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Abstract: We present a (2+1)—dimensional Skyrme—ike model with a symmelry—breaking
potential, which in .3 has charge —n instanton solutions, and in the static limit in R2 a

sphaleron solution.
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While the quantum tunnelling between topologically distinct vacua of the Weinberg-
Salam (Bauge—Higggs) field theory is known to be negligible!), it is possible that at guffi.
ciently high temperatures transitions may occur essentially classically vie sphaleron field
configurations, leading to an appreciable violation of baryon—number conservation. This

mechanism was first suggested by Manton? and was further developed in ref. [3].

Using the sphaleron field configuration of the Weinberg—Salam model, which was
previously known as the DIN solution®), the estimation® of the baryon—aumber violation
of electroweak theory can be a (ask of considerable complexily in the quantum theory. For
this reason, much sttention hasg been devoted to carrying out this programme employing
simplifie] toy models in lower (than physical) dimensions?®’ 1" &) Notable among these
models are those in 141 dimensions, where the sphaleron in question is a constant static
solution on §*, of the ¢4—model and the sine—Gordon model respeclively” 8, In the latter
example?, an extended version of the O(3) sigma model in 2 dimensions has been proposed
as the corresponding dynamical system in 141 dimensions. In both these models, 1) 9) g5
also in the original DHN solution on lla, the sphaleron is an unstable field configuration
with finite energy. The energy is the d—dimensional integral of the static field configu-
ration, namely d=3 for the DHN case, and d=1 for the toy models of refs. (7] and [s].
The sphaleron field’s energy is then regarded as the energy—barrier between the topalogi-
cally distinct vacua of the non-static theory. In all thege models, the topological charges
characterizing the distinct vacua are defined by the usual topological invariant. In (he
Weinberg—Salam theory, this is taken to be the integral of the Chern—Pontryagin deasity
on 8,, while in the O(3) model of ref. (8], the topological charge is the winding number of
the order—parameter field defined on R, In both cases, the dynamical models on d+1
dimensions, supporting stable instanton feld configurations, differ from the dynamica!

models on d—dimensions, which Supports unstable sphaleron field configurations.

The purpose of the present note is Lo propose 2 new model in 2+1 dimensions, which
supports stable instanton field configurations on .3' and in the static limit supports en-

stable sphaleron field configurations on R,. As such, it is an intermediata svarmeie it



d=2, between the DIN caset’ with d=3 and the soliton cases” ¥ with d=1. This toy—
model aspect though is not the main reason for proposing it. Its most important property
Is, that unlike the d=} and d=3 examples discussed above, the instanton and sphaleron

field configurations are supported as solutions by one and the same model.

To help us arrive at our model, we shall first note a common feature of both the
DHN and the extended—O(3)—model sphalerons. In each case, respectively in d=3 and
d=1, the scaling properties of the models are consistent with there being finite energy
solutions. Such solutions could be Lopologically stable if there were topological inequalities
supplying lower bounds to the energy integrals. Ia turn, such topological inequalities can be
found only for specific field—multiplets defining the dynamical coordinates, Specifically, for
the SU(2) Yang—Mill-Higgs model on R,, such a topological charge (the monopole charge)
can be defined if the Higgs field is in the adjoint representation of SU(2), and, for the
soliton model in one dimension, such a topological charge (the kink—number) can be
defined if the field variable consists of one real scalar quantity. The (unstable) sphaleron
solutions on the other hand do not occur in the two models just described. Instead in the
DHN case® , the Higgs field is an isospinor and consists of four real components 8s opposed
to the three of an adjoint representation Higgs, and in the extended—O(3) model case®,
the order—parameter has two real components as opposed to the single component of the
scalar field of the soliton model. In each case (d=3 and 1), the additional component of the
dynamical ﬁeld varisble serves to parametrize the noncontractible orbit through the
instability point. .

In the light of these observations, we proceed to consider the model of ref [9] on R,,
Li=1,2,

By =5 8 00300 + K021 012, 18.01%) + V(2o D, (1)

where ¢ is a complex scalar field and q2 is the (absolute) scale. V is a symmetry breaking

.v‘ __3___

potential, and f is a symbolic function representing the quadratic kinetic term ‘0]9"" -

is regarded as the static limit of a Lagrangian £ in 241 dimensions.

It was shown in ref. [9] that subject to the asymptotic condition

lol? — n (2)
x| — o
the volume infegral of (1) is minimised by topologically stable field configurations, b
virtue of the topological inequality

. .
][0 d%x 2 2i(ij |V 0i¢oj¢ d’x (3)

Following our above descriptions of the d=3 and d=1 sphalerons, we modify the model (1)
by augmenting the dynamical coordinate ¥ with an additional component Q, Thes, In
place of p = ¢, + id,, our new field variable is & = §-5 in terms of the Paull spin matrices
0. This yields

Ly =~gtr ]+ (4%, 43) 4 v(ie?) )

where we use the notation & = 0.% and Qu: - [Ol,Q}]. Again | is a symbolic function
representing the, now non Abelian, quadratic kinetic term 0?. One skould mote that the
scaling properties of the integral of (4) over Ry, are still consistent with the existence of
finite energy solutions, but mow we have lost the topological imequality (3). This is s0
because, the corresponding topological charge density 4 tr JV 0‘§0j0 can be sesa pot to
be a total divergence, in contrast with the density on the right hand side of (3) defined in
terms of the complex field . As a conseguence, we would expect any finite enargy solutions
to the equations of motion that may be found, to be unstable. Bat this s precisely what
would be expected of & sphaleron field, expecially if we remember that the source of this
new instability is the additional component of the multiplet #, over and above the Rumber
of degrees of freedom of the old field v in (1). We adopt (4) therefore as the static version
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of a candidate for a (2+1)—dimensional model with instanton and sphaleron solutions, and
proceed to verify these properties. For technical reasons, we consider the instanton

properties first.

Inztantons; It is useful to specialize the Lagrangian (4), considered on lls, to analyze
the stability of the instanton solutions. This problem was considered in some detail, and
analyzed in ref. [10]. To avoid the ubiquity of models afforded by the symbolic functions |

and V in (4), we specialize to some specific choices of these functions.

To start wilh, sccording to the virial theorem or scaling argument, it is necessary to

keep only the first and second, or, the first and third terms in
1 2 2 .2 .2 2 .2
= $ f(n"— — 5
€ iy tr ‘w+(q ,Qp)+V(1} ) {5)

to enable finite action solutions on R, Here y = 1,2,3, labels the coordinate X, of R,
However, as explained in detail in refs. [10,11], in the absence of the second term i,
topological stability would dictate the inclusion of an additional sextic kinetic term ‘bpr
which we wish to avoid here. We therefore must retain the second term fin (5). Topolo-
gical stability does not demand the presence of third term V. Nevertheless, we shall retain

V, In anticipation of a similar scaling argument, for the static Lagrangian £ of (4), in R,.

Retaining both f and V in (5), we opt to specialize (5) to the simplest sub—model arising
from the direct descent from the 8—dimensional conformally invariant generalized Yang—
Mills system!?’. The distinguishing feature of this model, other than its relative simplicity,
is that it involves no dimensional constants apart from the constant 7 selting the scale of

the field €. Our choice is

.
£=—;tr0z"+;u{s,«b"}2+us (6)
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where S: = n’_¢2 anq { .} means anticommutation. We streas that our choices for § and V

in (6) are not unique.

The topological stability of the instanton is then a consequence of the inequality

tr{i@ -Le (5o }]2>o.
W g >l (7

Adding the positive—definite term 2 tr S? to the left—hand—side of (7) without disturbing
the irequality, and expanding (7), we have

- ! wp I{SD “) v p

the right—hand—side of which can be shown to be a total divergence!®! 1), whoge integral,

subject to the asymptotic condition

2
trd —_— ", (9)

guarantees a non—zero lower bound for the action which is proportional to a winding

number n. Thus the model (6) is endowed with s stable instanton field configuration in R,

Since the instanton field configurations of this (and other) models(s) on l3 wese
discussed in some detail in ref. (10], we suffice here by recalling that these instantons
correspond to topologically distinct vacua characterised by a winding number n, which in
this case is the topological charge given (up to normalization) by the integral of the right—
band-side of (8). The n—dependence of these field configurations is given!®! by



¢, = #(R) sind cos ny
‘2 = §(R) sind sin np
§; = $(R) cost, (10)

where R = Jipxp, # and p are the polar and azymuthal angles in 3 dimensions, and @I‘
defines & = ’p"u' 0 and ¢ parametrize both the field and the space 52 C Rs

Sphalerons; The static version of (6), defined on l2.

1 2
EO "'2‘! ¢i

1 2 4
j+ g br {S,#i) +trS (11)
will now be shown to have a sphaleron solution. First we recall that according (o the
scaling argument, the equations of motion for (11) can have finite energy solutions irrespec-
tive of the absence/presence of the second term quadratic in ‘i' We also note that now, we

have no topological inequality analogous to (8), 50 that the finite energy configurations are
ucntopological.

We consider the following Ansatz for the (unstable) sphaleron field configurations
® = o, ni(x) sinp cosd + oori(r) sing sind + a4mg(r) cosy, (12)

where 12 = X, (i = 1,2), and 6 is the azymuthal angle, while 4 is a constant which we
expect will parametrize the noncontractible path between topologically distinct vacua, and
8o the instability of the energy functional. Before proceeding to demonstrate this
instability, we must check the consistency of this Ansatz. This involves the verification

that the Euler—Lagrange equation of the system (11) on R,

8 (49,1 + 3 8 {{5,9,),5) = 2{¢.5%) - {+.(9,(4,5))) (13)

for the field configuration (12), are solved by the Euler-Lagrange equations for the one—
dimensional subsystem with Lagrangian L{f,g], defined by § = JC€ £drd® = 2xfLdr, or

.

L [f(x),l* (r);g(r).8° (r)] = 2er £[£,0";8.8°], (14)

in terms of the coordinates f,g and their "velocities” f' = df/dr and g’. This Is & very
straightforward if tedious task, and we limit ourselves to stating that indeed the Euler—
Lagrange equations arising from the variations of f{r) and g(r), respectively, for (14), solve
the equations (13) for the field configuration (12). Tlgeoe equations are rather lengthy
expressions, and are not recorded here, but we make a pertinemt comment: that if we set
f(r) = g(r) in the Ansats (12), the consistency of this Ansats is lost. We shall return to the

detailed discussion of this inconsistency elsewhere.

The existence!? of the sphaleron field configuration (12) then follows from the
positive definiteness of the energy integral

00
Bltgsl = 4r [ {4n* sin? £ (g 2conus 02 sin?y)
+ 2q°r [I—(gzcoozp + 2 dnzﬂ)lz [(8'20002;1 + f’zlllzﬂ) + gdnzp]
+ nsr “_(8200.2“ + ladnzl‘)]‘} dr. ; (18)

The all-important property of instability is manifest, parametrised by theu—depen-
dence of the integrand in (15). The actual sphaleron is the (unstable) field configuration at
the top of the barrier separating the two distinct vacua, for which the value of (15) is &
maximum. Thie occurs for y = ;, and by varying u between 0 and 1, in the two directions
away from the sphaleron value of ;, the value of E can be lowered.

Topological charges: We have shown above that the (24 1)—dimensional model given
by the Lagrangian (6) is endowed with charge—n instanton solutions in Ry, and its static
version (10) with & sphaleron solution in R,. As the latter is expected to be the energy
barrier given by the static fields, between the topologically distinct vacua of the same ’
model in R,, it remains for us to demonstrate this property by verifying that the
(topological) charge integral
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- ) _ ) +00 9
q= [did’xp = Wlie,,, -L—oo ‘;r S#.4.8 dids, (16)

(cf. eq. (8)) for a (2+1)—dimensionai field configuration including the sphaleron field (12),
can be evaluated as a surface integral whose value is controlled by the topological proper-
ties of the field &, in I2 To this end, we follow the procedure first suggested in refs. [2,3],
and employed in ref. [13]. This involves adopting a field configuration ®(%,1) given by
(12), where the functions f and g depend on the radial varisble r of R,, but where the
mordinniep is taken to be a function of ¢, y = #(t). Writing dp/dt = ji, the integral (16)

3 4. 2
gs fdidxpw 721 5 trf [ did*x S(‘bt‘bibj + ‘biq’t"j + d’id’j@t), (17)

can then be expressed as

9=q5+q, (18)
Qg = 2x [rdr [dt uinp% [gl’ +(fg’—gf’) coczp] (18a)
q; = 2« [rdr [dt js |inp§ [(32—1'2) cm2p+f] U 1) w-2p+gf’] (18b)

Now allowing u(t) to vary between 0 and x as t varies from —00 to +00, we can perform
the integrals (18a,b) as integrals with respect 1o cosp, between the limits cosp(t = + 00) =
+ 1. The result is

qp = 4x 0[00 by(r) dr ' (19a)

a =47 [ by(e) dr, (19b)

where both integrals can be evaluated simply by using the topologically meaningful boun-
dary values of { and g, by virtue of the fact that the functions ho and b, are given as the

derivatives

g .-

h

Cal] b

0=3 0@ (200)

by = 15 3 [sP(e?+2)). (200)

The integrals (19a,b) are then immediately evaluated using the asymptotic conditions
g(00) = f(c0) = 1 (21)

which is consistent with the finite—energy condition

2 2
trd r—__—:i———l 7, 4 . (22)
for the field (12), analogous to the finite—action condition (9), for the field (10). The boun-

dary condition at the origin of 1 is
f(0) = 0, (23)

which is also the necessary condition for the singlevaluedness of the field (12). This defines,
up to normalization, the topological charge of the (2+1)—dimensional model (6), which has
charge —n instanton solutions (10) in R;, and in the static limit a sphaleron solution (12) in
R,. Thus one can associate a finite value of the instanton (topological) charge with the

(nontopological) sphaleron.
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