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Local dynamics of mean-field

Quantum Systems

N.G. Duffield ! and R.F. Werner. 2

Abstract. In this paper we extend the theory of mean-field-dynamical
semigroups given in [DW1,Dul] to treat the irreversible mean-field
dynamics of quasi-local mean-field observables. These are observables
which are site averaged except within a region of tagged siles. In the
thermodynamic limit the tagged sites absorb the whole lattice, but also
become negligible in proportion to the bulk. We develop the theory in
detail for a class of interactions which contains the mean-field versions
of quantum lattice interactions with infinite range. For this class we
obtain an explicit form of the dynamics in the thermodynamic limit.
We show that the evolution of the bulk is governed by a flow on the
one-particle stale space, whereas the evolution of local perturbations
in the tagged region factorizes over sites, and is governed by a cocycle
of completely positive maps. We obtain an H-theorem which suggests
that local disturbances typically become completely delocalized for large
times, and we show this to be true for a dense set of interactions. We
characterize all limiting evolutions for certain subclasses of interactions,
and also exhibit some possibilities beyond the class we study in detail:
for example, the limiting evolution of the bulk may exist, while the
local cocycle does not. In another case the bulk evolution is given by a
diffusion rather than a flow, and the local evolution no longer factorizes
over sites.
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1. Introduction.

The characteristic feature of mean-field systems can be expressed by saying that each par-
ticle or elementary subsystem interacts in an equal way with every other such subsystem,
and responds lo the average of these interactions. In this paper we will be concerned with
the limiting dynamics of such systems as their size becomes infinite. Therefore we will
consider a sequence of models comprising an increasing collection of copies of the basic
subsystem. When we speak of an interaction between the subsystems, we mean that for
each model in the sequence a (generally) irreversible dynamics is specified. The mean-field
nature of the models entails first of all that the interaction is invariant with respect to
permutation of the subsystems; the idea that each subsystem responds to an average is
made precise by the property that the generator of the dynamics of a large system can
be approximated by taking a generator involving only a few (often just two) subsystems,
averaging it over all permutations of the subsystems, and multiplying it by the number
of subsystems. This is in close analogy to lattice systems with translation invariant inter-
action: there one obtains the Hamiltonian for a finite region approximately by averaging
terms involving only a few sites over all translations which map these siles into the given
region, and by multiplying with the volume of the region. In this analogy mean-field sys-
tems are just lattice systems, whose underlying lattice has permutation symmetry rather
than translation symmetry. This analogy suggests a canonical way of obtaining a “mean-
field approximation” of an arbitrary lattice model with translation invariance: one merely
has to take the Hamiltonians of the lattice model for some sequence of regions going to
infinity in the sense of van Hove [Rue], and symmetrize each with respect to all permuta-
tions of the lattice sites. We do not attempt to justify this procedure as an approximation
to the original lattice system. Our aim is rather to obtain as complete an analysis of the

mean-field theory as possible.

The description of mean-field systems in terms of their permutation symmetry be-
comes more transparent if one looks at the intensive rather than the extensive observables.
As described above the Hamiltonian of a mean-field system divided by the number of
subsystems, i.e. the intensive variable “Hamiltonian density”, has the property that for a
large system it is approximately equal to the Hamiltonian density of a smaller version of
the system, symmetrized over all permutations. Sequences of observables (indexed by the
system size) with this property were called “approximately symmetric” in [RW1], and
have become the central notion of a research programme on mean-field systems. The basic
result in [RW1] concerns the thermodynamics of Hamiltonian mean-field systems, and
is a formula for the free energy density in the thermodynamic limit in terms of a Gibbs
variational principle in one-particle quantities. This result was later extended to “inho-

mogeneous mean-field systems” in which the permutation symmetry is restricted to sites
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with approximately equal exiernal or random parameters [RW2]. If one starts from a
lattice model with translation invariant interaction, the thermodynamics of its mean-field
version can be written down direcily by evaluating the mean energy and the mean entropy
for homogeneous product states.

This prescription is ofien taken as the definition of the mean-field approximation.
However, it would be impossible to define the dynamics “in the mean-field approximation”
if this is only understood as a class of variational states. In contrast, in our programine
mean-field models are treated as quantum systems in their own right. The dynamics
of mean-field models was treated in [DW1] from the point of view that the dynamics
should map the set of mean-field intensive variables, i.e. it should map the approximately
symmelric sequences into itself. A corresponding study of the inhomogeneous case was
undertaken in [DRW], and the special properties of Hamiltonian dynamics, as opposed
to general irreversible dynamics, were described in [DW2]: in this case one obtains in the
limit a flow on the state space of the one-particle algebra, which is Hamiltonian in the
full sense of classical mechanics with respect to a canonical Poisson bracket structure on
the state space. In earlier approaches [Bol] beginning with [HL] this had been noted
only in the case when the Hamiltonian is written in terms of the generators of a Lie group

representation so that a symplectic structure can be imported from the coadjoint orbits.

The works described so far focussed entirely on the properties of the intensive observ-
ables, which in the mean-field limit become completely delocalized. This leaves open the
question how Lhe evolutes of a localized observable behave under a mean-field dynamics.
Intuitively, the picture is that under a completely delocalized evolution such as a mean-
field dynamics the observable would instantaneously develop a completely delocalized tail,
while initially still exhibiling a strong dependence on the original localization region. For
very large times one might expect that this dependence on the original localization be-
comes weaker, especially when the dynamics is dissipative. It is therefore natural to use a
concept analogous to the approximately sequences in which the symmetrizalion operations
leave out all the sites of the original localization region. Put differently these sites are given
a “tag” and one aims to study the motion of the tagged subsystems under the averaged
influence of the remaining ones. This programme has been carried out in [Dul] for any
fixed set I of tagged sites. In this paper we further extend this approach allowing more
and more tagged sites in thermodynamic limit, as long as the proportion of tagged sites

goes Lo zero. The above intuitive picture is confirmed by our analysis.

A closely related programme for the study of mean-field systems has been based on the
work of Morchio and Strocchi [MS]. Their aim was to show how the dynamics of a system

with long range interactions can be defined in the thermodynamic limit even though the

quasi-local local algebra in the usual sense cannot be invariant under such an evolution due
to appearance of delocalized tails. Their proposal is to enlarge the quasi-local algebra by
suitable weak limits of observables capable of describing delocalized intensive quantities.
It is clear that these limits exist only with respect to a suitably chosen set of states, and
consequently much of the theory centers on this choice. For the case of mean-field theories
their programme was carried out by Béna [Bol] and Unnerstall [Un1,Un2]. In a sense
their approach is dual to ours, in focussing on the states rather than on the observables. In
particular, the permutation symmetry, which is as central to their approach as to ours, 1s
built in by choosing the folium of permutation symmetric states on the quasi-local algebra,
whereas in our approach it determines the connection between observables of systems of
different sizes. The thermodynamic limit of observables in our approach is always taken
in norm, whereas in the picture of Morchio and Strocchi it is typically taken in the s-
topology associated with the chosen folium of states. Consequently, our limiting object
is a C*-algebra, whereas they arrive more naturally at a W*-algebra or a von Neumann

algebra.

The paper is organized as follows. In section 2 we define quasi-local mean-field observ-
ables. These are what we call the quasi-symmetric sequences of observables: those which
are delocalized (i.e. site-averaged) except over local regions of tagged sites which become
proportionately negligible in the thermodynamic limit. Such sequences of observables have

well defined “thermodynamic limits” in a space which we construct explicitly.

In section 3 we formulate the notion of a mean-field dynamical semigroup as a se-
quence of dynamical semigroups which preserves the set of quasi-symmetric observables,
and which furthermore gives rise to contraction semigroup on the inductive limit space.
We demonstrate that a wide class of evolutions has this property, this class being consid-
erably wider than in [HL,Bo1,Un3]. In particular, we include the mean-field versions
of arbitrary translation invariant, possibly dissipative lattice interactions. The existence
of the limiting dynamics is subject to a growth condition which is far weaker than that
required for the original translation invariant interactions [BR] . For this class of models
the limiting dynanics is shown to have the following special form: on initially localized
observables it factorizes over the individual sites of the region of locahization, while the
global evolution of the delocalized tail is implemented by a flow on the one-site state space
of the system. The non-linear differential equation for this flow is just the Hartree equa-
tion. Such a form was oblained in [Bol], but only for Hamiltonian interactions beltween
finite numbers of sites. More recently this type of dynamical evolution has been consid-
ered by Béna [Bo2] as a generalization of quantum mechanics itself, and was linked to a
modification of quantum mechanics recently proposed by Weinberg [Wei]. As a special

case, our theory can be applied to classical Markov processes: the factorization of the local



evolutions has been nsed to investigate the Poissonian approximation in queueing networks

[Du2].

In section 4 we consider some properties of the limiting evolution in some general
cases. Firstly, we show that if the finite volume dynamics is Hamillonian, then the lim-
iting dynamics is completely determined by the energy density function appearing in the
Gibbs variational principle for the equilibrium states: as a Hamiltonian function in the
sense of classical mechanics il generates the flow which describes the global evolution via a
Poisson structure on the one-particle state space. Its gradient is the Hamiltonian operator
(depending on the global state) generating the local unitary cocycle. This description is
complete in the sense that any Hamiltonian {unction can be approximated by one aris-
ing from our class of models. The next level of complexity is given by the sequences of
generators which can be written in Lindblad form in terms of approximately symmetric
observables. Here the local dynamics is still given by a state dependent Hamiltonian.
However, it can no longer be expressed as the gradient of single funciion. We show that up
to approximation any state dependent Hamiltonian arises from a model of this type. The
global flow is no longer Hamiltonian, and is essentially arbitrary in the class considered.
The flow, and indeed the whole limiting evolution in this subclass is reversible (exists for
negalive times), while all evolutions for finite size systems are strictly dissipative. Finally,
in the full class studied in section 3 we obtain an (up to approximations arbitrary) state-
dependent Lindblad generator. However, we observe that such evolutions do not exhaust
the set of mean-field dynamical semigroups. This is illustrated by describing a sequence
of dynamical semigroups whose mean-field limiting dynamics exists in our sense, but lacks
some of the fundamental features established for the lattice class: the global limiting dy-
namics is given by a diffusion on the one-particle state space rather than a flow, and the
evolution of local observables does not reduce to a product of one-site evolutions. In one
of the classes mentioned above the local dynamics is still Hamiltonian, while the global
evolution is not. The converse can also happen in the sense that any generator (e.g. a
Hamiltonian one) may be perturbed in such a way that the global evolution is unchanged,
but the local evolution becomes dissipative. We construct such perturbations explicitly in

terms of permutation operators.

In section 5 we study the relation between the local and the global dynamics. In fact
we are able to construct an example of a sequence of semigroups which is a mean-field
dynamical semigroup in the global, but not local, sense. A limiting dynamics exists for the
fully site averaged observables only. Finally, we investigate the delocalization of initially
localized observables for lattice class evolutions. We prove an H-Theorem which suggests
that in the dissipative case all local information should be lost as the local states are drawn

towards the flow of the global state. We show that under the addition of an arbitrarily

small perturbation any lattice class generator has such an evolution.

2. Quasi-symmetric Observables

In this section we describe the notion of quasi-symmetric observables, which generalizes
on the one hand the usual quasi-local observables known from lattice models, and on the
other hand the mean-field intensive variables introduced in [RW1]. In order to define the
thermodynamic limit of a physical quantity it is always necessary to define the observable
in question for all system sizes occurring on the way to the thermodynamic limit. For
example, for the usual interactions of lattice systems it is the translation invariance of
the potential which determines the connection between the energy observables at different
system sizes. Quasi-symmetry as defined here is a property not of an observable of a single
system of finite size but of a net of observables indexed by the size. Associated with this
notion is a definition of the thermodynamic limit of a quasi-symmetric observable, and
much of the work in this section will go into the identification of the space in which these

limits lie.

Before taking up the formal development let us clarify the aim of this section by
relaling it to a standard construction in functional analysis, the inductive limit of Banach
spaces. There one has a sequence (Ap) of spaces with a system of isometric “inclusion
maps” jya 0 Ay — An (defined for N > M) satisfying the chain relation jyr = INM ©
jmr. The term “inclusion map” indicates that the elements Xgr € Ag and jnrXR € An
will eventually be identified. In other words, we are interested only in the sequence N —
X, which is defined for sufficiently large N (e.5. N > R) and satisfies Xy = inmXm
for all N, M for which jya and Xy are defined. The space of such sequences is then
called the “union” of the Ay with respect to the inclusions jyp. 1t is clear that this set
of sequences forms a vector space under N-wise operations. If we work in the category of
Banach spaces the limit space A of the system (An,jva) is taken as the completion of
this union. The elements of the completion can also be represented by sequences, namely
by those for which | Xy — jymXm]| becomes arbitrarily small as both N and M become
sufficiently large. Note that in the trivial case where all Ap are equal and jyp is always
the identity these sequences are precisely the Cauchy sequences. So we might call sequences
with this property “j-Cauchy”. Sequences X, X' for which | Xy — X}y || - O represent the
same element of the completion. Thus A is equal to the quotient of the space of j-Cauchy
sequences up to equality under the seminorm || X || = limy | X~||.

The quasi-local algebra of a lattice system is an example of this construction. Here
the Ay are the observable algebras of an increasing family of regions, and the embedding
jnu is by tensoring with the identity element on all sites of N\ M. Since the jyar in
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this case are homomorphisms of C*-algebras, the union becomes a *-algebra, and the limit
space Ay is also a C*-algebra, called the C*-inductive limit of the Ay. Ag is usually
called the quasi-local algebra of the lattice system, and we will denote it by Ay, reserving
the symbol “Au” for other limit spaces to be discussed below.

A very similar construction was used in [RW1] to define the algebra of intensive
observables of mean-field systems. Here one uses the same spaces Ay, but the inclusions
Jnu are modified by averaging over all permutation automorphisms of the larger region. It
is easy to check that the resulting maps jnyp again satisfly the chain relation, but they are
no longer isometric, nor even injective. Nevertheless, the notions of j-Cauchy sequences
(called “approximately symmetric” in [RW1]) and the limit space Ao, make sense even in
this case. It turns out that the N-wise product of j-Cauchy sequences is again j-Cauchy so
that the limit space becomes an (abelian) C*-algebra even though the jyu are no longer
homomorphisms. In this paper we generalize the construction still further: we will allow
the chain relation to be not strictly satisfied but only asymptotically for large indices. In
fact it suffices for a sensible definition of j-Cauchy sequences and the limit space to have
that limps oo limsupy o |[(Gnr — Fnm © jmr)XR| = O for every fixed R and Xg € Ag.
We will not, however, develop an abstract theory of “fuzzy inductive limits” along these
lines, but instead will focus on the case at hand, the physical motivation for the choice of

the jnar, and the concrete representation of the limit space Aeo.

We will consider systems composed of many “particles”, each of which has observables
described by the same C*-algebra with unit A. For most of the general theory we do not
need any further assumptions on this algebra but in many models of interest A is just a
finite dimensional matrix algebra describing a “spin”. In section 3, in the discussion of
mean-field dynamics in the full lattice class of generators we will make this assumption for
simplicity. By K(A) or simply by K we denote the stale space of this algebra. We equip
K with the weak* topology. The evaluation of a continuous linear functional ¢ on any

C*-algebra B on X € B will be written as (o, X). To each particle we associate a “site”

Az} the isomorphic copy of A “at site 2", we write A = & .cs Agzy for the observable
algebra of the subsystem localized in the finite subset 1 C N. Here and below we always
use the the minimal C*-tensor product, although in applications the algebras concerned
are usually finite dimensional matrix algebras, for which all C*-tensor products coincide.
Mappings between finite regions induce homomorphisms between the associated obervable

algebras. Explicitly, if 5 : I — J is an injective map we define 7 : Ay — A, by
TA}(Al Ay @ ‘4|1i) = A’)”(l) o Anfl(z) ce A,,—l(un (21)

with the understanding that on the right hand side A,-1(;) = 1, whenever z is not in the

range of . Note that if 7 is the inclusion map of T into J D I, 7 is just the usual embedding

7

between the subalgebras A; and A, used in the construction of the quasi-local algebra of
the lattice system as a C*-inductive limit. Since we will be interested in yet another kind
of inductive limit it will be convenient to suppress the inclusion maps 7 : Ay — Aj, and
similarly the inclusion of each A; into the quasi-local algebra Aj,.. Thus for I C J we
shall simply write A; C A; C Ae.

There are |N|!/(|N] ~ |M])! injective maps from a set of |M| elements into a set of
|N| > |M| elements. In [RW1,DW1] the identification between the intensive mean-field
observables at different system sizes was made by the average of all 7}, where 77 runs over all
injective maps. In contrast, only a single map (namely the natural injection 7 : M — N)
is used in the construction of the quasi-local algebra. Here we will use an average over a
subset of injective maps, which generalizes both of these possibilities: for I € M C N we
define J},, as the set of all injective maps 77 : M — N such that n(z) = i for all i € I,
which is a set of [N\ M|!/|M\ I|! elements. The corresponding average is

1! ~
e !lg%\}u”lt, Yoo s AM o Ar (2.2)

NET N 0

Thus for I = @ we recover the map used in the “global” theory of mean-field systems
[RW1,DW1}] and for I = M we get the injection used for the quasi-local algebra. The
family j§,, for fixed I was used in [Dul] to set up a theory of mean-field systems with a
fixed set I of “tagged particles”. In this paper we go one step further, by allowing the set

of tagged particles to become infinite in the thermodynamic limit.

Thus we will take the limit not only over an increasing family of regions, we will also
consider in each region a subsetl of tagged sites, such that in the limit every site of the
lattice eventually becomes tagged. We formalize this by using the notion of tagged sets:
a tagged set is a finite subset N C A of the lattice under consideration, together with a
subset N7 C N of “tagged sites”. Rather than denoting a tagged set by the pair (N, NT)
we will just use the symbol N, in much the same way as a vector space is usually denoted
by the same letter as its underlying set, without explicit reference to the operations defined
on it. For tagged sets we define an inclusion relation M € N as “M C N and MY C N
For tagged sets M C N we now define

na = g Au o Ax (2.3)

This is the basic family of inclusions on which our inductive limit construction is built.
In applications one usually does not take the observables to be defined for all regions N,
but only along some subsequence of regions (e.g. cubes). Therefore we will assume some
net (Ng)aen of tagged sets to be given, and we will only consider linits along this net.

Allowing only sequences at this point would not introduce a simplification in anything we
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do in this paper. On the other hand it is convenient to be able to state the theory for a
general net of regions in A" going to the lattice in the sense of van Hove, without being
Aorced to specify a particular enumeration. Therefore we allow the index set R to be an
arbitrary directed sct. Readers who feel more at home with sequences are invited to take
R = IN, and to substitute “sequence” for “net” throughout. This will be sufficient (though
perhaps not convenient) for all applications. Our only assumptions on the net (No)aen
are that it is increasing with respect to the relation @, that the tagged subsets absorb the

lattice, 1.e. NT = A" and that in the limil the tagged sites are relatively few, i.c.
(a3 (a3 3 gg

.
lim YXI“" =0 . (2.4)

Since the net of regions will be fixed once and for all there is no ambiguity in writing
N — oo for @ - oo, and limy f(N) for limg f(Ng) for the limit of any N-dependent
quantity. We will adopt this convention from now on, so in the sequel we will never refer

to the labels a or the set R.

We now single out the j-Cauchy nets in the sense mentioned in the introduction to
this section. These nets N +» Xy with Xy € Ay are the basic observables we consider.
Xn will be symmetrized over most sites in N, i.e. over all sites with the exception of the
relatively small subset N 7. Intuitively, Xy is a local observable with a symmetrized (or
completely delocalized) tail. One should think of Xy as a net of observables “converging
to a quasi-local mean-field limit”. Our formal definition is given below, together with the

corresponding notion [Dul] for a fixed set of tagged sites.

2.1 Definition. Let Xy € Ay for every N in the given fixed net of tagged sets. Then

(1) the net N v Xy is called a quasi-symmetric, or a quasi-symmetric observable, if
lim limsup|Xny — jnmXuml =0
Moo N_ oo

The set of such nets will be denoted by }.

(2) the net N « Xy is called I-symmetric, if

lim limsup| Xy — jll\/MXM” =0
M-00 N oo

The set of such nets will be denoted by Y.

As noted before the crucial property of the maps j for making quasi-symmetry a
notion of “convergent net” is the approximate chain relation jyr = jyam © jmr. This

relation will now be proven together with some other basic combinatorial facts.
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2.2 Proposition. Let ¢ J C RC M C N C N. Then

(1) jIIVR = jI’VM Oji\lfR-
NI+ M| Wl

(@) Wiir = dnar o nenll < 2RISR < 4RI

(3) limps oo limsupy oo livr = M 0 Fmrll = 0

Proof: All maps appearing in (1) and (2) act like the identity on Ay, and like their
counterparts with I = @ on the remining sites. Therefore it suffices to show (1) for
I = 0. Suppose (2) had been proven for this special case. Then we would obtain for
the general case a bound of the same form, but with |I| subtracted from the numbers
appearing in it. The bound as stated then follows from the monotonicity of the function
¢ (a+z)(b+ z)(c+z)! when (a+z) and (b+ z) are positive, and ¢ > max {a,b}. It
therefore suffices to show both (1) and (2) only in the case T = 0.

(1) j?\,M(A) can be computed by taking #(A) for any injective map n: M — N and then
symmetrizing over all permutations of N. It follows that S yon= jg,R for any injective
n: R — M. Equation (1) thus follows by taking the appropriate average over 7.

(2) Consider the map jyp (resp. jmr) defined as the equal-weight averages over all 5
with 7 : R — N (resp. 7 : R — M) such that in addition n(R)N J = 0. Let P = idn
denote the average over all permutation automorphisms of An of permutations leaving J
pointwise fixed. Then jyr = pf; 0% and ji,y = p% © 11, where n and 7; are any of the
maps over which Jy g and ji,, are averages. Hence jyr = p{ ot 072 = 3R a © T2, where
n2 : R — M is injective with ny(R) N J = 0. By averaging over all n; we find
INR=GNmOIMR
The rest of the proof consists in establishing the estimate

- . R||J
“]NR - J?\IR < QA‘_nl.l_.,_

Applying the same estimale to jp g, and inserting into the above equation then yields the
result. The second form of the estimate follows because |M| < |N|.

Let 7 = \171?1}2 denote the set of all injective 7 : R — M, and J the subset with (R)NJ = 0.
Note that for large N the “probability” n(R) meeting J goes to zero. More precisely, by
Lemma IV.1 of [RW1]we have that

_ AT IR
VAR

Now both j?VR and jn g are averages of # with different weights. Since ||4]| = 1 for all 7 we
can estimate their norm difference by the sum of the absolute differences of these weights.

For 7 € J the weight in JIQ/R is | 7|7, and in jyg it is |7]7!. The difference is el T
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Thus multiplied with the number Ijl of terms we get the contribution ¢ to the error. For
the remaining |7 \ J| = |7 terms the weight in j% is still |7|™!, but is zero in jyg.
Hence these terms also contribute £ to the error estimate, and putting the contributions

of these two types of terms together, we obtain the required estimate for HfNR - j?\,RH.

(3) Taking J = M7 and I = N7 in (2) we get limsupy ||jvr — jvm 0 jmrl < 2|R] 'f‘gl'

which goes to zero as M — oo by our standing assumption (2.2) on the net of tagged sets.

In the following Lemma we establish a standard way of showing that a given net X,
is quasi-symmetric, namely by showing that Xy can be uniformly approximated for large
N by a net of the special form N +— jyrY for Y € Ap. We will call such nets basic nets,
and denote the set of such nets by Vpes. In an ordinary inductive limit Vs, corresponds
to the union |J An, which is dense in the limit Banach space A by definition. This
density statement carries over to general “fuzzy inductive limits”, that is, whenever the
chain relation holds approximately. Here we establish it first on the level of nets. Since by
Proposition 2.2(1) the chain relation holds for j ,, with fixed I we can hence apply the
same reasoning to the inductive system (An, jh )

2.3 Lemma. Let Xy € Ay for all N in the given net of tagged sets. Then X, is quasi-
symmetric iff for all ¢ > 0 there are a tagged set R and Y € Ag such that

limsup | Xy — jnrY || <€
N

X, is I-symmetric ifl in addition one can choose RT = I.

Proof: (1) Let X, be quasi-symmetric. Then by definition there is for any € > 0 some
tagged set M such thal limsupy || Xy — jumXa|| < e. Hence we can set B = M
and ¥ = Xj. Conversely, suppose that Xy —jinrY|| € € for N > N.. Then
XN —jumXnll € 2+ linrY — jnmojmrY|| for N > M D N.. Taking in this
estimate the limit limsup, limsupy and using the approximate chain relation Lemma
2.4(2) we find that this limit is less than 2¢ for any £. Exactly the same arguments work

for I-symmetric nets, with all jyu replaced by JJIVM

With the help of this Lemma we can clarify the relations between quasi-symmetry
and I-symmetry for different values of I. Intuitively, ) is the limit of ViofI /AN e

the limit of allowing more and more tags. 1t will be useful also to have a systematic way
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of removing tags, i.e. to include sites previously exempted from all symmetrizations back

into the bulk. The operator of “removing all tags except those in I” is given by
Py = dnn AN o AN (2:5)

By Proposition 2.2(1) pl clearly is a projection. p% is the operation of removing all tags.

2.4 Proposition.
(1) ForICJ, Y cy’/cy.
(2) The map p’ : X, — (p! X.) projects Y onto Y.

Proof: (1) The inclusion ¥ C Y for any I is obvious from Lemma 2.3. What remains
io be shown is that any basic net of the form N — jk gY can be approximated by one of
the form jI{,MY. By Proposition 2.2(2) we can set Y = j{\,MY for some M C N, and get
supy HJIIVRY - ],{,M}-' < 2(|R||J|)/|M|, which can be made arbitrarily small by taking
M large enough.

(2) It is evident that the operation p! on nets is a projection. By Proposition 2.2(1) with

N = M we have p}; o jj, = il for I C J. Hence on basic nets iggY with J DI

the projection operation produces again basic nets. Since we can approximate any quasi-

symmetric net by basic nets jyx with R7 = J sufficiently large, Lemma 2.3 says that p!

maps ) into Y!. Taking I = J it is clear that basic I-symmetric nets are invariant under

the projection, hence pf(}) =yl ’
[ ]

We can now proceed to identify the inductive limit space of the system (An,jnv )

We will use the following notation: for any tagged set N, and any p € K we introduce the
P W T

NG Ay — Ayt with respect to the product state pN

conditional expectation IE on

the untagged sites. Thus
<0’, IE?V\NT(A)) = (U @ pN\N ’ A) ’ (25)

where o is an arbitrary state of Ayv, and A € Ay. Since we identify Ayr with a
subalgebra of Ay we can consider IE‘;\/\NT as a projection of norim one on Ay, le. a
conditional expectation in the sense of Umegaki [Ume]. If we identify Ay in turn with a
subalgebra of Aj,, we can also consider IE;JV\NT as a map IL‘)’JN\NT c Ay = Aoe. This is the
point of view taken in the following Theorem. We recall at this point that K, being the

state space of a unital C*-algebra, is weak*-compact. For any C*-algebra B3, C(K, B) will
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denote the space of weak*-continuous functions on K| taking values in B, and topologized

with the supremum norm || f|| = sup ¢ g | f(p)ll 5-

2.5 Theorem.

(1) Let X be a quasi-symmetric net. Then for all p ¢ K the norm limit
Xeolp) = li&n ]E';V\NT(A\’N) € Apoc

exists uniformly for p € K and p s> X (p) is weak*-to norm continuous.

(2) The map X € }» X, € C(K, Aioc) is onto, and isometric in the sense that
1ol = lign [ X

It is also a homomorphism taking the N-wise product of nets into the product of

C(K, Apoe).

(3) A quasi-symmetric net X is I-symmetric if and only if Xoo(p) € A1 C Aioc for all p.

Proof: The core of this result has been proven in section IV of [RW1]. There “approx-
imately symmetric nets” ( in our terminology “@-symmetric” nets) were allowed to take
values in a net of algebras of the form B Ay for a fixed “initial algebra” B, and An
as above. Symmetrizatlions were only to be applied to the tensor factors of Ay, and not
to B. But taking B = A;, this is precisely a description of I-symmetric nets. Therefore
we can immedialely apply the results of [RW1](Compare also Theorem 2.1 in [Dul]).
Thus for I-symmetric nets the limit in (1) exists, and is a weak*-continuous function
Xew : K = B = A; < Ap,.. Moreover, every f € C(K, Aj) is of the form f = X
for some I-symmetric X. The isometry and homomorphism properties are also shown in

[RW1].

Since every quasi-symmetric net is uniformly approximated by I-symmetric ones with finite
I, existence and continuity of the limit, isometry property and homomorphism property
immediately carry over from the I-symmetric case. It remains to prove (3) and that
X +» X is onto. We have already seen thal on I-symmetric nets this map is onto
C(K, Ar). Hence suppose that X is quasi-symmetric and Xo, € C(K,A;). Hence there
is an [-symmetric net ¥ such that Xo = Y. By (2) this means that [[Xo — Yool =
limy [|[ Xy ~ Yyl = 0. Hence X is approximated uniformly for large N by an I-symmetric

net, and must be [-symmetric by Lemma 2.3.

To see that X+ X is onto, let f € C(K, Ajoc). Since |J;C(K, Ar) is dense in C(K, Aroc)
we can find for any summable sequence €, a sequence of tagged sets R, and X" € Ap,
such that

[= Jeor, X" with [jeor, X*[| ey
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where joor X g denotes the limit Yo, for the basic net ¥, = j g Xr. The idea of the proof
is to pick a scquence S, of tagged sets which increases sufficiently fast, and to set
XN = Z ivr, X"
SyCN
Note that every v is eventually included in this sum because the tagged subsets NT absorb
AN as N - oo. Since ||joor, X”|| = limy ||ljnr, X*|| we can pick S, such that for N D S,
we have [|jy g, X¥|| < 2¢,. The sum defining X v is then convergent for every N. For later
use we note that the numbers
by =Y linr, X"
S, CN
converge to a finite limit.
We now have to show that for sufficiently rapidly growing S, the net X becomes quasi-
symmetric. With the estimate Proposition 2.2(2) we get

XN — G Xl < Z |Gnr, — dnarodar, )XY + Z linr, X"l
5. CM S.CN{S,@M
~ x |M7] _
< 2 XV AR+ (B = Bu)
S, CM

If S, is chosen large enough the vtt

term in the sum is only present if M is large in the
sense of the basic net along which we take all limits. Since |M1|/|M| — 0as M — oo
in that net, we can pick S, such that the v*" term is bounded by ¢, for all N, M.
Hence the sum converges absolutely, and vanishes in the limit limps .00 limsuppy - The
second term vanishes because the 6y converge. It is evident from the construction that
KXo =limy joN XN = ). joor, X” = f. Hence X + X is surjective.

3. The dynamics of quasi-symmetric observables.

In the previous section we have identified the quasi-symmetric nets as the appropriate
mean-field nets of observables. Suppose a dynamics for the mean-field system is given.
By this we mean that for each N in our fixed net of subregions of A’ there is specified
a semigroup Ty v : & > 0 of completely positive unit preserving linear maps on Ay. We
can say that the dynamics has good mean-field properties if at least it maps the set of
quasi-symmetric nets into itself. In the first part of this section we shall formalize the
notion of a mean-field dynamical semigroup as a dynamics which in addition gives rise
to a well-defined limiting semigroup in the inductive limit space A.. The dynamical
semigroups considered in [Dul] had the prima facie weaker property that they preserved
only I-symmetry for each finite I ¢ A. We will show that this is in fact an equivalent
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property to the preservation of quasi-symmetry under the additional hypothesis that each
T N is permulation symmetric.

In physical models it is a set of generators Gy of the dynamics Ty y = ¢!~ which
will usually be provided; this by way of a net of Hamiltonians or a net of dissipative maps.
Thus one will want to determine whether a given nel of generators exponentiates to form

a mean-field dynamical semigroup, and in that case to compute the limiting semigroup on

Aco-

Our aim in this section is to demonstrate that a wide class of dissipative interactions
in quantum lattice systems do indeed generate mean-field dynamical semigroups. These
can be thought of as the mean-field version of interactions with infinite range, but subject
to a relatively weak decay condition. Indeed, we are able to show that the decay conditions
required for the existence of a limiting dynamics are strictly weaker those required for the
corresponding translation invariant interaction. Of course, this class includes interactions
involving no more than a fixed finite number of sites as a special case. Apart from proving
the existence of the limiting dynamics for the class of lattice models, we obtain a form
for the limiting dynamics which shows that observables living on different tagged sites
evolve independently according to the (time-dependent) average state of the system. This
conforms with the intuitive physical picture of mean-field dynamics. We stress, however,
that mean-field dynamical limits ne=d not in general have this property. Indeed, in section
4.5 of this paper we construct examples of mean-field dynamical limits which do not.

We will start the section by generalizing the mean-field dynamics of I-symmetric se-
quences as described in [Dul] to that of quasi-symmetric nets. We then describe the
dynamics of quasi-symmetric nets under the influence of generators of a fixed polynomial
degree, and demonstrate the factorization property of the dynamics in the thermodynamic
limit. Finally, we show that the dynamics of the lattice class of models can be approx-
imated by those with polynomial generators (i.e. those in which only a finite number of
sites interact) and show that the factorization of the dynamics is preserved by this approx-
imation.

We will call a net of operators T, quasi-symmetry preserving if it maps the set
of quasi-symmetric nets onto itself, that is if X, € ¥ = T.X, € Y. The proof of the
following Lemma is a straightforward modification of Lemma 2.2 of [DW1].

Lemma 3.1. Let T, be a uniformly bounded net operators which is quasi-symmetry pre-
serving. Then there exists a unique operator Toq on Aeo such that for all quasi-syminetric
nets X, (T, X, )oo = TooX o -
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Definition 3.2. A net T, : ¢ > 0 of completely positive unital (i.e. identity preserving)
contractions is called a mean-field dynaical semigroup if

(1) for each t > 0, Ty, is quasi-symmetry preserving,

(2) [0,00) 51— Ty o is a stongly continuous contraction semigroup on Ac.

The requirement of strong continuity for the limit semigroup Ti o can be seen as
a statement about uniformity of the continuity of the Ty,n with N. Indeed, it can be
shown (c.f. Theorem 2.3 of [DW1] ) that 3.2(2) is implied by 3.2(1) under the additional
requirement that
lim (1 Ton Xn — Xnll =0

N — o0

forall X, € ).

For any I-symmetric net X, (for example, a net which is J-symmetric for some J C 1),
we will find it useful to refer explicitly to its mean-field limit as an element of C(K, Aj),
rather than the injection into C(K, Apc). We will use the symbol X1, for this purpose.

Corresponding to Lemma 3.1 we have for each finite I € N a notion of I-symmetry
preservation for nets of maps. Moreover, as is detailed in [Dul], a uniformly bounded
I-symmetry preserving net of maps 7, has a unique limit 7L on C(K, A;) such that for
all I-symmetric nets X, (T.X)L, = TI X1, For I C R, il g X r will denote the limit

function XL corresponding to the basic /-symmetric net 3 e Xr-

Suppose that a net of maps T, is I-symmetry preserving for all finite I C A Since
we view A; as a subalgebra of Ay, we canonically regard T. as a map on the subalgebra
C(K, A1) CC(K, Aloc) = Aco. Now the umion over I of the subalgebras C(K, Aj) is dense
in Ao,. Thus we might expect to construct from the maps TL a map Too as a limit of

quasi-symmetry preserving maps on Y.

It will be the case in all examples which we treat that T, is permutation symmetric
in the sense that for all tagged sets N, Ty commules with any automorphism @ of Ay
induced by a permutation 7w of N. Note that this means that Ty n is independent of the
tagging N 7. With permutation invariance the notions of “quasi-symmetry preservation”

and “I-symmetry preservation for all finite I C N become equivalent.

Theorem 3.3. Let T, be a net of unital permu!a,tiun-symmetric contractions. Then the

following are equivalent:
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(1) T, is I-symmelry preserving for each finite I ¢ N

(2) T, is quasi-symmelry preserving.

Proof: (1)=-(2) Since T, is I-symmetry preserving for all finite I C A7, it is quasi-
symmelry preserving on the dense subset of basic nets in J. Approximaling any quasi-
symmetric net as closely as desired by a basic net we see that T, is guasi-symmetry

preserving on the whole of J.

(2)=>(1) Let X, be I-symmetric. Then X, and hence T, X, are quasi-symmetric. But
by permutation symmetry of T, we have T. X, = T.p! X, = pIT. X., which by Proposition
2.4(2) is J-symmetric.

It is worth remarking at this point by analogous reasoning to that used in the proof
of the above Theorem, one can compare the J-symmetric limits and J-symmetric limits
of T,X, for an I-symmetric net when I < J. Since T.X, is [-symmetric, it is also J-
symmetric with limit (72 X1 ) I\ ;- But from Proposition 2.4(1) X is J-symmetric and

XL =X Ej\;. Thus the family of operators TI obeys the consistency relation

7‘0\{1(‘Y;<> o ‘J\I) = T(i,/\réo i} llj\,

Corollary 3.4. Replace definition 3.2 by the weaker statement that for all finite I C N,
T, is [-symmetry preserving and has a strongly continuous limit Tt{w on C(K,Ar). I

each T, n is perniutation symmetric, then T, is a mean-field dynamical semigroup.

Proof: By Theorem 3.3, for each t > 0, T, is quasi-symmetric preserving. Since for
each finite I, t > T/ is strongly continuous, Ty o is strongly continuous on the dense
set UC(K, Ar); and since ”Trl,m“ < 1, Ti.00 extends to a strongly continuous contraction
semigroup on the whole of 4.

We now turn to the question of finding nets of operators which generate mean-field
dynamical semigroups. We deal first with perhaps the simplest class of generators: those
which are constructed for each N by resymmetrization of an interaction of a fixed finite
number of sites, and rescaled by the system size |N|. For any C*-algebra V let B(V)
denote the set of bounded linear operators on V. Define the symmetrization operator

Symp : Upse n B(AM) — B(An) by setling setting Symy G p to be the average over all
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bijective maps 7 : N — N of 771 (Gp & idN\M)ﬁ. Thus Symy G um is the average over the
copies G, ary of Gpr acling on all possible subsets Aymy of An.

Definiton 3.5. A net of operators G, will be called a bounded polynomial generator

of degree R if for some R C N and all N D R,

N Y
GN = Iﬁillwsva (’R y
where G is the generator of a semigroup of completely positive unital maps on Ag, and
NGr|l = v < oo.

One sees by use of the Trotter product formula that each Ty v = e!CN is completely

positive.

The scaling (|N|/|R]|) in Definition 3.5 means that for each N, each site responds to
a mean of ils interaction with all other sites. For example if |R| = 2 then for all 4 € A,

1

Gr(Ax=Impy) = NI =1) > Iy @ (Gey + Gea)(A2 1)
TEN

The I-symmetric properties of semigroups with bounded polynomial generators have been
investigated in [Dul]. We can extend these as follows.

Theorem 3.6. Let G, be a bounded polynomial generator of degree R, and set T, =
e'Ce . £t >0. Then

(1) T is a mean-field dynamical semigroup.

(2) T has the disjoint homomorphism property, namely, for all finite IcN

T = QT
el
where the tensor product is to be understoood in the range space Ar of C(K, Ar), and

each Tt{';}g is an isomorphic copy of the same map.

(3) The restriction of Ty o to the intensive (i.e. O-symmetric) observables is implemented
by a weak*-continuous flow Fy: t > 0 on K, i.e. for Xoo intensive and t > 0,
Ti0Xoo = Xoo 0 Ty
where K x [0,00) 3 (p,t) —. Fip € K is jointly continuous and F1Fy = Feys.
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Proof: (1) By section 5 of [Dul}, for each finite I C N, tw Ty, is I-symmetry preserving
with a strongly continuous limit £ — T,{mon C(K,Ar). Thus by Corollary 3.4 T, is a

mean-field dynamical semigroup.

(2) is proved in section 5 of [Dul] and (3) in Proposition 3.4(4) of [DW1].
|

We now come on to discuss the exact form of T; o, when T;,, hasa bounded polynomial
generator G, of degree R. Foreach p € K and R3 y define the bounded linear operator
L‘(’y} on Ay} by

L‘{’y}A = ]E’;i\{y}GR(A ® Tp\{y}) and set L? = L;’]} . (3.1)

Thus for a fixed p the L’{Jy} are isomorphic copies of the operator L? on A. In Proposition
3.4 of [DW1] it was seen that L? is the generator of the implementing flow F, t.e.

d ,
'&zftpzftPOL;m

This is the sense in which it is said in [AM] that L? is the generator of a non-linear
dynamical semigroup for mean-field models. But we now observe that L? plays a more
general role: it generates local dynamics in mean-field models. For let Xy = jnrXr,
making X, I-symmetric for any I C RT. Then according to Proposition 5.2 of [Dul],

(GLXLYP) = Gl D Ly XR)p) = By D Ly Xr
zER zehR
We shall prove below that ¢~ Lt is the generator of what we term the local cocycle
t — A? in B(A) which (i) implements the flow Fip = po A?; and (ii) has products which
implement the local evolutions: (T[{ooz\'éo)(p) = (MY (X L) Fip). We starl be considering
the cocycle. In Lemma 3.7 we establish the existence of solutions to the differential equation
Af = Af o L*+#. The topological Lemma 3.8 is required to determine continuity of the

solution in Proposition 3.9.

Lemma 3.7.

(1) The equation
%Af = Ao L”
with initial condition A? = id has a unique solution [0,00) x K 3 (1,p) = AL € B(A).
(2) The local cocycle A of (1) has the composition law

F
po AFP = AP
Ao AP = Ay,
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Proof: (1) ||L?|| < v. Thus, existence and uniqueness of a norm-continuous sclution of
the integral equation

t
AL :id+/ dsAPL”* (3.2)
0

follows by standard methods (see e.g. [HS] ). We clearly have the norm estimates
A7) < e and lim sup |Af —id|| =0 . (3.3)
t—0 pEK

(2) For all p € K and t > s > 0 define '?(s,1) = AﬁAiff Then
d ,
;i-il""(s,t) = D?(s,t)L7** and I'?(s,s) = A%
So for fixed s and p we have that for t > s the map ¢ — I'#(s,1) obeys the same differential
equation as AY, and has the same boundary value at the point ¢t = s. Thus by uniqueness
in part (1) above, I'?(s,t) = A} for all t > s.
|

Lemma 3.8. Let £y be a compact set in A. Then there exists a compact set Q D Qg such
that for any 7' > v,

pe K, Ac Q==L ey'Q

Proof: Since for any X € Ag, p — lE;\{l}X is weak*-to-norm continuous and bounded,
Kx A5 (p,A) > L?Ais jointly continuous. Thus theset Q; = {LPAlp€ K, A€ o}, be-
ing the continuous image of the cornpact set K x{, is compact. Furthermore, sup yeq, || 4]
Tsupaca, 4]

iA

Proceed by iteration and construct in a like manner the sequence of compact sets 2,0y

and so on. For any 4' > v, construct the set

A= Z(fy’)“"’t,A, A ey, telo, 1]}

1:=1

Q:{AEA

Then Q is bounded and {L"Q |pe€ K} ¢ Q. Furthermore, by construction, Q1 can be
approximated to within ¢ by finite sums from the compact sets (22)nen and is hence
pre-compact. Taking the closure € of ) we obtain the required set.

B
Proposition 3.9. For each A ¢ A the map (p,t) = A{A is jointly continuous.

Proof: Since by eq (3.3) t — A! is norm-continuous, uniformly in p, it is enough to

prove that for each t, p — AYA is weak*-to-norm continuous. Now (t,p) — Fip and
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(p,A) +» L"A are both jointly continuous. Thus by composition (t,p, A) +» L7PA is

jointly continuous.

For a fixed A ¢ A, let 2 be the compact set § corresponding to g = {A} in Lemma 3.8.
Then since

t
(AL~ AD)A = / ds(A?  ATYLT A+ AY(LTP LT 7)A
JO
we have that
t
sup [(A? — AT)B)| < v / ds sup [|[(A? = AD)B|| +77 (e = Dedp, 0)
Beq Jo  Bea
where e(p,0) = supgc,c,suppeq H(L'r"’ L'T'")BH, Thus, by Gronwall’s Lemma (sce
eg [HS])
sup [[(Af ~ A7)B|| <y 7™ — Deu(p, o)
BeQ

Since 2, K and |0,t] are compact, then by the joint continuity of (p,t, A) + L7t A,

ei(p,0) - 0 as ¢ — p weak*. Thus (Af — A7)A — 0 as o — p weak*. =

Now according to Theorem 3.6(2) Tt"m is constructed as a tensor product (in Ag,c) of
7}{;1, : 1 € I. Thus to know T} o it suffices to calculate one of the Tt{‘?o, The purpose of
Proposition 3.9 is that it enables us to verify that a possible candidate for Tt{‘z is indeed a
strongly conlinuous cortraction semigroup on C(K, A). With no loss of generality we take

i = 1. We define for each finite /] C A the algebra

Pl= | {iLrX|X € Ar}
RCN

Thus P! can be thought of as a dense polynomial subalgebra of C{K, A) comprising the

mean-field limits of basic /-symmetric nets.

Theorem 3.10. Let X, be {1}-symmetric. Then
(TI2XENp) = ALK L) (Fip)

Proof: Define
(T30 X8 p) = AL (Fup)

We show that 'i",{:l is a strongly continuous contraction semigroup on C(K, A). By the joint
continuity of {p,t) = A? into the strong-operator topology on B(.A), and the joint conti-
nuity of (p,t) = Fyp, then for each xe C(K, A) we have that (p,t) — AfX(Q}(ftp) is

jointly continuous, uniformly for p € K compact and # in compacta. Hence we conclude
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that 7‘1‘{(1’3 xhte C(K,A) and that t — 71} is strongly continuous. Furthermore we have

t,o0

the composition law
(T X0V (p) = APAT X AN (Fop) = AL XN Frrap) = (T X EN)(0)
T < A7) < e

1,00

where the second equality uses the composition law of A. Since

we conclude from Proposition 1.17 of [Dav] that ’i’},g : t > 0 is a strongly continuous

semigroup on C(K, A).

We calculate the action of the generator of £ Tff,l on a {1}-symmetric basic function of

degree R 5 1. By Lemma 3.7, t = A% is differentiable uniformly in p, and by Proposition
3.4 of [DW1], so is t > Fyp (in the weak* sense). So we can differentiate:

d 2l e d Fe
alle XS0 = GNP Yr
_IRP I
= By 2 Loy Xr
TER
= (GExENp)
Thus the generator, G({xl,}, of t s Tt{(]x}, agrees with G on PUY. Since ”TJQH < e, any

r > v lies in the resolvent set of (;’({x],) For such k, (x— CJQ})P(‘} = (k- G,{,:,})P{l}. But
it is proved in Proposition 5.3(3) of [Dul] that P{!} is a core for G({,C‘,}, and consequently
(x — GENPUY must be dense in C(K, A). By Proposition 2.1 of [Dav], P{!} is also as
core for é!» Since the generators C’g} and G,{_,l,} agree on a core, they are equal, and so
Tt(rlx), = T,{.Kg for all ¢t > 0.

B

Using our lormalism the positivity and flow-implementing properties of Af follow
straightforwardly.

Proposition 3.11.
(1) Each A is completely positive and unital.
(2) Fip = poAf.

Proof: (1) For any R with 1 € R
APX = (T{ Gy RX @ Tpy1y)(p) = ,\,‘iianEf\r\{l)Tt.N(X ® Tw1y)
Since X v X @ Iy\1y, To,v and IE‘;““} are all completely positive unital maps, A}, as a

limit of such maps, is also completely positive and unital.
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(2) For A€ A,
(poAf,A)

1

(o, AZGEY L A)Fep)) = () (Thd o1} A)(P))
Nli_lgo(PN,Tt,N in}A) = (oop}A)(Fip) = (Fep, A)

Before extending Theorem 3.10 to treat the evolution of quasi-symmetric observables,
note that since each A? is completely positive and unital, then by Theorem 4.23 of [Tak]
the product map Af®.. A (with |I| factors) on the {I}-fold algebraic tensor product ABT
extends to a completely positive unital map on A;. We denote this latter map by (A9)!.
Being positive and unital ||(Af)’“ = 1. We can extend each (A?)! to B(A.) by tensoring
with the identity map, and construct the infinite tensor product (AP)= = lim[ sn(AD),
the limit being in the strong operator topology of B(Aoc)- Our final theorem for bounded

polynomial generators is as follows.

Theorem 3.12. Let T,, = ¢'C* with G, a bounded polynomial generator. Then A,
locally implements T; o in the sense that for all X € V),

(Troo X o) (p) = (AD)® Xoo(Fip) - (3.4)

Proof: Combining Theorem 3.10 with Theorem 3.6(3) we see that equation (3.4) holds for
I-symmetric nets X, with limits of the form Xio = AL ®...Z I Since (Af)’ is bounded,
one obtains the stated result for any function in C(K, Ar) by approximation with limits of

sums of such terms. The final form is obtained by approximating nets in ) by basic nets.

Recalling that (T} 00X oo )(p) = limy ~ o ]E?V\NTTt,N)\’N € Aloc, the form of T} o given
above shows that A? implements the one-site evolution of tagged sites when the bulk (of
untagged sites) is in the product state formed from p. In the remainder of this section we
extend Theorem 3.12 beyond the bounded polynomial generators. Consider the following

nets of generators.

Definition 3.13. A net of operators G, will be called lattice class if for each finite
M C N there exists net N — 'Y, € B(Aa) such that following condtions hold.

(1) TN, =0 forall N C M.
(2) Ty = hmpy o F,’;’, exists in the strong operator topology.

(3) The bounds ypm = supy-um HFQJ,H are summable so that Y, |M|ym = v < o0.
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(4) For each N

GN = Z %%%SYI“N(F?;)

is the generator of a norm-continuous semigroup of completely positive unital con-
tractions on Ap.

This definition makes sense not only for nets of generators, but also of general bounded
operators on Ay. For Gy to generate it is sufficient, but by no means necessary, that
each 'Y, generates on Ap. The polynomial generators (resp. operators) are the special
case, where T'}, is non-zero only for some M, and independent of N. The next level of
complexity is to allow the N-dependence, but to retain only one fixed M. A generator
constructed in this way is asymptotically equal to the polynomial generator constructed
from T'p = limp T'Y,. In this case the “lattice class bound” v is v = |M|supy HI‘Q’,H
If for each i in some index set G* is a lattice class net of operators on B(A) with lattice
class bounds v* such that ) 7' < oo the sum Gy = 3, Gy exists for all N, and defines
again a lattice class net with bound v < 37, 7", It is useful to note that the sets M in this
definition enter only via their cardinality: due to the symmetrization over M implicit in
Symy the labelling of the set M becomes completely irrelevant. By adding up all terms
coming from M’s of the same cardinality we can reduce the sum over M to a sum over
only one standard set M, say {1,...,|M|}.

The lattice class generators can be seen to arise in the following way. Let N o= 74
and let the fixed net of regions be such that N — co in the sense of Van Hove [Rue]. S
will denote the set of finite subsets of Z%. Suppose that a translation invariant family of
generators M — I'py € B(Ap) is specified. Construct the generator net

G, is, of course, translation invariant rather than permutation invariant. When Gu() =
i|® -] for some family (@ ) of self adjoint potentials, it can be shown [BR] that a limiting
dynamics exists provided that 37, . el™![|[['y|| is finite. But it is shown in [DW1] that
the syminetrized version of this interaction N v Gy = Sympy Gy is laltice class. For
lattice class interactions it is then proved in [DW1] that a limiting dynamics for intensive
(i.e. O-symmetric) observables exists. We see from Definition 3.13(3) of the lattice class
that this means that this dynamics exists under the condition that vy = Sonres M ml]

is finite, a considerably weaker condition than that of [BR].
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In the remainder of this section we will show that for lattice class generators, the
limiting dynamics exists for all quasi-symmetric nets, and furthermore that this dynamics

is locally implemented as in Theorem 3.12.

With the T'p as in Definition 3.13, define the bounded polynomial generator net GM
by

~ N
GN = L —-lgymNFM
M(JLII

We aim to show that (G, generates a mean-field dynamical semigroup by showing that it
can be approximated by those generated by the GM. When we assume that A is finite
dimensional this turns out to be quite easy to prove. In view of the calculation of the
0-symmetric mean-field dynamics for latlice class generators in section 4 of [DW1], we

expect that the proof for A infinite dimensional is possible, albeil lengthy.

Denote by /\M"'J the cocycle which locally implements the mean-field dynamical semi-
group generated by GM and denote by LM its generator. FM will be the corresponding
flow on K.

Lemma 3.14. Let G, be lattice class, and let A be finite dimensional. Then the norm
limits

LPA = lim LMPA = B Ta(A 6 Tngy)
M

and A} = limpy .o /\:”‘" exist, are continuous functions of p, and satisfy equation (3.2).

Af is comp]etely positive and unital.

Proof: Summing the terms in GM we see by comparison with equation (3.1) that
M, "
L™fA = Z ]EM\{I} w (A% Tingry)
MCM
LMea| < Yomrenm ITae LAl By 3.13(3) this is bounded uniformly in M and p by 7,
and the tail 37,50 ITarfl — 0 as M - oo. Hence LM# A is convergent as M — oo

to the form of L?A given. Since convergence is uniform in p and for each M p > LM?

is continuous, then p - L?A is continuous. According to Theorem 4.11 and Proposition
4.6(2) of [DW1], the flows FMp converge weak* as M -- oo, uniformly for ¢ in compacta,
to some Fyp € K, where t — F, is a weak*-continuous flow on K. Since A is finite
dimensional this holds in the norm topology of K as well. It is now a straightforward
matter to show that A:w'p converges uniformly to the unique norm-continuous solution
A7 of the equation A = id + ff; dsAPL7s*. Since convergence is uniform, p = A} is

continuous. As a limit of completely positive unital maps, A} is completely positive and
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unital.

Theorem 3.15. Let G, be of lattice class, with A finite dimensional. Then G, is the
generator of mecan-field dynamical semigroup which is locally implemented by the A} of

Lemma 3.14, and which hence has the disjoint homomorphism property.

Proof: Since we work in the norm topology of K it is a simple matter to show that for all
finite I C N, (Tl’mf) = (A7) f(Fip) defines a strongly continuous contraction semigroup
onC(K, A; ) One differentiates to find the action of its generator é!x, on basic I-symmetric
nets X, = jI. Xp with I C R as

(GLXL)p) =Thy, Y L7\ Xr
z€ER

But this is equal to (GL XL )(p). For G.j.rXr = Y u Y{M) where for for each M, yM)
is the quasi-symmetric net N s YIS,M) (IN|/IM)(Symy T)inrXr: N D M. By
3.13(3), M > ||[Y(™)]| is summable, so that for each &€ > 0 there exists M, such that
IG.jorXR ~ EM(;MC YM)|| < e. Hence G,j.r X is quasi-symmetric and

(G-J..RXR);(p) = A}jﬂ-lm Z YCEOM'),](p)

MCcCM
= l]m ]ER\IZLD’ Xnr
z€ER
= i By > L' Xr
z€ER

=(G.j.rXR)(p)

In Proposition 3.16 below we show that P! is a core for ééo Then the above argument
shows that for s € C: Re(s) > 0, ((s — G.)Dbas)l, = (s = CL)PT = (s - C’io)Pl is
dense in }/. So by the implication (4)=>(5) of Theorem 2.3 of [DW1], and Theorem
3.2 of [Dul], G! is well-defined and G, has an I-symmetry preserving mean-field limit
which is generated by G?_. This is true for all I, thus G, generates a mean-field dynamical
semigroup T} oo, and (Ty,00 X oo )(p) = (A})° X (Fip).

|

It remains to show that P/ is a core for C:'{,o Our strategy is to express G’fm in terms
of a derivative on C(K, A;), and then use standard methods to show firstly that the set
of differentiable functions is preserved by T,{'z and is hence a core for GI and secondly
that each differentiable function can be approximated, along with its derivatives, by an
element of P7.
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For a unital C*-algebra V and f € C(K,V) we define the gradient df(p) of fat p € K
by

0= pdf(e) = llto ~ (=) (3.5)
and say that f is differentiable whenever this exists as a continuous function on K. Equa-
tion (3.5) must be understood as being V-valued in the sense that the duality () is
between A and K, leaving (o — p,df(p)) € V. Equation (3.5) fixes the gradient only
up to a multiple of the identity. We remove this ambiguity and fix df as an element of
C(K,V & A) by imposing the convention that {p,df(p)) = 0. C'(K,V) will denote the set
of differentiable functions in C(K, V). Clearly P! C C}(K, A;).

This notion of a derivative also lifts to B(V). Let H € C(K,B(V)). Then we define dH
1o be the element of C(K, B(V)) such that (dH)X = d(HX) for each X € V. For example,
take V = A, and let L be the local generator corresponding to a bounded polynomial
generator G, of degree M. Let A € A, p,o € K, and for h € [0,1] set pp = p + h{o — p).
Then

(0,dLPA) = ’llij’rzl(IEf\/';\{l} ~ Ef\ 1))Gum(A» Ii\(ny)
= (IM] = DEGEY, (23 Gm(4 8 Tay(i})

According to Theorem 4.11 and Proposition 4.3 of [DW1], the limit flow Fip =
poAl = polimpy Af"p is differentiable and hence preserves the set of differentiable complex-

valued functions. In particular

d(f o Fi)(p) = J/(df)(F1p)

for a suitable Jacobian Jf € B(A), and furthermore there exists a bound [[JE]] < e, We
require now to prove a similar result for Af. Since we work with A finite dimensional, the
proof is quile simple. Item (5) of the following proposition also provides the last remaining
step in the proof of Theorem 3.15.

Proposition 3.16. Let A be finite dimensional. Then

(1) L is differentiable

(2) Ay is differentiable for all t > 0.

(3) For all finite I C N, C'(K, A;) Is invariant under Tt"w for all t > 0.
(4) For all finite I C N, C'(K, A;) is a core for GL,.

(5) For all finite I C N, P! is a core for GL,.
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Proof: (1)

W L) - e a3 (- 1) 05y~ )P
MDOM
<llo=pll > IM'[IPae]l - (3.6)
M'OM

By Definition 3.13(3) this bound is the tail of a covergent sum. Thus the limit of the LHS
of inequality (3.6) as M — oo is zero, uniformly in h. We showed above that each LM is
differentiable, and so dL? exists and is equal to limpy_, oo dLM2.

(2) Since A is finite dimensional, we consider t ~— (F,p, A7) as an integral curve of the vector
field (p, A) = (poLP, AoL?) on the Banach space K x B(A) with norm ||(p, A)|| = llell +[|All.
Since L is bounded and p + L? is differentiable, one sees (from section 4.1 of [AMRY])
that p — Af is differentiable, at least locally in time. In fact, since ”(p,A)” < v l(p, Ml

then in fact these integral curves exists for all time and are differentiable.
(3) Let f € C'(K, A;). Then clearly

AT, )(p) = (d(ADY )V (Fep) + (AD) JEAf(Fup)
(4) Let f € C'(K,Ar). Then

‘ d
GLS(p) = Ji(Af)lf(me)l
= By, D Lh flpo L7,df(p)) (3.7
zel
Thus C1(K, A;) is a subset of dom(GL), which by (2) and (3) is Tt{w invariant. Further-

more, C'(K, A;) is dense in C(K, Af) (it contains the dense subset of polynomials P') and
so it is a core for G1.

(5) We complete the proof by showing any f € C'(K, A;) there is a sequence of polynomials
(fa)nen C P! such that limy, oo fn = f and lim, Lo df, = df. For then from equation
(3.7) one secs that limp, e GX_fn = QL f and so P! is a core for Gl

Consider the set £ of linear functions {p - lEfl}A{ Ae AllHl} in P7. Clearly the algebra
generated by £ is dense in P! and hence dense in C(K, A;). Furthermore for p # 0 € K
we can choose and g and h in £ such that g(p) # 0 and (o — p,dh(p)) # 0. So, by
Nachbin’s Theorem stated in Theorem 1.2.1 of [Lla], the algebra generated by L 1s dense
in CY(K, A;) in the norm ||f||, = || fll + ||df]|, as required.

B
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4. Properties of the the limiting evolution

4.1. Hamiltonian systems

In many examples the semigroups Ty n are reversible in the sense that the generator is of
the form

Gn(X) = [NIi[Hn, X] (4.1)
with a Hamiltonian density Hy = Hpy € Ay. For the thermodynanics of mean-field
systems it is sufficient for H to be @-symmetric [RW1]. For the dynamics one needs to

assume more, e.g. that the generator be of lattice class as in Definition 3.13. This is readily

written in terms of H: we want that

Hy = > jmlify  with Hj € Ay (4.2)
MCN

such that Z IM|? sup “HAA,',” < 00
Iy N
and Hig =l - li{]n HY exists.
Then Definition 3.13 is satisficd with TN, () = [M[i(H}}, ].

For Hamiltonian dynamics each Ty n is an automorphism. Since the N-wise prod-
ucts of quasi-symmetric nets are again quasi-symmetric we conclude immediately that
Tioo(XooYeo) = (Teo(XoV2)) = (Ten(X)Teo(Y2)) o = Teoo(Xoo)Ti00(Yoo). Thus T oo
is a homomorphism. Within the lattice class of generators we can say more: the local

evolutions are themselves Hamiltonian, with a p-dependent Hamiltonian:

LP(A) =4|H? Al with H" =Y M|} (HF) (4.3)
M

The growth condition on supy ||H || ensures that [|[H?|| is bounded on K, and H? has
continuous first derivatives with respect to p. This form of L” has the consequence that
each A? is unitarily implemented: we have

d ‘
AS(A) = UP AU with ~—l~t»Uf =iUfH"* and UL =0 . (4.4)
a

The Hamiltonian H” is closely related to the energy density function Ho : K — R,
which enters the Gibbs variational principle for the limiting free energy of the mean-field

system [RW1]. In the Euler-Lagrange equations for this variational principle one needs
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the gradient of this function, i.e. the derivatives along directions in the state space. The
gradient d Hoo(p) in the sense of equation (3.5) is an element of A, also called the “effective
Hamiltonian”. The thermal equilibrium states are then infinite product states with a one-
particle state p which is an equilibrium state for H?. This amounts to an implicit non-linear
equation for p known as the “gap equation”[RW1,Wer]. Assuming Hy to be of the form
(4.2) we obtain

(¢~ p.dHea(p)) = 3 Heolto — (1= 0)p)| (4.5)
=S 0o
M =

= ST IM((o ~ p) 0 pM HE)
M

=" IMo ~ p, By HAT)
M
=(oc—p H") . (4.6)

Here the first equality in (4.5) is the definition of the gradient as an element dH(p) € A,
and the last line shows that H? satisfies this definition. It is clear, however, that equation
(4.5) fixes the gradient only up to a multiple of the identity. Asin section 3, we can get rid
of this ambiguity by imposing the convention {p,dH(p)) = 0. Then the above equation
becomes dHoo(p) = HP — (p, H?)1L.

The identification of H# with the gradient of H is also important for establishing
an important property of the flow F; in the Hamiltonian case: it is itself Hamiltonian in
the sense of classical mechanics [DW2]. In order to make sense of this statement we have
to introduce a symplectic structure on the state space K. The state space itself has no
natural symplectic structure (it may be odd dimensional). However, each of the leaves
of the foliation of the state space into unitary equivalence classes of states allows a non-
degenerate symplectic stucure [DW2]. Since Af is unitarily implemented we already know
that the flow Fip = po A respects this foliation. The easiest way to define the symplectic
strucure on all leaves simultaneously is to define the Poisson bracket of two differentiable
functions f,g : K — IR. Using the definition (4.5) of the gradient we set

{f,9}p) = {p,ildf(p}),dg(p)]) - (4.7)

Note that the convention for the gradient is irrelevant here, since multiples of the identity
drop out of the commutator anyway. One now checks easily [DW2] that the flow satisfies

Liouville's equation in the form

d
GIFe)| = Ul Y0 (48)
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The possibility of writing the limiting evolution as a classical Hamiltonian flow was
noticed a long time ago in [HL]. However, in order to state this, Hepp and Lieb used
the natural symplectic structure on the coadjoint orbits of a Lie group. Therefore the
Hamiltonian had to be written as a function of the generators of a group representation.
This approach was also adopted by [Bol]. It has the disadvantiage of introducing an
additional auxiliary object (the group representation) which becomes unnecessary as soon
as the symplectic structure is established on the state space itself. For the dissipative

evolutions discussed below the disadvantage becomes even more pronounced.

To summarize: if each T} y is generated by a Hamiltonian, then the global dynamics
is given by a Hamiltonian flow, and the local dynamics is also generated by a Hamaillonan.

4.2. Lindblad generators from symmetric nets

It is well known [Lin] that the generator of a dynamical semigroup can be writlen as a
sum of a commutator and terms of the form G(X) = V*[X, V] + [V*, X|V. If we want to
turn this into a net of generators a natural possibility is to insert for V a 0-symmetric net
like the Hamiltonians in the previous subsection, and to multiply the result by the system
size. It is this class that we would like to study here. We mention that the only type of
dissipative inter-particle interaction included in some previous work [Un3] was a single

term of this type.

More precisely, we demand that the generators are of the form

Gn(X) = IN| D V2 yIX, Van] + [Van", X]Van

where Van = Z jﬁ,MVaAfM
MCN

where Ya, M = stAx,p ||V£’MH <oo (4.9)

Vam = lim V.Y \sexists in norm

2
and Z (Z |/\J|2"/Q’M) (Z “)/Q’M) < 00

a M M
It is clear that under these circumstances the nets V,,. are §-symmetric, and
M
Vaolp) = D (™ VM) (4.10)
M

Moreover, the functions Vg e : K — € are differentiable, and dVa,co(p) = Som lEfw\](Van) €

A. We can then compute the local dynamics as follows:
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4.1 Proposition. Generators of the form (4.9) are lattice class in the sense of definition
3.13, and hence define a mean-field dynamical semigroup. The generator of the local
dynamics is

LP(A) =i[H* X]

3

where  H? = 3" 2 (VaroodVZ oo — Vi codVir )
. , ,

Proof: By the remarks after Definition 3.13 il suffices to consider a single term a.
Hence we will simply omit a from the above formulas. Moreover, we may assume that V}
is non-zero only for some standard set {1,...,|M|} for each cardinality of M. Now each
of the two terms in Gy = |N|V5|X,Vy] + [Vn*, X|Vy involves a double sum over M, M’
of terms of the type
GUMMIX = IN| (G Va) 1, Glose Viar)]

We claim that GM:M' is a lattice class net of operators with a lattice class bound (|M] +
|M|')2ypyarr. By the remarks after 3.13 this will be enough to complete the proof, since
Zm,m’(m +m') 2 ymyme < 4(2111 mz"fm)(zm Ym)-

The expression for G(Iéw’M )is the average over all pairs (7, 7') of permutations of {1,...,|N|}
of [N| #(Var)*[X, 7' (Vm: )], where we have identified Vs, Vagr with elements of Ay living
al the sites indicated. Substituting 7' = 7~ 'n" we can thus write

(MM 1 . [
G = N| Symy <Nl > Vil .ﬂ"M')])
w

It is easy to see that under the outer symmetrization all terms coincide, for which the
“overlap” M Nw(M') has the same number of elements. Let Nlcg(N) denote the number of
permulations of {1,...,|N|} with |M N a(M")] = k. By definition we have 37, cx(N) = 1.
Then we can write G%M’M') = |N{/(|M|+|M'|)Symy Fﬁ with l‘ﬁ an operator on A g a7,
where M&M' is a set of cardinality |M| + |M'], say {1,...,|M|+ |M']}, and
P nr = IMEM'Y cp(N)(Vag w0 11Ty [0 1M ) Vg, oo 1%
k

This expression makes sense only for |[N| > |[M&M'| = (JM| + |M]'), but we can choose
any definition of ["j.:{, for the finitely many exceptional N without changing the validity
of our claim. Now by Lemma IV.1 of [RW1] we have ¢y = 1~ O(N '), and hence
Uar,mry = limy [‘(NM,M,) = (V@ lM‘)'l- M Varr]. It remains to compute the the
limiting generator L. We could do this by adding up the contributions L("M)M,) from all
pairs (M, M').

A quicker way Lo see the result is to use the results of the previous section: since Vi n

satisfies the conditions (4.2) (apart fromn hermiticity) we know (by splitting Vo v into
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hermitian and skew-hermitian part) that N+ Xy = [N|[Van, A ® IIN'WI] is a {1}-
symmetric net with Xoo(p) = [dVa,c0(p), A]. Multiplying this {1}-symmetric net with the
0-symmetric net V! v we get a {1}-symmetric net with limit V:;(a[dVa,m(p), Al. Adding
the contribution from the conjugate term in the Lindblad form, and summing over a we
find that Gn(A alvl 1) is {1}-symmetric with limit L”(A) as stated in the Proposition.

Since the local dynamics is generated by a Hamiltonian it might be suspected that this
forces the global evolution to be Hamiltonian as well, but this is not so. We demonstrate

this with the following elementary example:

Example: Let A be the algebra of 2 x 2-matrices, and set Vy = jyiot, where ot =

(0 1)‘ Then from the Proposition one readily verifies that

00
Hﬂ:l<0 "g”) : (4.11)

1\ P21

The flow is determined from the differential equation p = i[H?,p]. This equation can be
written in terms of the variables z = p; — paa, ¥ = |p12)°, and the argument of pya. The
latter is constant, and we can furthermore climinate y from the fact that Fyp is unitarily
equivalent to p, and consequently 2tr(p?) — 1 = z? + 4y = A? is a constant of the motion.
The resulting equation & = 22 — A2 is readily solved, and gives z(t) = ~Atanh(A(t — 1o)),
where ty is delermined from the initial condition. For t — oo we get z(t) — —AX, and
consequently |p12l2 =1y — 0. Thus in the state space, which is identified with a ball in 3
dimensions, the flow moves along the meridians on concentric spheres to the southern half

of the axis. It is thus certainly not Hamiltonian.

In this example, although the flow F; is no longer Hamiltonian, it is reversible in
the sense that it also exists for negalive times. This is no coincidence. In fact, if we
replace V, v by VQ‘N = V; y we obtain another generator G. of the form (4.9), and from
Proposition 4.1 we immediately get the local Hamiltonian as H? = —HP. Thusin spite of

the fact that for finite N no T¢ v needs to have a positive inverse, T} o, does.

We have seen that for the generators studied in this subsection the local dynamics is
generaled by a state-dependent Hamiltonian H?. It is natural to ask whether any more
can be said about the generators of the form (4.9), or whether any function p — H” can
occur. Since we have not attempled to find exhaustive conditions under which the mean-
field limit of a net of generators exists, we cannot be expected to show the latter result.

However, we will show the only slightly weaker statement that any function p — H? may be
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approximated by local Hamiltonians arising from generators satisfying (4.9). In particular,
any ordinary differential equation respecting unitary equivalence classes is approximately
the equation determining the flow F, of some mean-field dynamical semigroup. This makes
it unnecessary for us to provide examples of various types of possible behaviour of the flow:
any structurally stable phase portrait of dynamical systems, stable and unstable points

and limit cycles, as well as chaotic behaviour can occur.

The proof that approximately all H® occur is simple. It is useful for this purpose to
think of p +» H” as a 1-form on K. This is permissible since gradients, 1-forms and local
Hamiltonians are all defined only up to multiples of the identity. By Proposition 4.1 H? is
a sum of terms of the form %(V,,mdv,;m — Va“de,,,m)A It is useful to write Vi 00 = f +1g.

Then the contribution to the Hamiltonian is 2(gdf — fdg).

In this expression [ and g can now be chosen as arbitrary real valued polynomials on
K, or even sums of polynomials converging in C?-norm. (We do not need the latter fact,
it suffices to use the polynomials for the approximation argument). In particular, setting
f = gh, any 1-form g2dh with polynomial g, h can be realized. Since on a compact set any
differentiable function (of finitely many variables) can be approximated uniformly together
with its derivatives by polynomials [Lla], we can drop the constraint that g and A should
be polynomials. Since we can write any bounded function as a difference of two squares
(take the first square as a constant larger than the upper bound), we conclude that by

taking sums we can uniformly approximate any 1-form.

To summarize, in the class of mean-field dynamical semigroups studied in this subsec-
tion the local dynamics is still Hamiltonian. The flow F; thus respects unitary equivalence
classes and is reversible, but not Hamiltonian. On any one equivalence class essentially

any flow is possible.

4.3. General lattice class

In the previous section we demonstrated that essentially any function p ~ H? can occur
as the local Hamiltonian of the local dynamics in a suitable mean-field model in the class
described. Here we address the same question for the lattice class: we will show that
the functions p + LP, which can arise from mean-field dynamical semigroups with lattice
class generators is dense in the set of continuous functions associating with each state p
a generator L? of some dynamical senmigroup on A. The purpose of this question is to
verify that we have not missed some structure theorem for the local dynamics which would

put a constraint on this function. For simplicity we will always assume that A is finite
dimensional.
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4.2 Proposition. Let A be finite dimensional, and let C(K,B(.A)) denote the space of
continuous functions on K with values in the operators on A. Consider the cone G of
functions L € C(K,B(A)) such that for all p, L? generates a dynamical semigroup, and
the subcone G,y C G of local generators p +— L* arising from polynomial generators. Then
Gpg is norm dense in G.

Proof: We consider first polynomial generators Gy = (|N|/|R|)Symy Gr with Gg ex-
tremal in the cone of permutation symmetric Lindblad generators on Ap, i.e. we consider
the form Gg(-) = |R|Symg V*[-,V]+[V*, -]V with V € Ag. Note that we do not require
V itself to be permutation symmetric. As a convenient expression for L? in terms of V we
use

L (4) = 3 B {Volie(a), Vi + ViV (4.12)

z€R
where 7, embeds an A as the copy of A at site z. From this expression it is clear that
LY, 43 = LY, and more generally
Ly = (0% V V)L, + (05, W W)LY, (4.13)

where V € Ap and W € As. Note that the coefficient of L}, depends on V and conversely.
We want to get rid of this dependence by finding suitable W for which the first term
becomes negligible, while (p5, W*W) approximates any desired function. A subclass of
the generators discussed in the previous subsection precisely meets this description: we
set Ws = js, F with F = F* € Ag. Then by Proposition 4.1 we have lims Ly (4) =
i[H?, Al with iH? = W2 dWe, — WeodWZ,. But since F is hermitian, W, is a real function,
and hence H? = 0. On the other hand, limgs(p, W*W) = |jco5:F|2, which is the square
of an arbitrary real polynomial on K. By this we can approximate an arbitrary positive
continuous function, and consequently the closure of G,4 contains all functions of the form
p— f(p)L% with f € C(K), f > 0, and L{ € Gpy. Any constani function L? = Lisin
Gpg, since we can take the corresponding one-site generator Gy = |N|Symy L.

Given now an arbitrary function L € G we can choose a sufficiently fine continuous partition
of the identity, i.e. fo € C(K), fa >0, Y, fa =1, such that f, has its support only near

some pq, such that L? is uniformly close to 3", foL?=. We have just shown that the latter

expression is in the closure of G,,. Hence Gy is dense in G.
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4.4 Lindblad generators from permutation operators

For finite dimensional A any net of generators is of the form Gn(X) = |N|i[Hn, X] +
iNiZQ(V;N{X,Va,N] + [Va,n*, X]Va,n). In this subsection we suppose that A is the
algebra of d x d-matrices, and that Hy and each V, y is a linear combination of permutation
operators. Then Gy vanishes on any operator X commuting with permutations, and dually
p" 0 Gy = 0 for any state p € K. Thus every homogeneous product state p¥ is invariant
under the semigroups Ty . Since the generator of the flow is expressed by evaluating Gy
in such states, it is clear that if the Gy define a quantum dynamical semigroup, every
state p will be invariant under the associated flow. Hence the flow F; 1s trivial. This
does not mean, however, that the local dynamics is also trivial. Indeed, we know from
the previous section that approximately we can realize any local generator p — L?, and in
particular any L? such that po L? = 0. However, for the mean-field dynamical semigroups
discussed in this section we do not have to invoke this approximate result: the flow is
exactly constant.

As a first example, consider the Hamiltonian case. For simplicity we choose a poly-
nomial generator of degree R, 1.e. we set Hy = ]?VRH = j?\lRZwESﬂ h(m)Uy, where Sg
denotes the group of permutations of the sites R, U, the unitary operator implementing the
permutation w, and h is any function on Sg. The operator j?\,R implies an averaging over
all permutations hence we may suppose without loss of generality that H is itsell permu-
tation invariant. Equivalently, h can be taken as an invariant function (h(wn') = h(x'n)),
i.e. it is in the center of the group algebra. The complete information about the dynamics

is contained in the energy density function

Heo = (p", H) =Y h(m)(p™,Ux) (4.14)

v

Since every unitary U w U---U = U%® commutes with Uy, 7 € Sg it is clear that
Heo(p) = Hoo(po ady). Thus Hy, is constant on each unitary equivalence class. The flow
on each of the symplectic submanifolds of K is thus generated by a constant Hamiltonian,
i.e. the flow is constant in accordance with the general remarks made above. In order to
evaluate (4.14) more explicitly we use the formula tr(4,--- Ay) = tr((Ay - An)Ux),
for 7 the cyclic permutation of {1,...n}, which is readily shown by expanding both sides
with respect to the same basis. We get

(0%, Ux) = [ (ulph))™ (4.15)

k

where ng(7) is the number of cycles of length k appearing in the cycle decomposition of

7 € Sg, and where we have used the symbol p for both the state and its density matrix.
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Thus H is a polynondal in the |R| variables tr(p*). Put diflerently, Hoo is a symmetric

polynomial in the eigenvalues of p. It is easy to check that all such polynomials can occur.

The Hamiltonian for the local dynamics is H” = dH(p). This is non-zero, so the
local dynamics is not trivial. From the form of Hy it is clear that H? is a polynomial in

p and the numbers tr(p*). In particular, [H?, p| = 0, confirming once again that the flow

is constant.

The simplest, though physically quite interesting example of this kind of Hamiltonian
is the mean-ficld version of the Heisenberg model. There we have d = 2, R = {1,2}, and

. . . 3 - . .
the Hamiltonian is I{p = 3. _ 0”2 g” = 2F — 1, where ¢ denotes the Pauli matrices,

In the context of the class studied in subsection 4.2 the assumptions made at the
beginning of the present subsection amount to postulatling that each V:,’N is a linear com-
bination of permutation operators. Thus Vi o can be chosen as an arbitrary polynomial
in the variables tr(p*). Repeating the arguments in 4.2 we find that H? is now an arbi-
trary polynomial in p whose coeflicients are symmetric polynomials in the eigenvalues of
p. Taking the flip F and Vi = j?\,zF gives a trivial dynamics because F' = F*, as noted

in the previous subsection. So one has to go to higher order permutations.

The next possibilily is to use directly formula (4.12) for general polynomial generators.
With V = F il is easily evaluated using the formula tr(A % BF) = tr(AB). This gives
tr(o @ pLe(A)) = tro @ p(2F (1@ A) — F2 (A% 1) - (A® 1)F?) = 2(tr(o)tr(pA) ~
tr(cA) tr(p)). Hence

LP(A) = 2(p(A) — A) (4.16a)
AD(A) = e P A+ (1— e P)p(A)T (4.16b)

i.e. the local evolution contracts exponentially fast to multiples of the identity.

4.5 Failure of the disjoint homomorphism property

We have shown in section 3 that for a net of generators to generate a mean-field dynam-
ical semigroup in the sense of Definition 3.2 it is sufficient that they be of lattice class.
Here we give some simple examples to show that this condition is by no means necessary.
These examples also show that some of the characteristic features of the limiting semi-
groups derived above are not valid for arbitrary mean-field dynamical semigroups, but are

consequences of the special lattice class form.
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There is a standard way of obtaining a dynamical semigroup from a Hamiltonian

evolution: for any Hamiltonian H = H* we may consider the generator
GHY(A) = H*[A, H| + [H*, AJH = i[H,i[H, A]) (4.17)

Thus G'' is nothing but the square of the generator i[H, -] of the Hamillonian evolution.
It is well known (see Theorem 2.31 of [Dav]) that squaring the generator of a group of
isometries on a Banach space produces the generator of a contraction semigroup, which is
just the integral of the group of isometries with respect to the convolution semigroup of

the heat equation. Explicitly, we have

+ o0
etG" A g/ ds 1 SG””ABWUH
(= [ ds i) s

with pi(s) = (47”)77»1/26.,. &

It is important to note that in this integral both positive and negative s enter. Thus
squaring the generator of a non-reversible quantum dynamical semigroup will not in general

produce the generator of another.

We now apply this construction to a mean-field dynamical semigroup, generated by
a net Hy of Hamillonian densities satisfying (4.2). Let us denote the resulting mean-
field dynamical group by S; n(A) = exp(it|N|Hn)Aexp(—it|N|Hy). We now square the
generator for each N, getting

Gn(A) = NP (HylA, Hn) + [Hy", AlHn) o)
4.19
Ty n(A) = /ds pe(ds) Sy n(A)

Now let X € ) be quasi-symmetric. Then so is S,,(X.). Using the strong continuity
of 5., we then find that T,.(X,) is again quasi-symmetric. Hence T¢. preserves quasi-
symmetry. We can take the limit N — oo under the integral and obtain

Tio = / ds pe(ds) Ss00 - (4.20)

Hence Ty, is a mean-field dynamical semigroup. The generator G, is clearly not of lattice
class, since ||Gn|| grows like |N|? rather than like |[N|. We know that the evolution
described by So on the intensive variables C(K) is given by a Hamiltonian flow. The
generator of this flow is a first order differential operator. Its square, which generates the
restriction of Ty o, to C(K) is hence a second order differential operator. We may put
this in probabilistic terms saying that the evolution of intensive variables under Ty o is

given by a diffusion on K rather than a flow. More precisely, we get a diffusion along the
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orbits of the flow generated by H,,. We could also add several generators like G, and
obtain diffusions along higher dimensional submanifolds in K [DW1]. We note that the
generator (4.17) is very similar to the form considered in section 4.2: There we would have
taken [N|(H}[A, Hy] + [HN",A]HN) = |N|"'Gy. Since Gy has a well defined limit it is
clear that |[N|™ Gy goes to zero. We have noted this consequence of the hermitian nature
of Hy before and used it in the proof of Proposition 4.2.

The integral formula (4.20) not only gives the evolution of the intensive observables
but also the local evolution. It can no longer be given by a local cocycle A}, because the
equation determining Af (Lemma 3.7) presupposes the existence of the flow. The root of
this difficulty is the failure of the disjoint homomorphism property (Theorem 3.6(2))for
Ty,n, which is easily verified from the form of the squared generator of Se.

5. Local and Global Evolutions.

5.1 Global mean-field dynamical semigroups need not be local.

The notion of mean-field dynamical semigroup which we have used in this paper, namely a
limiting evolution of quasi-symmetric nets, is a priori stronger than the original formulation
of [DW1] as a limiting evolution for the subset of intensive (i.e. @-symmetric) observables
only. We constrast these by saying that the latter comprises an evolution of global or fully

site-avearged quantities only, which the former gives the evolution in local regions as well.

So far we have given examples of operator nets which generate in the stronger local
sense. In fact we can adapt section 4.4 to demonstrate an operator net which for which
there is a limiting global evolution, but not a limiting local evolution. Thus the present

notion of a mean-field dynamical semigroup is indeed stronger than the former notion.

Assume for the fixed net (Ny)aex that | N| takes odd and even values infinitely often.
We shall call N itself odd or even accordingly. From the operator Hyy oy = 24 ~ 1 of
section 4.4, form the bounded polynomial generator Gn(-) = |N|Symy[H{i 2y , - |, and
sel Gy = (~1)INIGy. Thus, G, is like a bounded polynomial generator, except that the
[N}

N'" element is multiplied by the alternating quantity (—1) Clearly the two nets

T4 = {Ty,n | N odd } and  Tev™ = {Tyn | N even }

are mean-field dynamical semigroups in the local sense, although on different nets of

regions. But the local generators for the odd and even net are Lf°9? = —diadp and
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LPeven = 44adp respectively. Hence the full net T}, can have no local mean-field limit. On
the other hand, examining the global evolution one sees that the limitng flow is in both
odd — po LAY = (; so T;f‘}_g‘Xw = Tih Xoo = Xoo for any

@-symmetric net X, and ¢ € IR. Since for §-symmetric X, the subnets T, yXy for N odd

and N even are 0-symmetric, we need only compare odd and even terms in the full net in

cases trivial since p o L#

order to demonstrate §-symmetry for the full net. But

lim lim “TL,NXN "'j?\IMTt.MXM” =

N odd —oco M even —oo

7 - TN 0

as required.

5.2 Dyunamical stability of local evolutions.

As we have stressed earlier, for mean-field dynamical semigroups with the disjoint homo-
morphism property the implementing map A plays a dual role. It implements the evolution
of local states o — o o A¥ on the state spaces of tagged algebras, and also the flow F via
the equation Fip = po Af. Now we have seen that initially localized observables (i.e. nets
of the form j/; Xg) develop in time a symmetrized tail in the algebra over the untagged
sites. Suppose that in the limit as t — oo, this tail in fact becomes dominant, so that the
time developed observable loses all information about its initial localization. Working in
the dual picture with an intial state p on each of the untagged algebras, this would mean
that any initial local state o on a tagged algebra A would evolve through o — oo Af
towards the mean-field state F,p. This motivates the following definition.

Definition 5.1. We shall say that a local cocycle is asymptotically global in a topology
7 of K if for each p,o € K,
7 limooAl — Fip=10

t—r00

Of course, when the local generator is Hamiltonian one would not expect this type
of asymptotic result. However, it is relatively easy to find an H-Theorem for the joint
evolution of local and global states. (In [DW1] we were able to prove an H-Theorem for
the flow alone, but only under the assumption that for some p € K and all N, pV is an
invariant state for Ty n). We shall show that the relative entropy (recalled below) of an

arbitrary local state o o AY with respect to the global state Fyp is non-increasing in Lime.

In the following we let S(w),wz) denote the entropy of wy € K relative to w; € K as

defined for normal states on a von Neumann algebra in [Ara], and extended to states on
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C*-algebras in [PW,Kos] and also in [Pet]. The crucial property we shall need here is
that if 4 : A™ - A™ is a completely positive unital map, then §(wi,wz) > S(wioy,wz207).
In the particular case where both states are given by non-singular densities D, and D,
with respect to a trace Tr,

S(wy,ws) = Tr(Du,(log Dw, — log Du,))

Proposition 5.2. Let T,. be a mean-field dynamical semigroup whose limit has the
disjoint homomorphism property with local cocyle A and implementing flow F. Then for
each (p,0) € K x K, the function [0,00) 3 t = S(F,p, A{o) is non-increasing.

Proof: Since Fip = po Af, and since by Lemma 3.14 A? is completely positive and unital,
we have that

S(Fip,o 0 Af) = S(po AL, 0 Af) < S(p,0)
|

Since t +» S(Fyp,o o Af) is only shown to be non-increasing, rather than strictly
decreasing, we are unable to infer that A is asymptotically global. In fact, in the purely
Hamiltonian case discussed in section 4.1 S{Fp,0 o A}) is even a constant of the motion.
Hence we have to make do with the inluitive picture that the trajectories of the local
state at least remain in a neighbourhood of the global state. Furthermore, nothing is said
about the stability, asymptotic or otherwise, of the global state itself. Thus even with an
asymptotically global cocycle, it can happen that trajectories of the flow take wild paths.
In order to obtain an example, we can take a generator with chaotic flow, which is possible
by the completeness result at the end of section 4.2. The proof of the following then
Theorem shows that we may find an arbitrarily small perturbation which leaves the flow

unchanged, but modifies the cocycle to an asymptotically global one.

Theorem 5.3. The set of generators whose local cocycles are norm-asymptotically global
is dense in G.

Proof: Let L ¢ G gencrate a local cocycle A. For any ¢ > 0 let A be the local
cocycle generated by L + ¢W, where W is (proportional to) the generator of equation
(1.16a): WPA = (p, )1 — A for any A € A. Since po WP = 0, the flows generated by
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L and L + ¢W are identical. We denote this flow by F. Our claim is that L + eW is
norm-asymptotically global for all £ > 0.

It useful to introduce for any p € K the projection P? : A — A with P?(A) = (p, AL
Thus W¢ = —(id - P?). Since A7l = AT = 1, and dually po A} = po Ay = Fip = p, we
have the relations

PPt = PPAY = PPA] = AJP? = AJP? . (5.1)

We can therefore restrict AY to the range of the projection id —P?*. More formally, we
introduce the operators

XFP = AP - PP = AP(id - P™) = (id — PP)A7
From equation {5.1) we find that %P”' = PriLPt. Hence X! satisfies the differential

equation

%,\’{’ = (X! + PPY(LP —e(id — PP)) — PP LP = X[(L" —eid)
with the initial condition X? = (id —P?). Clearly, this is the same equalion satisfied by
e **Af(id - P?*), and by uniqueness we conclude that
Al = (1 —e )PP 4 e *'AY
As t — oo the second term goes to zero, so that A is norm-asymptotically global.
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