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: 1. Introduction. -

This paper contains some proltainary results in a search for

: . . . .
static, vacuum, cylindrical and plane sykraetric solutions to the equations

of the quadratic Poincare gauge (QPG) field theory developed by Hehl and

‘ coworkers (See ltehl 1970 and Buckler, flehl and Mieike 1980) In §2 a

.

brief summary of the notation is given and the equations of the QPG

: theory arc stated. A soJution of the QPG field equations determines

a
Riemann-Cartan space—time which is specified by an orthonornal tetrad

field (ox, equivalently, a metric) and a metric—compatible non—s)mmetx ic

connectinn In the spherical)y symmetric polutions of Baekler et $1

•: . :
.

. (1980) and Baekler (1982) the metric has the property oI satisfying

*

Einstein’s equations with cosmological constant,

:•, .••: . - . .

= . (1.1)

t where is the Mcci tensor for the symmetric Riomannian connection

defined by the metric and the constant A involves certain coupling

:•. •H.
••. constants that occur intho QPG equations. Guided by these results

. we restrict ourselves here to looking for solutions which have this

- property. Accordingly, in §3, the complete solution of (1.1) for

static, cylindrical and plane symmetric metrics is derived and, in 54,

1,

a number of special solutions to the QPG equations arc derived corresponding

to the metrics found in §3

.
2. The QPG vscuum equations.

The underlying space—time is taken to be a differentiable

‘fl flflt r.frr rMr!?737: -r
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it’nifuld vith normal hyperbolic notric g and connection V. It is

canto td that Ut” con’attion is compatible with tbc iiefl Jo in the flC’113C:

that

X{g(Y,Z)) t(Z) 4 gO,Vz) (2.3)

for arbitrary vector fields X, Y, 2.

Lot
0a

(a r o3 ,2,3) bo an orthonorual tetrad tic ld to tl’at

diag(—i, 1, 1, 33. In torns of a local coordinate

syatun {‘?‘), a o(x)a flora n 2/3x1. The dual basis o

ono—fon’e will be ec•noted by
O = o(x)dê, whoro eo 6,

and th’tir exterior derivatives (tho object of anholononity in total’s

torr inology) hay Ii’ written in the torn

400 = 10a o
*

(2.2)

whoro

—
fl0 28IiOJ]CVOV (2.8)

tho square brackcts doitoting antisyri otrization.

The connection one—fonts are defined by

• Vo0 n w00(X) O (2.4)

•j
for arbitrary vector field X, so that

00 — Ol (2.5)

whore

a. (2.6)

Since g(o,o0) are constants, it follows from (2.1) and (2.6) that

t•’.?.•’•”• •..-—t ..-.— —.
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solutions of (2.17), (2.18) for which the metric coaponents g

are solutions of Einstein’s cquations with cosmological constant, .

fl Ar3 , (219)

whore lt is the Ricci tensor for the symmetric fliemannian cornection
..

dofincd
by and A i 3ic/4t2 (Sec equation (7.5) of I3ackler

ot al. 1980, where Iic’wevcr it is only the + sign that occurs). The•

first step therefore is to solve (2.19) for static, cylindrical and .‘:

plane symmetric space—times. : . : . ::

P C 3. Einctoij1guationa with cosmological constant. . :

Cenrider
a static space—time which, in addition to the tiraelike

bypcrsurface—orthogonal Killing vector field, has two spacolike Killing : .

j .
fields. Ye furthermore assume that the three Killing fields are

mutually orthogona) and commute among themselves. One can then cheese

the coordinates so that

ds2 — e2udt2 + e2’dy2 + e2Wdz2 2,
L3 1)

C : - . where u, v and w arc functions of x only If the coordinate lines of

:y csay)are closed withoçy4 2w a...:0<z<

metric is cylindrically symmetric with y as the angular, x the

cylindrical

radial and z the longitudinal ceerdinate. if — < x, y, < “

the symmetry may be called pseudo—planar (See Bronnikov and Icowalehuk 1970).

Yrem the point of view of the local field equations both cases maybe

treated simultaneously. Per the vacuum field equations with zero
. :

cenmelegical cänstant one may transform to Woyl canonical ceerdinatee
. C

4 . . .



I

Thom (2.3) — (2.6) give

C3.7)

(3.8)

n’••.—.r-•’n -r’.-y-nfw- .-çrr’’ n•.tr.n fl

a4....aa.a-bdt ......MS...Jd....a4... k.na4ts.. *‘--

_______

:.• —8—

with only two independent functions in the metric. However this

not possible here.
:

The field equations (2,19) for the metric (3.1) yield

in

.1

•: :.•

. w”+u”+w’2+u’2+u’w’ A, (3.3)

: :u” + v” u’2 y’•+•u’r’ :t:C3.4)

v’w’+w’u’+u’v’ A, (3.5)

•1

whore a prime denotes differentiation with respect to x. Let

u+v+w, i nu-v, 0 v—v and a w—u.

:.:. 2

:.
‘.. ••c”+c’ • 3A’,

q’ ae”C, be”, a’ ce,

where

‘(3.6)

a, 1, and c are constants of integration, with

a+b+c 0,

:we distinguish the cases for which

l.A>O.

A>O and 4<0.

:• i

whore q U

The genoral solution of ($.G) ip

logCgo +

7 g and d are censtants. The functions

(3.0)



cccl a are then olci ci nod i cc (3. 7) by a a logic (1uadrn lure and hence

u, v, cccl w are dci mined, On aubel itut log (3. 7) and (3. 9) into

(3.2) (3.9) one olltLlca

2
c —8gdq2. (3ci0)

0 ii ccc ccc hare t c ci c Ga c 1 (a) for 1 ich d 0 g r 0

(or ic 0, d y 0) and ccnccoc100ntJv, hr (3.10), a b c 0;

Caeo I (b) for which both g and d are nenzero and, by (3.10)

n000orcojir of ognonite aign.

Lb sos a n a pulat on and ccrl of [he eeoc cci nctea C cc

fine] ly obtains the following forns for the functi one in the metric (3.1):

Caco I (a) (d 0, g / 0):

U V W cx/3. (3.11)

11 g 0, d / 0, then cx/3 in replaced by - qx/3.

Y (b) (g / 0 d / 0)

U
foinh(cjx) f(x)A]3 (3.12)

[rcnh(q )
Bl/9

(3 13)

W
= [in]c(x)

fC]1/3
(3.14)

whore

f(x) = [coah(cjx)
— 1]/[ohi(cj) + 1] (3.15)

[Ld

0, A2÷02÷c2 3/2. (3.16)



10 —

by (3,36) the c onetoni A B nod C . n’ ho erloensed in i cros of a

(tinglo prtl:eir p aS follo’ve;

-‘

A ± 3/[2(1+pip )] 13 pA, C (l-tp)A, (3.17)

II. A<0.

The geerl solution of (3.0) in flea

log[g cia qxe)] (3.1$)

q (—31) , g and c arc cc,nrl. ants. Again wi fIt none

innipu) off en one can expreec the Lotrie In the form (3.3) ri fit

I (x)A) 1/3 (3 -

V [sin(q) S(r)L)3 (3.20)

[in(qx)
1C11/3 (3.21)

where

1(x) [1 -‘ coo (qx)]/[l + cos(qx)J (3.22)

end A, 13 end C eatiofy (3.10).

Note that for cylindrical oyornctry, where y Is the ttng1ar

coordinote, the topological Iroplicaticn of reocaling y ahould be

conidercd in all of tho above canoe.

Ntati onnry, cylindrically nyometri c solutiona to hlnstoiii’ a

equat lone with cosrological constant leave boon treated by Braninaki (1075)
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It
in easy to verify that Case X (a) above is equivalent to the motric

(9.3) of his paper, vhS lo a rather involved coordin (ito trim a formation

: : shows Cases I (b) and II •to be equivalent to his Typo U solutions. ::.:

• Ilowovur, tho functions occurring in the Type 13 metrics of )Crasimsl:i ro

. considerably moro complicated containing, as they do, scvcn (constant)

paranotcru instead of the two paramotors q and p of tho present

;. papcr. :

4. Solutions of the QPC field equations. :

•
Zn this section we present some special solutions of the QPG

fio)d equations (2.17) and (2.18). The metric is taken to be of the

form (3 1) and the obvious orthonornal totrad field,

:
edx n : ,

is Chosen where (x°, z?, x2, x3) = (t, y, z, x). We look for

solutions of the oquatiens (2.17) and (248) for which the functions.:.

U, V and w have the ferns given in oach of the three cases described

in 53 and F = ac/alt2 in Case x, A — 3K/Eli2 in Caso IX.

.•• On making the substitutions (4.1) with the proscribed forms of U, v and

w in each case, equations (2 17) and (.2 18) become equations for the

•
torsion components

— TØycC Zn order to have manageable

equations restrictions will also be imposed on the which will

: ,
be specified when we cone to deal with each case in turn.

When written out in fun tho expressions fer and

jr0 occurring in equations (2.17) and (2.18) are very 3ong and

,Tv7nj‘ wt;wc:rn;41w%l%s.fln wnwrwrn



1.
uia’ioldy. All the ca3culatic.ns have boon done on a computer uaiix a

JIKI2IICE prograL.uo and a certain degree of trial and crror was involved,

As it. vou3d ho extronoly tedious to roproduco tho details of the

calcu)atic.ns
to iball sinpl doacribo the procoduzo used and state tho

retult a

Solution I (*4:

Lot o ho given by (4.3) vith u, v and v an in (3.11).

Thu only non—zero components of (jaodulo the antisyninetry,

a — ) are then
%30

a
— a131 — n232 = q/3.

Usir this as a guide ye restrict ourao3ves to seoking solut ions oe

(2.17, IC) for vhich

P030 a —P300 UOfl,

(4.2)

F331 a ..p11 a
p232

a —11(x)

and q2 a Cg/42.

Substitiztion of (4.2) and (4.1),with u, v and v as in C3.fl),

into (2.38) yio3ds just one indepondc.nt cquation for 11(x),

U” + qU’ a 2tJ(U — q). (4.3)

On substituting (4.3) into (2.17) ono obtains two indopondont

equations,

+ 2q(U + q)U’ — U(3U3 — 4cLU2 + 3q2U — 2q3) 0 (4.4)

and

0U2 + 2q(3U — q)U’ — UUJU3 — 12qU2 + q2U + 2q3) a (4.5)

-
.‘ -‘‘ s.t. rn— . :.‘“‘ •‘gr-—i——
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Eliminate U’2

which has

.t.a.....aha(.a. t ttu.. ‘dJ - ....J-S ag.4 - -

from (4.4) and (4.5) to got

U’ U(U—q), (46)

\ U -De)

as its general solution, where 1K Is an arbitrary constant. Finally

ono may verify that (remarkablyl) (4.7) satisfies all of the

oquations (4.3) — (4.5).

Thus (4 1) and (4 2), with u, v, w and U gion by (3 11) and

(4 7), is a solution of the QPG equations (2 17, 18)

•
Solution I (b):

:

Let e7 be as In (4.1) with o’, J, and given by

(3,12) — (3.15) • The only independent non—zoro components of

aro again 030 p131
and For this case we havp so far looked

• only for solutions in which one of the independent components F030,

F131 or P333 is non—zero while all the other independent cciaponents

vanish

•• First of all let : N

: all other components of F00 .

• as bofore, q2 a Sic/U.2. It I.e found that the only independent

non—idontically sore components of T19c1$ (equation (2 18)) are

‘ t0, and The aafl4 T° n• yields

F030 a — F300 a

(4.8)

rrcr’., tr.c’P’. jn:s- :.w’%.%.



whore a and b arc constants of intogration. The solution t’(x)

:..:at....h1o&ja.L tuli,.%; .. at’..,:tts’.... .

— 14 —

2 2
sinli (qx)U” + q uinh(qx)cov.h(qx)U’ — q U 0,

the general solution of which is

(4.0)

(a oosh(cjx) + b)/ainh(qx),

either

n 2qJ3,

of (4.10) satisfies 1113 0 if and only if a 0 and

A 1, B —,.Cn—j,

or

b = —2q13, A = -1, 13 =j, C L.

Purthormoxe, with either of thoso two sets of values for the constants

the equation 23 0 and 0 (equation (2.17)) aro\

automatically satisfied.

is a solution of the QPG equations

UØc) = 2qJ3sinh(qx),

er

11(x) -2qJ3sinh(qx), .A -1 B s:j, ¶:“ .:t•

By a similar procedure the following solutions for the metric

ef Case I b) may also be found:

:Jj.

Thus (4.1) and (4.8), with u, v and w givcn by (3.12) — (3.15),

(2.17, 18) if and only it eithor

A = j;13 n_jo C —j,’. (4.11)

. :: ‘!
=

— 3l1
= 2q/3sinh(4x)., A £, B — 1, C (4.13)

or

y131=—y311=—2q/3sinh(qx), A—3, 13=1, C——i, (414)



all oilier being equal to zc•ro, and

¶aB • esB’ •. .

so there is no vacuum solution of this form for Case TX.

Similarly, further solutions of equation (2.18) are given by

.4.,. ,.. :...a.. •.‘.z.4’. ......

— 15 —

• , 3$;.

(4.10)

p232 322
2q/3sinh(qx), A = i, Dj,

or :
: . .

p232 — P322 — 2q/3sinh(qzfl, A = —
= 4 C •= 1,

all other P00 being equal to zero.

Case XX:

: An attempt to find solutions in this case

of the preooding example proves to be unsuccessful.

along

Take

the lines

:

e asin

(4.1) with e, ev and J given by (3.19) — (3.22) and the torsion

an in (4.8). Proccodir.g exactly as before, it is found that (2.18)

‘is satisfied if and only if either

= 2q(2cosqx.3)/3sinqx, A 1, U =
— 4, C —

(4.17)

or

,.1

I

UØr) = 2q(2cosqx—3)/3sinqx, A = — 1, B = Ir, C (4 18)

Ilewover, on substituting those solutions into (2.17) one obtains

p131

or

Sm. — 2q(2cosqx-3)/3siiiqx, 8= -

P131 = —2q(2cesqx+3)/3sinqx, A =
— 4, B 1, C =

— 4,

1, C I

rrrnsr... %.flrfl47.fl?

(4.21)
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all other independent being oqual to mezo, and the obious

corresponding solution for tho caso in which all the vanish except

for p232 =
— P322. Substitution of those solutions into (2.17)

again yields (4.19).

The lack of success in finding a aouua solution for this

case, whore A a — 3K/fl2 instead of +3K/fl2 as in Case I, would

seen to indicato that, in general, the QPG equations are scnsitivo to

:tJ0 sign of A in (2.19).

oknowledj.

1 am grateful to Profossor PS. Uohl for introducing ne

to the QPG theory and for several usoful suggestions, also to

Dr. P. l3acklor who with. Profossor STahl indopondently chocked the

solutions of 53 and Solution I (a) of 54
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