the results of [IIWI](Compare also Theorem 2.1 in [Diii]).
Thus for I-symmetric nets the limit in (1) exists, and is a wea,k*_continuolis function

X K —s B A, ‘—s A1,,.. Moreover, every f E C(K,A,) is of the form I X

for some I-symmetric X. The isometry and homomorphism properties are also shown in

[11W 1].

Since every quasi-symn metric net is uniformly approximated by f-symmetric ones with finite

I, existence and continuity of the limit, isometry property and homomorphism property

immediately carry over from the I-symmetric case. It remains to prove (3) a.nd that

X X,., is onto. We have already seen tha.t on I-symmetric nets this map is onto

(‘(K,A,). Hence suppose that X is quasi-symmetric and X e C(K,Ai). Hence there

is an I-symmetric net V such that X By (2) this means that IX,
-

limN IXN
-- NII 0. Ilence X is approximated uniformly for large N by an I-symmetric

net, and must be I-symmetric by Lemma. 2.3.

To see that X --s is onto, let f C(K,A10,.). SinceU1C(K,Ar) is dense in C(K,A10)
we can find for a.ny summablc sequence e a sequence of tagged sets R and Xt C AR0
such that

I ::- )jcoJ?,X with lIj,.a,.XlI cc,

where j,.,RXR denotes the limit Y for the basic net V. = j.RXR. The idea of the proof

is to pick a sequence Sc, of tagged sets which increases sufficiently fast, and to set

XN= JNR0X

Note that every v is eventually included in this sum because the tagged subsets NT absorb

as N -s 00. Since Bja\”II = limp,’ I1jNR0XII we can pick Sc, such that for N Sc,

we have I!JNR, X 2cc,. The sum defining XN is then convergent for every N. For later

use we note tha,t the numbers

converge to a finite limit.

6N WiNRc,XII

S. az N

We now have to show that for sufficiently rapidly growing Sc, the net X becomes quasi-

symmetric. With the estimate Proposition 2.2(2) we get

IIXN jNAIXSI!I JNM OjAfR )x M + IIiNR’II

S M

- IMTJ
< IIX”II . + (6K — 6M)

ScczM

S0cCN;S..cM

If 5,, is chosen large enough the v’ term in the sum is only present if M is large in the

sense of the basic net along which we take all limits. Since MT 1/IMI —s 0 as M —4 00

in that net, we can pick S, such that the vth term is bounded by c, for all N, M.

Hence the sum converges absolutely, and vanishes in the limit limsupN,. The

second term vanishes because the 6N converge. It is evident from the construction that

= limNj,.,NXN = f. Hence X p—’ X,.,, is surjective.

3. The dynamics of quasi-symmetric observables.

In the previous section we have identified the quasi-symmetric nets as the appropriate

mean-field nets of observables. Suppose a dynamics for the mean-field system is given.

By this we mean that for each N in our fixed net of subregions of there is specified
a semigroup TIN t 0 of completely positive unit preserving linear maps on AN. We

can say that the dynamics has good mean-field properties if at least it maps the set of
quasi-symmetric nets into itself. In the first part of this section we shall formalize the
notion of a mean-field dynamical semigroup as a dynamics which in addition gives rise
to a well-defined limiting semigroup in the inductive limit space A,,. The dynamical
semigroups considered in [Dul] had the prima facie weaker property that they preserved
only I-symmetry for each finite I C . We will show that this is in fact an equivalent
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property to the preservation of quasi-symmetry under the additional hypothesis that each

TiN is permutation symmetric.

In physical models it is a set of generators GN of the dynamics TiN etGN which

will usually be provided; this by way of a net of Ilamiltonians or a net of dissipative maps.

Thus one will want to determine whether a given net of generators exponentiates to form

a mean-field dynamical semigroup, and in that case to compute the limiting semigroup on

Our aim in this section is to demonstrate that a wide class of dissipative interactions

in quantum lattice systems do indeed generate mean-field dynamical semigroups. These

can be thought of as the mean-field version of interactions with infinite range, but subject

to a relatively weak decay condition. Indeed, we are able to show that the decay conditions

required for the existence of a limiting dynamics are strictly weaker those required for the

corresponding translation invariant interaction. Of course, this class includes interactions

involving no more than a fixed finite number of sites as a special case. Apart from proving

the existence of the limiting dynamics for the class of lattice models, we obtain a form

for the limiting dynamics which shows that observables living on different tagged sites

evolve independently according to the (time-dependent) average state of the systeiri. This

conforms with the intuitive physical picture of mean-field dynamics. We stress, however,

that mean-field dynamical limits need not in general have this property. indeed, in section

4.5 of this paper we construct examples of mean-field dynamical limits which do not.

We will start the section by generalizing the mean-field dynamics of I-symmetric se

quences as described in [Dull to that of quasi-symmetric nets. We then describe the

dynamics of quasi-symmetric nets under the influence of generators of a fixed polynomial

degree, and demonstrate the factorization property of the dynamics in the thermodynamic

limit. Finally, we show that the dynamics of the lattice class of models can be approx

imated by those with polynomial generators (i.e. those in which oniy a finite nuixiber of

sites interact) and show that the factorization of the dynamics is preserved by this approx

imation.

We will call a net of operators T. quasi-symmetry preserving if it maps the set

of quasi-symmetric nets onto itself, that is if X. E Y T.X. E Y. ilie proof of the

following Lemma is a straightforward modification of Lemma 2.2 of [DW1I.

Lemiiia 3.1. Let 7’ be a uniformly bounded net operators which is quasi-symmetry pre

serving. Then there exists a unique operator T on A such that for all quasi-symmetric

nets X, (T. X

Definition 3.2. A net T. : I > 0 of completely positive unital (i.e. identity preserving)

con tractioiis is called a mean-field dynamical semigroup if

(1) for each I 0, Ti,. is quasi-symmetry preserving,

(2) (0, no) 3 1 — T1 is a stongly continuous contraction semigroup on A.

The requirement of strong continuity for the limit semigroup can be seen as

a statement about uniformity of the continuity of the TiN with N. Indeed, it can be

shown (cf. Theoreni 2.3 of [DW1) ) that 3.2(2) is implied by 3.2(1) under the additional

requirement that

for all X. EE. Y.

Ii ITxi’Xv -- X1jj 0

For any I-symmetric net X. (for example, a net which is J-symmetric for some J C I),

we will find it useful to refer explicitly to its mean-field limit as an element of C(K, Aj),

rather than the injection iiito C(K, Atoc). We will use the symbol X, for this purpose.

Corresponding to Lemma 3.1 we have for each finite I C !‘/ a notion of I-symmetry

preservation for nets of maps. Moreover, as is detailed in [Dull, a uniformly bounded

I-symmetry preserving net of maps 7’, has a unique limit T on C(K, Ai) such that fur

all I-syninietric nets X,, (T.X. ) For I C R, 3RXR will denote the limit

function X corresponding to the basic I-symmetric net iRXR.

Suppose that a net of maps T, is I-symmetry preserving for all finite I C V. Since

we view A1 as a subalgebra of A10, we canonically regard T as a map on the subalgebra

C(K,Aj) C C(K,A10) A. Now the union over! of the subalgebras C(K,A1)is dense

in A. Thus we might expect to construct from the maps T a map T as a limit of

quasi-syixixixetry preserving maps on Y.

It will be the case in all examples which we treat that 7’, is perixintation symmetric

iii the sense that for all tagged sets N, TN cuiixnxutes with aiiy autuimiurphisni * uf AN

induced by a permutation x of N. Note that this means that 1,N is independent of the

tagging N . With perimiutation invariance the notions of “quasi-syiniiietry preservation”

and “I-synirnetry preservation for all finite I C !v” becoiiie equivalent.

Theorem 3.3. Let T, be a net of unital permutation -symmetric contractions. Then the

following are equivalent:
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(1) 1 is J 1 mmdii pr serving for each finite I ( hijeetive mips q N — N of sj (GM idN\M)s7 Thus SymN GM is the avenge over the

(2) T. is quasisvmriictry preserving,
copies G,,(M) of GM acting on all possible subsets A(M) of AN.

Proof: (I) (2) Since 7’. is I-symmetry preserving for all finite I c &:, it is quasi-
Definiton 3.5. A net of operators G. will be called a bounded polynomial generator

symmetry preserving on the dense subset of basic nets in J’. Approximating any quasi- of degree I? if for some R C .‘V and all N D R,

symmetric oct as clnsely as desired by a basic net we see that T. is quasi-symmetry GN Sym CR

preserving on the whole of y.
Rj

where CR is the generator of a semigroup of completely positive unital maps on AR, and

(2)--(1) Let X. he f-symmetric. Then X. and hence T.X. are quasi-symmetric. But IIG,?Ij 7 < no.

by permutation symmetry of T. we have T. A’. T.p’X. piT. X. which by Proposition

2.4(2) is I-symmetric.
A

It is worth remarking at this point by analogous reasoning to that used in the proof One sees by use of the Trotter product formula tha.t each Tt,N etG is completely

of the above Theorem, one can compare the I-symmetric limits and J-symmetric limits positive.

of T. X• for an i-symmetric net when I C J. Since T.X. is I-symmetric, it is also J

symmetric with limit fiJ\,. But from Proposition 2.4(1) X is J-symmetric and The scaling (INI/IRI) in Definition 3.5 means that for each N, each site responds to

X, = Thus the family of operators T, obeys the consistency relation a mean of its interaction with all other sites. For example if RI 2 then for all A C A,

T(X IJ\J) TX GN(A IN\{i})
2(INI 1)

zeN

(Gi + G{,m})(A I)

Corollary 3.4. Replace definition 3.2 by the weaker statement that for all finite I c .V, The I-symmetric properties of semigroups with bounded polynomial generators have been

T,, is I-symmetry preserving and has a strongly continuous limit Ti’m on C(K,Aj). If investigated in [DulJ. We can extend these as follows.

each Tt,N is permutation symmetric, then T1. is a mean-field dynamical senhigroup.

Theorem 3.6. Let C. be a bounded polynomial generator of degree R, and set T.

Proof: By Theorem 3.3, for each t > 0, T1. is quasi-symmetric preserving. Since for et : I 0. Then

each finite 1, 1 ‘—b T11 is strongly continuous T is strongly continuous on the dense / Ilj i is a mean-field dynamical semigroup.
set LJ1C(K,Aj); and since < 1, 7cX, extends to a strongly continuous contraction

semigroup on the whole of A
(2) T has the disjoint homomorphism property, namely, for all finite I C Al’

T[,=®T2

where the tensor product is to be understoood in the range space Aj of C(K, Aj), and
We now turn to the question of finding nets of operators which generate mean-field

each T is an isomorphic copy of the same map.
dynamical semigroups. We deal first with perhaps the simplest class of generators: those

which are constructed for each N by resymmetrization of an interaction of a fixed finite (3) The restriction of Tim to the intensive (i.e. 0-symmetric) observables is implemented

number of sites, and resealed by the system size NI. For any C*algebra V let B(V) by a wea.k*continuous flow .F : I > 0 on K, i.e. for Xm intensive and I 0,

denote the set of bounded linear operators on V. Define the symmetrization operator Tt,mXm = X00 0

Sym
‘ Uioc N L(A51) --* t(A) by setting setting SymN GAl to be the average over all where K x [0, no) (p,t) p—i F1p e K is jointly continuous and FtFs =
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Proof: (1) By section 5 of [Dull, for each finite I c , t T• is I-symmetry preserving

with a strongly continuous limit I —* T11,on C(K, A1). Thus by Corollary 3.4 T. is a

mean-field dynamical semigroup.

(2) is proved in section 5 of [Dul] and (3) in Proposition 3.4(4) of [DW1].

We now come on to discuss the exact form of T,, when T. has a bounded polynomial

generator C. of degree R. For each p K and R y define the bounded linear operator

on A{5} by

I9) and set L” = L’11 . (3.1)

Thus for a fixed p the L’} are isomorphic copies of the operator L on A. In Proposition

3.4 of [DW1] it was seen that L is the generator of the implementing flow F, i.e.

Ftp=FipoL’

This is the sense in which it is said in [AM] that L is the generator of a non-linear

dynamical semigroup for mean-field models. But we now observe that L’ plays a more

general role: it generates local dynamics iii mean-field models. For let XN jNRXR,

making X, I-symmetric for any I C RT. Then according to Proposition 5.2 of [Dul],

(GX)(p) (JR >ZL1}XR)(P) =

zER

We shall prove below that I L’ is the generator of what we term the local cocycle

I H-’ A in 13(A) which (i) implements the flow F,p = po A; and (ii) has products which

implement the local evolutions: (T,’Xj(p) (A)’(X)(F,p). We start be considering

the cocycle. In Lemma 3.7 we establish the existence of solutions to the differeiitial equation

o L”. The topological Lemma 3.8 is required to determine continuity of the

solution in Proposition 3.9.

Lemma 3.7.

(1) The equation

with initial condition A = id has a unique solution [0, cc) x K 3 (1, p) ‘--k A E 13(A).

(2) The local cocycle A of (I) has the composition law

o A[’

Proof: (1) lILII < y. Thus, existence and uniqueness of a norm-continuous solution of

the integral equation

= id + j dsAL (3.2)

follows by standard methods (see e.g. [HS] ). We clearly have the norm estimates

UAII < e and lim sup IIA — idlI 0 . (3.3)
pJ

(2) For all p E K and I > s > 0 define PP(s, I) AA[’ Then

FP(s,t)LFeP and F(s,s) =

So for fixed s and p we have that for I s the map I h--b P’(s, I) obeys the same differential

equation as A’, and has the same boundary value at the point t s. Thus by uniqueness

in part (1) above, PP(s, 1) A’ for all I

Lemma 3.8. Let tl(, be a compact set in A. Then there exists a compact set D o such

that for any y’ > 7,

pEK, A=Le7

Proof: Since for arty X E AR, p F—) lE\{1}X is weak*tonorm continuous and bounded,

KxA (p, .4) LA is jointly continuous. Thus the set t {LAI p E K, .4 E fl,}, be

ing the continuous image of the compact set K xt10, is compact. Furthermore, supAEti, IIll
7 sup41 1-411.
Proceed by iteratioii and construct in a like manner the sequence of compact sets l2,

and so on. For any 7’ > 7, construct the set

Proof: Since by eq (3.3) 1 — A is norm-continuous, uniformly in p, it is enough to

prove that for each I, p —* A’A is weak4-to-uorni cuiitiniions. Now (I, p) Fp aiid

di

= A o L

iE101]}

Then 2 is houiided and {LP I p E K} c i. Furthermore, by construction, 12 can be

approximated to within e by finite sums from the compact sets(12r,),,erq and is hence

pre-conipact. Taking the closure 12 of 12 we obtain the required set.

Proposition 3.9. For each A E A the map (p, I) F-i A’A is jointly continuous.
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(p A) L’ A are both jointly continuous. Thus by composition (t, p A) LTpA is

jointly con Li rim ots

For a fixed A ( A, let- C be the compact set corresponding to 12 {A} in Lemma 38.

Then since

we have that

(A A)A
- f d.q(A A)L’A 4- A(L - L)A

slip I(A A)BU f ds sup jI(A ---- A)BU
I (t

- 1)et(p, a)
Bin o nc-n

where c(p, a) 1tPo<s<t 5 Pcit j(L -- L’°)Bj. Thus, by Gronwall’s Lemma (see

e.g. [HS])

sup (A
-- A)BI

l(7t (pa)
BEll

Since ,K and [O,(j are compact, then by the joint continuity of (p,t,A) c— LT,1A,

Et(p,a) ---a 0 as a ---- p weak*. Thus (A --- A)A —0 as a -—* p weak*.

Now according to iheorem 3.6(2) T/, is constructed as a tensor product (in A10) of

C I. Thus to know T1,, it suffices to calculate one of the The purpose of

Proposition 3.9 is that it enables us to verify that a possible candidate for is indeed a

strongly continuous contraction semigroup on C(K, A). With no loss of generality we take

1. ‘Ne define for each finite I C A the algebra

pI U {jx )c C -4R}
RCK

Thus 7)’ can be thought of as a dense polynomial subalgebra of ((K, Ai) comprising the

mean-field limits of basic [-symmetric nets.

Theorem 3.10. Let X. be {1}-syrnmetric. Then

(TX)(p)

Proof: Define

that TX C C(K,A) and that i is strongly continuous. Furthermore we have

the composition law

(T1TX)(p) = AAX(Ftp) A,X(Ft+,p) (T12X)(p)

where the second equality uses the composition law of A. Since < e

we conclude from Proposition 1.17 of [Dav} that t > 0 is a strongly continuous

seinigrolip on C( K, A).

We calculate the action of the generator of t -- on a- {1}-symmetric basic function of

degree 1? I. By Lemma 3.7, t — A is differentiable uniformly in p, and by Proposition

3.4 of [DW1], so is I c— 1p (in the weak* sense). So we can differentiate:

= AEçl}XR1

IER\{l} L L{}XR
zEII

= (GX)(p)

Thus the generator, O, oft agrees with G on p{’}. Since <et, any

lies in the resolvent set of G). For such
, ( — GPN (ir — G)PN. But

it is proved in Proposition 5.3(3) of [Dul] that p{t} is a core for and consequently

-

G’))Pi} must he dense in C(K,A). By Proposition 2.1 of [Day], p{l} is also as

core for G. Since the generators G and G agree on a core, they are equal, and so

T for all I > 0.

B

Using our formalism the positivity and flow-implementing properties of A’ follow

straightforwardly.

Proposition 3.11.

(I) Each A’ is completely positive and unital.

(2)F1p=poA’.

(T1iX)(p) A’Xj(Ftp)

We show that is a strongly continuous contraction semigroup on ((K, A). By the joint

continuity of (p t) A’ into the strong-operator topology on r(A), and the joint conti

nuity of(p,I) - Ftp, then for each x1 C C(K,A) we have that (p,t) -4 AX2(F1p) is

jointly continuous, uniformly for p C K compact and t in comnpacta. hence we conclude

Proof: (1) For any R with 1 E R

AX (Tj{1}RX ‘) IR\{i})(P) = IirnE{1}Tt,N(X IN\{i})

Since X i-4 X IN\{i}, TIN and EU} are all completely positive unital maps, A°, as a

limit of such maps, is also completely positive and unital.
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(2) For A E A, (4) For each N

(po A, A) = (p, A(j}A)(Jp)) = (p, (T.jj{]}A)(p))

= urn (pN,Tt,N jN{i}A) = (j{s}A)(Fp) = (Ftp,A)
N—.cz

S

Before extending Theorem 3.10 to treat the evolution of quasi-symmetric observables,

note that since each A’ is completely positive and unital, then by Theorem 423 of [Tak]

the product map A. . (with 1) factors) on the 111-fold algebraic tensor product A

extends to a completely positive unital map on A1. We denote this latter map by (At’)’.

Being positive and unital II(A)’II 1. We can extend each (A)’ to L3(Ai0)by tensoring

with the identity [nap, and construct the infinite tensor product (A’)’ lirnI/.(A’)’,

the limit being in the strong operator topology of B(A,0). Our final theorem for bounded

polynomial generators is as follows.

Theorem 3.12. Let = etG with G. a bounded polynomial generator. Then A

locally implements in the sense that for all X E Y,

(Tj,cX)(p) = (A’)X(Ftp) .
(3.4)

Proof: Combining Theorem 3.10 with Theorem 3.6(3) we see that equation (3.4) holds for

I-symmetric nets X. with limits of the form X = A c... Z. Since (Afl’ is bounded,

one obtains the stated result for any function in C(K,Aj) by approximation with limits of

sums of such terms. The final form is obtained by approximating nets in Y by basic nets.

Recalling that (Tm,,X)(p) = limN..lE\NTTt,NXN E A10, the form of given

above shows that A implements the one-site evolution of tagged sites when the bulk (of

untagged sites) is in the product state formed from p. In the remainder of this section we

extend Theorem 3.12 beyond the bounded polynomial generators. Consider the following

nets of generators.

Definition 3.13. A net of operators G will be called lattice class if for each finite

M C .‘ there exists net N —* F 13(A4.,j) such that following condtions hold.

(i)FZ_OforallNcM

(2) Fj11 limN F exists in the strong operator topology.

IIr’N II
(3) The bounds yM E5UpNDM iv Mu are suminable so that M MI7AI 7 <00.

GN 1SymN(FZ)
MC N

is the generator of a norm-continuous semigroup of completely positive unital con

tractions on AN.

This definition makes sense not only for nets of generators, but also of general bounded

operators on AN. For GN to generate it is sufficient, but by no means necessary, that

each F generates on AM. The polynomial generators (resp. operators) are the special

case, where F is non-zero only for some M, and independent of N. The next level of

complexity is to allow the N-dependence, but to retain only one fixed Al. A generator

constructed in this way is asymptotically equal to the polynomial generator constructed

from FM lunAr F. In this case the “lattice class bound” is 7 MI SupN jI

If for each i in some index set G is a lattice class net of operators on 13(A) with lattice

class bounds -y’ such that >, -y’ < 00 the suirm GN > G exists for all N, and defines

again a lattice class net with bound < , 7’. it is useful to note that the sets Al in this

definition enter only via their cardinality: due to the symnietrization over M implicit in

Sym the labelling of the set M becomes completely irrelevant. By adding up all terms

coining from Al’s of the same cardinality we can reduce the sum over Al to a sum over

only one standard set lvi, say {1 AiI}.

The lattice class geiierators caii be seen to arise in the following way. Let .V

and let the fixed net of regions be such that N —* 00 in the sense of Van Hove [Rue]. S

will denote tIme set of finite subsets of /z’. Suppose that a translation invariant family of

generators Al
-- FM E. 13(Ai11) is specified. Construct the generator net

GN > [Aij > FM+1
Mo

M+C N

G. is, of course, translation invariant rather than perixiutatmoim invariant. When GAI()

z(FAI, [for some family (Fxx ) of self adjoint potentials, it can be shown [BR.] that a limiting

dynamics exists provided that >ZM eJthI IFA.i II is finite. i3ut it is shown in [DW1] that

the syminetrized version of this interaction N
— GM . SymmiN 0N is lattice class. For

lattice class interactions it is then proved in [D’vVl] that a limiting dynamics for intensive

(i.e. 0-symmetric) observables exists. We see from Defimtioii 3.13(3) of the lattice class

that this means that this dynamics exists under the condition that
-. >ft5 M[ [PA! II

is finite, a considerably weaker condition than that of [BR].
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In the remainder of this section we will show that for lattice class generators, the

limiting dynamics exists for au quasi-symmetric nets, and furthermore that this dynamics

is locally implemented as in Theorem 3.12.

by

With the Fr as in Definition 3.13, define the bounded polynomial generator net G

>
Kr C M

We aim to show that (7. generates a mean-field dynamical semigroup by showing that it

can be approximated by those generated by the When we assume that A is finite

dimensional this turns out to he quite easy to prove. In view of the calculation of the

0-symmetric mean-field dynamics for lattice class generators in section 4 of [DW11, we

expect that the proof for A infinite dimensional is possible, albeit lengthy.

Alp .Denote by A the cocycle which locally implements the mean-field dynamical semi-

group generated by Gf1, and denote by LTi P its generator. F will be the corresponding

flow on K.

Lemma 3.14. Let G be lattice class, and let A be finite dimensional. Then the norm

limits

LA lirntMPA >IEAl}FM(A IM\{1})

M

and A’ EEC limM,,, A’t’ exist, are continuous functions of p, and satisfy equation (3.2).

A’ is completely positive and unital.

Proof: Summing the terms in G we see by comparison with equation (3.1) that

IM,pA lEKf\l}GM(A I\{})

Ki c M

11M1JA1I Zc IFM’W IAII. By 3.13(3) this is bounded uniformly in M and p by

and the tail ZA4’ECM IIIr’I ---‘ 0 as M —> no. Hence I,M,PA is convergent as Al --‘ no

to the form of LA given. Since convergence is uniform in p and for each M p LM,p

is continuous, then p -, LA is continuous. According to Theorem 4.11 and Proposition

4.6(2) of [DW1J, the flows .Ff’1p converge weak* as M no, uniformly for tin compacta,

to some .Fp E K, where 1 --- F1 is a weak*continuous flow on K. Since A is finite

dimensional this holds in the norm topology of K as well. It is now a straightforward

matter to show that A”1” converges uniformly to the unique norm-continuous solution

A’ of the equation A’ - id ÷ ff1’ Since convergence is uniform, p A is

continuous. As a limit of completely positive unital maps, A is completely positive and

Theorem 3.15. Let G. be of lattice class, with A finite dimensional. Then C. is the

generator of inca n-field dynamical semigroup which is locally implemented by the A’ of

Lemma 3.1.1, and which hence has the disjoint homomorphism property.

Proof: Since we work in the norm topology of K it is a simple matter to show that for all

finite I C ., (Ti,,f) — (A’)’f(Ftp) defines a strongly continuous contraction semigroup

on ((K, A1). One differentiates to find the action of its generator G on basic 1-symmetric

nets X J.RAR with I C R as
i,vI I P

— il1j {z}AR

xER

But this is equal to (G[X,,)(p). For G.j.RXR ZM
y(M) where for for each M, Y1

is the quasi-symmetric net N Y/’ (IN/IM)(SymN F)jNRXR N D M. By

3.13(3), M —-* y(M)1 is summable, so that for each a > 0 there exists Me such that

G.j.RXR Z7C1 Y.(1’4)lI < a. Hence G.j.RXR is quasi-symmetric and

(G.i.RXR)(p)
= M--.

y(M’)I(p)

M’CM

= l1rn1ER\fLXR

JD ER\I >
= (.i,RXR)(p)

In Proposition 3.16 below we show that P’ is a core for O. Then the above argument

shows that for s C : IJe(s) > 0, ((s — G.)Ybas) = (s — G)P’ (s — G)P’ is
dense in y’. So by the implication (4)=(5) of Theorem 2.3 of [DW1}, and Theorem

3.2 of [Dul], G is well-defined and C. has an I-symmetry preserving mean-field limit
which is generated by This is true for all I, thus G. generates a mean-field dynamical
semigroup and (Tt,,,X)(p) = (A’)X(Ftp).

It remains to show that P’ is a core for G. Our strategy is to express G in terms
of a derivative on C(K,A1), and then use standard methods to show firstly that the set
of differentiable functions is preserved by and is hence a core for G, and secondly
that each differentiable function can be approximated, along with its derivatives, by an
element of P’.

unital.
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by

For a unital C*algebra V and f € C(K, V) we define the gradient df(p) of f at p E K

(a
-

p, df(p)) f(ta - (1
-

‘ (3.5)

and say that f is differentiable whenever this exists as a continuous function on K. Equa

tion (3.5) must be understood as being V-valued in the sense that the duality (, ) is

between A and K, leaving (a — p,df(p)) E V. Equation (3.5) fixes the gradient only

up to a multiple of the identity. We remove this ambiguity and fix df as an element of

C(K, V A) by imposing the convention that (p, df(p)) = 0. C’(K, V) will denote the set

of differentiable functions in C(K,V). Clearly 2’ C C’(K,Aj).

This notion of a derivative also lifts to 13(V). Let H E C(K, 13(V)). Then we define dH

to be the element of C(K,13(V)) such that (dH)X = d(HX) for each X E V. For example)

take V = A, and let L be the local generator corresponding to a bounded polynomial

generator G, of degree M. Let A E A, p, a E K, and for h E [0,11 set p, = p + h(u — p).

Then

(a,dLA) = lE\{i} — lIAI\{i})GM(A Ip,4\{})

= ([M[ — 1)IE lE\{12}GM(A ® 1)

According to Theorem 4.11 and Proposition 4.3 of [DW1j, the limit flow Ftp =

poA = polimM A””° is differentiable and hence preserves the set of differentiable complex-

valued functions, In particular

d(f oF1)(p) = Jf(df)(Ftp)

for a suitable Jacobian r E 13(A), and furthermore there exists a bound [Jfl[ et. We

require now to prove a similar result for A. Since we work with A finite dimensional, the

proof is quite simple. Item (5) of the following proposition also provides the last remaining

step in the proof of Theorem 3.15.

Proposition 3.16. Let A be finite dimensional. Then

(1) L is differentiable

(2) A1 is differentiable for all t > 0.

Proof: (1)

h (L -- L) — (L’P5 — LMP)Ij h’1 >2 ([M’j 1) (E\{1} Lw\{i})M’ \\
M’ D M

< [a — Ph > jAl’j[jIi U . (3.6)
M’ D M

By Definition 3.13(3) this bound is the tail of a covergent sum. Thus the limit of the L11S

of inequality (3.6) as lvi — is zero, uniformly in Fr. We showed above that each LM is

differentiable, and so dL exists and is equal to limA1_.. dLM19.

(2) Since A is finite dimensional, we consider t — (Ftp, A’) as an integral curve of the vector

field (j,A) (poLP,AoLP) on the Banach space Kx13(A) with norm j(p,A)[I hcIH [AM
Since L is bounded arid p e-* L is differentiable, one sees (from section 4.1 of [AMR])

that p —i A’ is differentiable, at least locally in time. In fact, since , A) y I[(p, A)[[,

then in fact these integral curves exists for all time and are differentiable.

(3) Let f E Ci(KA1) Then clearly

(dT11f)(p) = (d(A)’)f(Ftp) + (A)’Jdf(Ftp)

(4) Let f C’(K,A,). Then

df(p) = (A)’f(Fjp)1

ILR\I >2L1}f(p o L,df(p)) . (3.7)

Thus C’(K, Aj) is a subset of dom(O), which by (2) and (3) is T1’,, invariant. Further

more, C’(K,A1)is dense in C(K,Aj) (it contains the dense subset of polynomials 21) and

so it is a core for G.

(5) We complete the proof by showing any f C’ (K, A1) there is a sequence of polynomials

(fn)nEN C P’ such that lim,,f f and lini_.df df. For then from equation

(3.7) one sees that Gf1, = Gf and so ‘P1 is a core for G,.

Consider the set £ of linear functions {p e- E,1A A E AIL+i } in ‘p’. Clearly the algebra

generated by L is dense in 2’ and hence dense in C(K,Aj). Furthermore for p a K

we can choose and g and h in £ such that g(p) 0 and (a p, dh(p)) 0. So, by

Nachbin’s Theorem stated in Theorem 1.2.1 of [Llaj, the algebra generated by £ is dense

(3) br all finite i C V,C1(K,A1)is invariant under T for alit 0.

(4) Fbr all finite I C J, C’(K,A,) is a core for Gj.

(5) ibr all finite I C !‘f, ‘P’ is a core lbr G,.

28

in C’ (K, A1) in the norm U = I[fI[ + [df[j, as required.
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4.1. Hamilfonian systems

In many examples the sernigroiips TIN are reversible in the sense that the generator is of

the form

GN(X) — jNIi[HN, X] (41)

with a llamiltunian density uN - H, c AN. For the thermodynamics of mean-field

systems it is sulfleient for H to be 0-symmetric [RW1]. For the dynamics one needs to

assume more, e.g. that tile generator be of lattice class as in Definition 3.13. This is readily

written in terms of H: we want that

HN >Z JNM’1M with iij AM
MCN

Then Definition 3.13 is satisfied with F(.) IMIiIH,

For Hamiltonian dynamics each TtN is an automorphism. Since the N-wise prod

ucts of quasi-symmetric nets are again quasi-symmetric we conclude immediately that

(T1,.(x.Y.))
- (T1.(x.)T1,.()) T1,(X)T1,(Y). Thus T

is a homomorphism. Within the lattice class of generators we can say more: the local

evolutions are themselves Ilamiltonian, with a p-dependent Hamiltonian:

‘M’ IF”JP(4) iIH, AJ with H” M\{l}(HM) (4.3)
M

The growth condition on supN HB ensures that IIH”II is hounded on K, and H has

continuous first derivatives with respect to p. This form of L” has the consequence that

each A is unitarily implemented: we have

The ilamiltonian lip is closely related to the energy density function H, : K -> IR,

which enters the Gibbs variational principle for the limiting free energy of the mean-field

system [RW1J. in the Euler-Lagrange equations for this variational principle one needs

the gradient of this function, i.e. the derivatives along directions in the state space. The

gradient dH,(p) in the sense of equation (3.5) is an element of A, also called the “effective

Hamiltonian”. The thermal equilibrium sta.tes are then infinite product states with a one-

particle state p which is an equilibrium state for H. This amounts to an implicit non-linear

equation for p known as the “gap equation”[RWl,Werj. Assuming HN to be of the form

(4.2) we obtain

(u — p,dH(p)) H(iu ._ (1 -- i)p) (4.5)
di Ito

- (1 .. i)p)M,

= jM((u
— p)

IMI--1, H)

M

IMI( — p,IEN\{l}HM)
M

= -- p, lIP)
. (4.6)

Here the first equality in (4.5) is the definition of the gradient as an element dH(p) E A,

and the last line shows that H satisfies this definition. It is clear, however, that equation

(4.5) fixes the gradient only up to a multiple of the identity. As in section 3, we can get rid

of this ambiguity by imposing the convention (p,diI,(p)) = 0. Then the above equation

becomes dH,.(p) = lIP — (p,JIP)I.

The identification of H” with the gradient of H,,,, is also important for establishing

an important property of the flow F1 in the Ilamiltonian case: it is itself Ilamiltonian in

the sense of classical mechanics [DW2]. In order to make sense of this statement we have

to introduce a symplectic structure on the state space K. The state space itself has no

natural symplectic structure (it may be odd dimensional). However, each of the leaves

of the foliation of the state space into unitary equivalence classes of states allows a non-

degenerate symplectic stucure [DW2J. Since A’ is unitarily implemented we already know

that the flow F1p 0 A’ respects this foliation. The easiest way to define the symplectic

strucure on all leaves simultaneously is to define the Poisson bracket of two differentiable

functions f, g : K -- IR. Using the definition (4.5) of the gradient we set

{f,g}(p) (p,idf(p),dg(p)]) . (4.7)

Note that the convention for the gradient is irrelevant here, since multiples of the identity

drop out of the commutator anyway. One now checks easily [DW2] that the flow satisfies

Liouville’s equation in the form

f(Ftp)1 = {H,f}(p) . (4.8)

4. Properties of the the limiting evolution

such that Mj sup WH < no

and H HI lirnHZ exists.

(4.2)

A(A) U,’ílU,’ with U’ iUH and U = 0 (4.4)
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4.1 Proposition. Generators of the form (4.9) are lattice class in the sense of definition

3.13, and hence define a mean-field dynamical selnigroup. The generator of the local

dynamics is
L(A) i[HP X

Proof: By the remarks after Definition 3.13 it suffices to consider a single term is.

hence we will simply omit. a froiri the above formulas. Moreover, we may assume that V,)’

is non-zero only for some standard set {I,..., IMI} for each cardinality of M. Now each

of the two terms in GN = NIV[X, VNI + [VN4,X]VN involves a double sum over M, M’

of terms of the type
/ .,. , .

LN UNM ‘,tJNM,aM’

We claim that G”’1’ is a lattice class net of operators with a lattice class bound (IMI -I
M)l)27fy,. By the remarks after 3.13 this wall be enough to complete the proof, since

nrn(mfl + ‘rn’)2ym’ym <4(Zrnrn2im)(Zrn7in).

The expression for GM is the average over all pairs (ir, ir’) of permutations of {1 N }
of NI *( VAI)[X,*’(VM)j, where we have identified VM, VM’ with elements of AN living

at the sites indicated. Substituting r’ ir yr” we can thus write

INISymN
(

V1[.

It is easy to see that under the outer symmetrization all terms coincide, for which the

“overlap” Al flir(M’) has the same number of elements. Let N!ck(N) denote the number of

permutations of {1 INI} with M fl x(M’)j = k. By definition we have Zk ck(N) 1.
,(MM’)

_

‘N ‘N1 hen we can write cIN INI/(IMI + hi )SynaN 1M with I M an operator on

where M&M’ is a set of cardinality IMI -1- IM’I, say {1 MI + IM’I}, and

1M&Al’ IM&M’l > ck(N)(VAI lV1’I)*j. 1IM -k
M’ II

This expression makes sense only for NI IM&M’I (IMI + MI’), but we can choose

any defiaaation of 1’ for the finitely rnaiiy exceptional N without chaiagang the validity

of our claim. Now by Lemma IV.1 of [RW1] we have c0 1 O(N i) aiacl hence
‘N .. Al’. Al,1 (MAI’) .‘ liniN (At lvi’) — (VAI 1 ) I . , 1 .. M’

.

It remains to compute the the

limiting generator L. We could do this by adding up the cn’iatributiuiis L’At Al’) from all

pairs (M, M’).

A quicker way to see the result is to use the results of the previous section: since VaN

satisfies the conditions (4.2) (apart from hermiticity) we kiiow (by splitting 1’,N into

where H (Va,dV, -- VdVa,c,)

The possibility of writing the limiting evolution as a classical Hamiltonian flow was

noticed a long time ago in [HLj. However, in order to state this, Hepp and Lieb used

the natural symplectic structure on the coadjoint orbits of a Lie group. Therefore the

Ilamiltonian had to be written as a function of the generators of a group representation.

This approach was also adopted by [Bol]. It has the disadvantage of introducing an

additional auxiliary object (the group representation) which becomes unnecessary as soon

as the syinplectic structure is established on the state space itself. For the dissipative

evolutions discussed below the disadvantage becomes even more pronounced.

To summarize: if each TiN is generated by a Hamiltonian, then the global dynamics

is given by a llamzltonzam flow, and the local dynamics is also generated by a Hamzltonaan.

4.2. Lindblad generators from symmetric nets

It is well known [Lin] that the generator of a dynamical semigroup can be written as a

sum of a commutator and terms of the form G(X) = V[X, V + [V, X}V. If we want to

turn this into a net of generators a natural possibility is to insert for V a 0-symmetric net

like the Hamiltonians in the previous subsection, and to multiply the result by the system

size. It is this class that we would like to study here. We mention that the only type of

dissipative inter-particle interaction included in some previous work [Un3] was a single

term of this type.

More precisely, we demand that the generators are of the form

GN(X) = NI V,NIX, VaN] + ]Va,N,XjVa,N

where VaN = JNM”a,M

MCN

where 7M = sup WV’MlI < 00 (4.9)

V1 = limVaMexists in norm

and (IMI27a,M) (aM) <00

a M M

It is clear that under these circumstances the nets Va. are 0-symnxietric, and

V,(p) (pM,Vj) . (4.10)

Moreover, the functions V0, : K —* Care differentiable, and dVa,,(p) = >Al lliI\i( Va Al) E

A. We can then compute the local dynamics as follows:
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hcrrnitian and skew-herruitian part.) that N Nl[Vj’,’, A IINI ij i a {l}

symmetric net with X(p) ldl7o,(x)(p), Al. Multiplying this {1}-symmetric net with the

fl-symmetric net 1N we get a {1 }-symmetric net with limit V,,(p)[dV,(p), Al. Adding
the contribution from the conjugate term in the Lindblad form, and summing over a we

find that GN(4 ) is { I }-syinmetric with limit LP(A) as stated in the Proposition.

Since the local dynamics is generated by a Ilamiltonian it might be suspected that this

forces the global evolution to be Ilamiltonian as well, hut this is not so. We demonstrate
this with the following elementary example:

Example: Let. A be the algebra of 2 x 2-matrices, and set VN jNig, where g+

to i

s,)-
Then from the Proposition one readily verifies that

0 ‘P12

\pi 0
(4.11)

The flow is determined from the differential equation iHP,p, This equation can be

written in terms of the variables p, y 1pi2l, and the argument of Pi2. The

latter is constant, and we can furthermore eliminate y from the fact that T,p is unitarily

equivalent to p, and consequently 2 tr(p2) 1 x2 2 is a constant of the motion.

The resulting equation —

,2 is readily solved, and gives x(i) —.tanh(\(t — i0))

where t0 is determined from the initial condition. For t — oo we get x(t) —*
---, ann

consequently lPi2l2 p 0. Thus in the state space, which is identified with a ball in 3

dimensions, the flow moves along the meridians on concentric spheres to the southern half

of the axis, it is thus certainly not Hamilt.onian.

In this exaiTiple, although the flow F1 is no longer Hamiltonian, it is reversible in

the sense that it also exists for negative times. This is no coincidence. In fact, if we

replace Vp,r by Va VN we obtain another generator G. of the form (4.9), and from

Proposition 4.1 we immediately get the local Hamiltonian as H” —H”. Thus in spite of

the fact that for finite N no TIN needs to have a positive inverse, T1,, does.

We have seen that for the generators studied in this subsection the local dynamics is

generated by a state-dependent Ilamiltonian lip. It is natural to ask whether any more

can be said about the generators of the form (4.9), or whether any function p ‘— I-I” can

occur. Since we have not attempted to find exhaustive conditions under which the mean-
field limit of a net of generators exists, we cannot be expected to show the latter result.
However, we will show the only slightly weaker statement that any function p H may he

approximated by local Hamiltonians arising from generators satisfying (4.9). In particular,

any ordinary differential equation respecting unitary equivalence classes is approximately

the equation determining the flow F1 of some mean-field dynamical semigrolip. This makes

it unnecessary for us to provide examples of various types of possible behaviour of the flow.

any structurally stable phase portrait of dynamical systems, stable and unstable points

and limit, cycles, as well as chaotic behaviour can occur.

The proof that approximately all lip occur is simple. It is useful for this purpose to

think of p JJP as a 1-form on K. This is permissible since gradients, 1-forms and local

Hamniltonians are all defined only lip to multiples of the identity. By Proposition 4.1 H” is

a sum of terms of the form — VdV). It is useful to write Va, f+ig.

Then the contribution to the Hamiltonian is 2(gdf — fdg).

In this expression f and g can now be chosen as arbitrary real valued polynomials on

K, or even sums of polynomials’ converging in C2-norm. (We do not need the latter fact,

it suffices to use the polynomials for the approximation argument). In particular, setting

f gh, any 1 -form g2dh with polynomial g, Ii can be realized. Since on a compact set any

differentiable function (of finitely many variables) can he approximated uniformly together

with its derivatives by polynomials [Llaj, we can drop the constraint that g and h should

be polynomials. Since we can write any hounded function as a difference of two squares

(take the first square as a constant larger than the upper bound), we conclude that by

taking sums we can uniformly approximate any 1-form.

To summarize, in the class of mean-field dynamical semigroups studied in this subsec

tion the local dynamics is still Hamiltonian. The flow F1 thus respects unitary equivalence

classes and is reversible, but not Hamiltonian. On any one equivalence class essentially

any flow is possible.

4.3. General lattice class

In the previous section we demonstrated that essentially any function p b—’ H” can occur

as the local Hamiltonian of the local dynamics in a suitable mean-field model in the class

described. Here we address the same question for the lattice class: we will show that

the functions p i U, which can arise from mean-field dynamical semigroups with lattice

class generators is dense in the set of continuous functions associating with each state p

a generator U of some dynamical senmigroup on A. The purpose of this question is to

verify that we have not missed some structure theorem for the local dynamics which would

put a constraint on this function. For simplicity we will always assume that A is finite

dimensional.
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4.2 Proposition. Let A be finite dimensional, and let C(K, 13(A)) denote the space of

continuous functions on K with values in the operators on A. Consider the cone of

functions L E C(K,13(A)) such that for all p, L generates a dynamical semigroup, and

the subcone Jp9 C of local generators p F—f L arising from polynomial generators. Then

1,9 is norm dense in Q.

Proof: We consider first polynomial generators GN = (INI/IRI) SymN GR with GR ex

tremal in the cone of permutation symmetric Lindblad generators on AR, i.e. we consider

the form G(.) ]R] SymR V[. , V] + [V*,
. ]V with V AR. Note that we do not require

V itself to be permutation symmetric. As a convenient expression for L in terms of V we

use

L(A) = >ZER\{X}{V[7lI(A),V] + ]V*,I(A)1V} (4.12)

where rj, embeds an A as the copy of A at site x. From this expression it is clear that

= L, and more generally

L.,®w = (p,VV)4,+ (pS7*W)L (4.13)

where V E AR and W As. Note that the coefficient of L,, depends on V and conversely.

We want to get rid of this dependence by finding suitable W for which the first term

becomes negligible, while (S WW) approximates any desired function. A subclass of

the generators discussed in the previous subsection precisely meets this description: we

set Ws =j5,F with F = F As’. Then by Proposition 4.1 we have lirnsL5(A) =

i]HP, A] with jJJP = W,dW,— But since F is hermitian, W, is a real function,

and hence lip o. On the other hand, lims(p5,WW) js’Fj2,which is the square

of an arbitrary real polynon-iial on K. By this we can approximate an arbitrary positive

continuous function, and consequently the closure of contains all functions of the form

p — f(p)L, with f C(K), f > 0, and L,, cpg. Any constant function U L is in

G, since we can take the corresponding one-site generator GN INI Sym L.

Given now an arbitrary function L we can choose a sufficiently fine continuous partition

of the identity, i.e. f C(K), f > 0, > f 1, such that f has its support only near

some Po, such that L is uniformly close to We have just shown that the latter

expression is in the closure of G,. hence is dense in G.
I

4.4 Lindblad generators from permutation operators

For finite dimensional A any net of generators is of the form GN(X) = INIi]11N,X] ±

N]Z(V:N]X,VN] + [Va,N,X]VaN). In this subsection we suppose that A is the

algebra of dx d-rnatrices, and that HN and each V,N is a linear combination of permutation

operators. Then GN vanishes on any operator X commuting with permutations, and dually

p” o GN 0 for any state p E K. Thus every homogeneous product state N is invariant

under the semigroups TtN. Since the generator of the flow is expressed by evaluating GN

in such states, it is clear that if the GN define a quantum dynamical semigroup, every

state p will be invariant under the associated flow. hence the flow F1 is trivial. This

does not mean, however, that the local dynamics is also trivial. Indeed, we know from

the previous section that approximately we can realize any local generator p U, and in

particular aiiy U such that p o U 0. However, for the mean-field dynamical seinigroups

discussed in this section we do not have to invoke this approximate result: the flow is

exactly constant.

As a first example, consider the Hamiltonian case. For simplicity we choose a poly

nomial generator of degree I?, i.e. we set “N JNR” h(x)U, where Sj

denotes the group of permutations of the sites R, U the unitary operator implementing the

permutation x, and It is any function on SR. The operator JR implies an averaging over

all permutations hence we may suppose without loss of generality that H is itself permu

tation invariant. Equivalently, h can be taken as an invariant function (h(irx’)

i.e. it is in the center of the grcup algebra. The complete iiiforniation about the dynamics

is contained in the energy density function

I)(pRu) (4,14)

Since every unitary U U . . . U U” commutes with U,, x E SR it is clear that

H3(p) H,(p o adu). Thus H, is constant on each unitary equivalence class. The flow

on each of the symplectic submanifolds of K is thus generated by a constant Ilamiltonian,

i.e. the flow is constant in accordance with the general remarks made above. In order to

evaluate (4.14) inure explicitly we use the formula tr(Aj
‘‘‘

Apj) tr((Ai . ‘ ‘

for x the cyclic permutation of {1, . . . n}, which is readily shown by expanding both sides

with respect to the same basis. We get

(R U)
= fl (tr(pk))fl (4.15)

where nk(x) is the number of cycles of length k appearing in the cycle decompusitiun of

ir E SR, and where we have used the symbol p for both the state and its density matrix.
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G”(A) H[A,HI fH,AJI1 = i[H,iIJl,A]J

/ ds it(s)e2HAe

Thus H is a polynomial in the jRj variables tr(pk). Put differently, H is a symmetric

polynomial in the eigenvaliies of p. It is easy to check that all such polynomials can occur.

The llamiltoriian for the local dynamics is Ii” = dil(p). This is non-zero, so the

local dynamics is not. trivial. From the form of H it is clear that H” is a polynomial in

p and the numbers t,r(pk). In particular, liP, p 0, confirming once again that the flow

is constant..

The siniplest, though physically quite interesting example of this kind of Flamiltonian

is the mean-field version of the lleisenberg model. There we have d — 2, R ---- {I , 2}, and

the llamiltonian is >— “ a” 2F —- 1, where a” dcn,tes the Pauli matrices,

and F U(12) denotes the flip operator. Then H(p) :- 2 tr(p2), and H” 4p.

In the context, of the class studied in subsection 4.2 the assumptions iTiade at the

beginning of the present subsection amount to postulating that each VaMN is a linear coin

bination of permutation operators. Thus 14 can be chosen as an arbitrary polynomial

in the variables tr(pk). Repeating the arguments in 4.2 we find that H” is now an arbi

tra.ry polynomial in p whose coefficients are symmetric polynomials in the eigenvalues of

p. Taking the flip F and 1N j,2F gives a trivial dynamics because F F*, as noted

in the previous subsection. Sc) one has to go to higher order permutations.

The next possibilit.y is to use directly formula (4.12) for general polynomial generators.

With V = F it is easily evaluated using the formula tr(A BF) tr(AB). This gives

tr(a pL(A)) t.ra p(2F2(I A) — F2(A I) — (A I)F2) = 2(tr(u)tr(pA) —

tr(aA) tr(p)). hence

L”(A) = 2(p(A) A) (4.16a)

A(A) = e2tA + (1 —e2t)p(A)I , (4.16b)

i.e. the local evolution contracts exponentially fast to multiples of the identity.

4.5 Failure of the disjoint homomorphism property

We have shown in section 3 that for a net of generators to generate a mean-field dynam

ical semigroup in the sense of Definition 3.2 it is sufficient that they be of lattice class.

Here we give some simple examples to show that this condition is by no means necessary.

These examples also show that some of the characteristic features of the limiting semi-

groups derived above are not valid for arbitrary mean-field dynamical semigroups, hut are

consequences of the special lattice class form.

There is a standard way of obtaining a dynamical semigrolip from a ilamiltonian

evolution: for any Hamiltonian H = H we may consider the generator

(4.17)

Thus G’1 is nothing hut the square of the generator i[H, I of the [lamiltonian evolution.

It is well known (see Theorem 2.31 of [Day]) that squaring the generator of a group of

isometrics on a Banach space produces the generator of a contraction semigroup, which is

just the integral of the group of isometrics with respect to the convolution seniigroup of

the heat equation. Explicitly, we have

2

(4.18)

with lit(S) (4i)u/2ei

It is important to note that in this integral both positive and negative s enter. Thus

squaring the generator of a non-reversible quantum dynamical semigroup will not in general

produce the generator of another.

We now apply this construction to a mean-field dynamical semigroup, generated by

a net HN of Ilamiltonian densities satisfying (4.2). Let us denote the resulting mean-

field dynamical group by SjN(A) = exp(iIINIHN)Aexp(—itINIHN). We now square the

generator for each N, getting

GN(A) = 1N12(H,IA,HN] + IHN*,AIHN)
(4.19)

Tt,N(A) = fds ,it(ds)S3,N(A)

Now let X E Y be quasi-symmetric. Then so is S3,.(X.). Using the strong continuity

of S.,. we then find that T,.(X.) is again quasi-symmetric. Hence Ti,. preserves quasi-

symmetry. We can take the limit N ..-.i oo under the integral and obtain

= f ds p(ds) S, . (4.20)

hence Ti,. is a mean-field dynamical semigroup. The generator C. is clearly not of lattice

class, since IIGNII grows like NI2 rather than like NI. We know that the evolution

described by S,., on the intensive variables C(K) is given by a Ilamiltonian flow. The

generator of this flow is a first order differential operator. Its square, which generates the

restriction of to C(K) is hence a second order differential operator. We may put

this in probabilistic terms saying that the evolution of intensive variables under is
given by a diffusion on K rather than a flow. More precisely, we get a diffusion along the
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orbits of the flow generated by H. We could also add several generators like C. and

obtain diffusions along higher dimensional submanifolds in K [DW1]. We note that the
generator (4.17) is very similar to the form considered in section 4.2: There we would have
taken Nj(H;,,[A,HN} + [HN,AJHN) INI’GN. Since GN has a well defined limit it is
clear that INr’GN goes to zero. We have noted this consequence of the hermitian nature

of HN before and used it in the proof of Proposition 4.2.

The integral formula (4.20) not only gives the evolution of the intensive observables

but also the local evolution. It can no longer be given by a local cocycle A’, because the

equation determining A’ (Lemma 3.7) presupposes the existence of the flow. The root of

this difficulty is the failure of the disjoint homomorphism property (Theorem 3.6(2))for

TIN, which is easily verified from the form of the squared generator of S.

= 4iadp respectively. Hence the full net T1. can have no local mean-field limit. On

the other hand, examining the global evolution one sees that the limitng flow is in both

cases trivial since p o L° fpeven 0; so = TX - X for any

0-symmetric net X. and t lit. Since for 0-symmetric X. the subnets7tNXN for N odd

and N even are 0-symmetric, we need only compare odd and even terms in the full net in

order to demonstrate 0-symmetry for the full net. But

N odd -,cx M e-cx
1t,NXN

— jfTt,I1XMW jT]X — T,Xj — U

as required.

5.2 Dynamical stability of local evolutions.

5. Local and Global Evolutions.

5.1 Global mean-field dynamical semigroups need not be local.

The notion of mean-field dynamical semigroup which we have used in this paper, namely a

limiting evolution of quasi-symmetric nets, is a priori stronger than the original formulation

of [D’Wi.j as a limiting evolution for the subset of intensive (i.e. 0-symmetric) observables

only. We constrast these by saying that the latter comprises an evolution of global or fully

site-avearged quantities only, which the former gives the evolution in local regions as well.

So far we have given examples of operator nets which generate in the stronger local

sense. In fact we can adapt section 4.4 to demonstrate an operator net which for which

there is a limiting global evolution, but not a limiting local evolution. Thus the present

notion of a mean-field dynamical semigroup is indeed stronger than the former notion.

Assume for the fixed net (Na) that NI takes odd and even values infinitely often.

We shall call N itself odd or even accordingly. From the operator ‘{m2} 2F I of

section 4.4, form the bounded polynomial generator GN() NI Sym[H{l2},
and

set GN (-1)1GN. Thus, G. is like a bounded polynomial generator, except that the

Nt element is multiplied by the alternating quantity ( l)”I. Clearly the two nets

= {Tm,N I N odd } and T” = {TtN I N even }

are mean-field dynamical semigroups in the local sense, although on different nets of

regions. But the local generators for the odd and even net are LP,odd ..-4iadp and

As we have stressed earlier, for mean-field dynamical semigroups with the disjoint homo

morphism property the implementing map A plays a dual role. It implements the evolution

of local states g — a o A’ on the state spaces of tagged algebras, and also the flow F via

the equation F1p po A. Now we have seen that initially localized observables (i.e. nets

of the form j.’RXR) develop in time a symmetrized tail in the algebra over the untagged

sites. Suppose that in the limit as I — , this tail in fact becomes dominant, so that the

time developed observable loses all information about its initial localization. Working in

the dual picture with an intial state p on each of the untagged algebras, this would mean

that any initial local state a on a tagged algebra A would evolve through a -- a o A’

towards the mean-field state F1p. This motivates the following definition.

Definition 5.1. We shall say that a local cocycle is asymptotically global in a topology

T of K if for each p a E K,

T—Iim auA-..Fmp=0

Of course, when the local generator is Flamiltonian one would not expect this type

of asymptotic result. however, it is relatively easy to find an 11-Theorem for the joint

evolution of local and global states. (In [DW1] we were able to prove an 11-Theorem fe,r

the How alone, but only under the assumption that for sonic p E K and all N, p” is an

invariant state for TIN). We shall show that time relative entropy (recalled below) of

arbitrary local state a o A with respect to the global state F1p is non-increasing in time.

In the following we let S(wi , w2) denote the entropy of w2 E K relative to w1 E K as

defined for normal states on a von Neumann algebra in [Ara}, and extended to states on
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C*algcbras in [PW,Kos] and also in [Pet]. The crucial property we shall need here is

that if -y : A” • A” is a completely positive unital map, then S(wi,w2) S(wi 07,W2o).

In the particular case where both states are given by non-singular densities D, and

with respect to a trace Tr,

S(wi , w) Tr( D, (log Pw, log D,))

Proposition 5.2. Let T1. be a mean-field dynamical semigroup whose limit has (lie

disjoint homomorphism property with local cocyle A and implementing flow F. Then for

each (p, a) I K x K, the function [0, oo) I . S(.Ftp, A’u) is non increasing.

Proof: Since F1p po A’, and since by Lemma 3.14 A is completely positive and unital,

we have that

S(Ftp,aoA’) S(poA’,uoA’) < S(p,u)

Since I S(:F1p,u o A’) is only shown to be non-increasing, rather than strictly

decreasing, we are unable to infer that A is asymptotically global. In fact, in the purely

Hamiltonian case discussed in section 4.1 S(Ftp,u o A’) is even a constant of the motion,

Hence we have to make do with the intuitive picture that the trajectories of t.he local

state at least remain in a neighbourhood of the global state. Furthermore, nothing is said

about the stability, asymptotic or otherwise, of the global state itself. Thus even with an

asymptotically global cocycle, it can happen that trajectories of the flow take wild paths.

In order to obtain an example, we can take a generator with chaotic flow, which is possible

by the completeness result. at the end of section 4.2. The proof of the following then

Theorem shows that we may find an arbitrarily small perturbation which leaves the flow

unchanged, but modifies the cocycle to a.n asymptotically global one.

Theorem 5.3. The set of generators whose local cocycles are norm-asymptotically global

is dense in Q.

Proof: Let L E J generate a local cocycle A. For any e > 0 let be the local

cocycle generated by L W, where 147 is (proportional to) the generator of equation

(4.16a): WA (p A) if A for any A E A Since p o W 0, the flows generated by

L and L + eW are identical. We denote this flow by F. Our claim is that L + eW is

norm-asymptotically global for all a > 0.

It useful to introduce for any p E K the projection P A — A with PP(A) (p, A)I.

Thus lV (i(l PP) Since A’I A’I ‘- I, and dually po A
—

po
‘-

Fp - pi we

have the relations

- PA =
-= AP’ LiP’ (5.1)

We can therefore restrict z’ to the range of the projection id -. P” More formally, we

introduce the operators

X’ — A P” — (id - pPt)
— (id _pP)

From equation (5.1) we find that Pt
— P’L’. Hence X’ satisfies the differential

equati i

xr (X + P’)(L’ — e(id PCt)) P’L’ X(L’ eid)

with the initial condition X’ - (id - PP). Clearly, this is the same equation satisfied by

e tA’(id I)Pt), and by uniqueness we conclude that

— (1 e’t)P° + e

As 1 - oo the second term goes to zero, so that A’ is norm-asymptotically global.
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