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1 Introduction

In a manuscript circulated privately in 1971 Kac showed that in the two—

phase region of the free Boson gas the canonical ensemble and the grand canon

ical give rise to distinct states. Kac gave an integral decomposition of grand

canonical expectations < > at mean particle density p in terms of

canonical expectations < > at particle density x.

< >
(1.1)

C) ‘C

The details of the proof were supplied by Cannon 1 , Pule 2) , and Lewis and

Pule 3] . Kac calculated ‘ (now called the Kac density) for the free

Boson gas by computing the grand canonical characteristic function of the particle

number density. He found that in the one—phase region the Kac density is a delta—

function: the grand canonical state coincides with the canonical state in that

region. On the other hand, in the two—phase region the Kac density corresponds

to an exponential distribution of with mean—value 0 The consequences of

this result were discussed in detail by Ziff, Uhlenbeck and Kac 4 ; the case

was made that in the two—phase region the grand canonical ensemble does not

represent a physical system. The relationship of the integral decomposition (1.1)

to the work of Araki and Woods 5’ was discussed by Lewis in 6 . The Kac

density for bosons with spin was computed by Critchley and Lewis 7) , for bosons

in a rotating bucket by Lewis and Pule L8 and for bosons in an external potential

by van den Berg and Lewis [9j

However, it has been conjectured by Kac tlO) that in the presence of a

repulsive interaction, no matter how small, the Kac density will be a delta—

function. At first sight the results of Davies fll] on a mean—field model of an

imperfect boson gas lend support to this conjecture: he showed that when the

mean—field interaction is super—stable the Kac density is a delta—function. (See
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also Fannes and VerbeureLl2) .) On closer examination we find that Davies’s

result can be separated into two propositions:

1. At points of continuity of the density (as a function of the chemical

potential) the weak law of large numbers holds for a super—stable mean—field

model of an interacting boson gas.

2. The first—order character of the phase—transition (discontinuity of the

density as a function of the chemical potential) in the free boson gas is

unstable with respect to mean—field perturbations.

The main purpose of this paper is to prove that the weak law of large numbers

holds for bosons interacting through a super—stable pair potential at points of

continuity of the density, and to point out that, since every first—order phase

transition is unstable with respect to a mean—field perturbation, what is

surprising about condensation in the free boson gas is that macroscopic occup

ation of the ground state is stable with respect to a mean—field perturbation.

This can be shown t133 using ideas of Cannon C1 , or by means of correlation

inequalities L12i . It is known that the first—order phase transition in the

two—dimensional lattice gas is stable if 141 and only if £15,162 the perturbing

potential is short—range (in a precise sense). The range of a mean field is

infinite; could it be that macroscopic occupation of the ground state is stable

under arbitrary superstable perturbations, or only for those which are suffic

iently long range? As far as we know, this is an open question.

Our main result, the weak law of large numbers for the particle number

density (Theorem 2) is stated and proved for bosons with a superstable pair

potential; it holds in other cases and it is not difficult to modify the proof

to cover these. The condition of superstability is imposed in the boson case

to ensure that the grand canonical partition function exists for all values of
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the chemical potential, with the weaker condition of stability on the potential,

it holds for those values of the chemical potential for which the grand canonical

partition function exists. For classical statistics, and for the Maxwell—

Boltzmann and Fermi quantum statistics, it holds for stable pair potentials.
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2 The Weak Law of Large Numbers

Consider a system of identical bosons, each of mass , contained in a

bounded open connected subset I of Euclidean space ; let V be the

volume of I . Let \.. be the thermal wavelength: Ott — r

Suppose that the bosons interact through a pair potential 4 satisfying the

following conditions [17,18,19] :

(A)
.

is a real even function of the difference of the positions of the two

interacting particles, locally square—integrable on the complement of the origin

(the case in which + has a hard core is excluded).

(B) ‘4 is superstable: there exist constants A >0 and P) such that

for any family of n points in fl the following inequality

holds:

u > Ar n (2.1)
r

where A is independent of for a given shape of

(C) ‘1 is weakly tempered: there exist constants R c , , and

cp> such that

4 < F s whenever

For each positive integer n we define a self—adjoint operator i in the symmetric

Hilbert space L .1.. ‘ by the Friedrich extension, as in 19’ , so that

U (2.2)

where ‘1, is the kinetic energy operator

$‘l ‘ (2.3)
2. .1

‘I
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and is the potential energy operator which acts by multiplication by

Next we describe the bulk limit: we take a sequence 2

of regions, each satisfying the conditions set out above. The volume of

is denoted by V . In order that the constant A in condition (B) be

independent of k. , we follow Ginibre [l9 in assuming that the regions

satisfy a shape condition. To each region I we associate a sequence

I-i ‘[‘ J / of self—adjoint Hamiltonians; it follows from

condition (B) and PeierPs inequality (see Lemma 3 of Ruelle [17] ) that, for

all V’ and , the operators have finite trace. Define

the canonical partition function r by

= trace (2.4)

and the canonical free energy density by

(2.5)

with given for each 5 in [ by linear interpolation. We make

use of the following theorem which holds under the above assumptions:

Theorem 1 (Ruelle [17] , Fisher 18 )

For each S in [ the limit exists and

the function 4 is convex and continuous. Moreover, the convergence is

uniform on compacts.

The Ruelle—Fisher Theorem holds for Maxwell—Boltzmann and Fermi statistics, as

well as for Bose statistics. In the Bose case, because of the upperbound to

the grand canonical pressure for the free boson gas, we have the following

bound for L
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Lemma 1 For

potential the

Ruelle U7J )

through a superstable

satisfies

Lemma

(2.6)

rcL
°

is the critical pressure of the free boson gas.
=

/
cz_>i

rn
I

a system of bosons interacting

free—energy density -f in the region

pair—

(B)condition and the Peierl ‘5 inequality (see

where =

Proof Using

we have

trace

so that

- (S)

But

the free

r trace

3 of [17] )

e(Bh— Y)

log trace .

trace

P —— log trace
— I

(log trace ( P is the grand canonical pressure of
i’V

boson gas in volume v evaluated at zero chemical potential, and

hence is bounded above by the critical pressure (see, for example,

The grand canonical ensemble for the superstable interacting system in

region defines a probability measure for each value of the

chemical potential in , which assigns to the random variable N

describing the number of particles in region A the probability distribution

r
I’i

where

(%L)1

is the grand canonical partition function

ep Un —

(2.7)

(2 8)
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We expect that the distribution will be sharply peaked around the maximum of the

function . This leads us to define c to be

the smallest value of for which the function attains

its maximum value

(2.9)

(The function 4 is the conjugate of the convex function .) Because of

the convexity of ± the maximum value is attained either at a unique point

or on a closed interval; because is bounded below by

the interval on which the maximum is attained must be bounded. In the first

case the function is continuous; in the second, it has a finite

jump. Because of the convexity of , the set of values of at which

jumps is at most countable. We consider first the case in which

is a point of continuity.

Theorem 2 Let be a point of continuity of the function

then

(2.10)

and the weak law of large numbersholds: for each

I (2.11)

Proof: The theorem follows from Chebyshev’s inequality and the following Lemma.

Lemma 2 Let i be a point of continuity of the function U ç’ :i: ; then

(2.12)



By continuity of f , there exists 0 such that

hence, by the uniformity of the convergence of the sequence f f “ }

8

(2.13)

(2•15).:

Choose a(y)>ycp) •so that

for s>acj.c)

Proof Given Sb by

= tnf fts, — rn ÷ : ts —
> (ey’z’

fts ....f )5’jjit) —&

• •:ftt’

(2 14)

for 1 sufficiently large

Thus we have

Vt s’?’! C171

and IS

e (4) p

•

•••: Since the left hand side cannot exceed

:
.*4 Vtv e13’tci’tP) —

NV’

—

unity, for sufficiently

÷8•:Ast_c÷p)s :t >

for Then, by (6),we have

> ÷ I ÷ A

large we have

(2.16)

• :

(2.17)

(2.18)

:.By the choice of and the uniformity of convergence of

for and S •in Co,acj.tfl
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To estimate the mean—square deviation from

where

put

(2.20)

c =

and

/
‘ —

(2.21)

Then we have the following estimates which follow easily from (2.16) and (2.21):

by (2.15);

by (2.19);

sufficiently large to make

limit at fixed mean density is taken as follows:

is a continuous function which is strictly

is strictly positive) so that there is

H since the sequence

least one convergent subsequence I

a point of continuity of then it

and, for each

(2.22)

, with L? , by (2.18).

Holding jL fixed, choose

the result follows.

The bulk

—

(since t N

p such

bounded, there is at

4/.

; if 1. is

easily that

for each

increasing

a unique

is

with limit

follows



I
If is not a point of continuity then the limit distribution of

“I

in [ 9 L) c will depend on the sequence ; that is to say,

it will depend on how the bulk limit is approached (being sensitive to boundary

conditions, for example).

10
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3 Large Deviations

The traditional statement of thermodynamical equivalence of ensembles is a

weaker result. It states that the grand canonical pressure , defined by

- ‘ L (3.1)
1-v -

exists and is equal to the Legendre transform c;L of the canonical free

energy density:

(3.2)

(For a review, see Griffiths [20] .)

This result holds for a system of bosons interacting through a superstable pair

potential; we prove a mild generalization of this which enables us to give a

result about the probability of large deviations of . Define the

conditional grand canonical pressure given that the number

density is in the interval

(3.3)

where

F I

(3•4)
n -

Define the restricted Legendre transform -

(3.5)

Theorem 3 For a system of bosons interacting through a superstable pair

potential, we have

(3.6)

for each ‘‘ in itS and each interval I contained in
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In particular,

(3.7)

Proof: We have

‘ ii)
P

(3.8)

for ( and sufficiently large. (Here 1TI denotes the length of the

interval .) By continuity of there exists a sub—interval J

contained in such that

(3.9)

for in
T

hence by uniformity

(3.10)

for in and I sufficiently large, so that

1 (3.11)

for ‘ sufficiently large. It follows that

(3.12)

Corollary

(3.13)

Proof: This is a direct consequence of the definition

(3.14)
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