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Abstract: A numerical algorithm is implemented so as to explore brownian particle

diffusion in a periodic potential throughout the full viscosity range. The pre

dictions of the theory of activated processes are checked. In particular, a recent

refinement of the vani shingly small Viscosity limit of the Kramers approach by

BUttiker at al. (Phys. Rev. B28 1268 (1983)) is found to fit better our numerical

results.
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Some fresh interest has been generated recently/i ,2/ in bridging the two

ilititS of the Theory of Activated Rate Processes(TARP), first developed in a

historic, pioneering paper by Kramers/3/. The authors of both ref.1 and ref.2

interpolate botwren the solutions for large and vanishingly small viscosity by

having recourse to the Kramers’ energy approach. Eventhough they almost share the

same philosophy, their refined treatment of the underdamped case leads to ap

preciably different predictions/l,2,1/.

In the present note we show how to relate several statistical auto-correlation

functions(a.c f) of the brownian motion in an M-fold cosine potential to the

TARP predictions. We implemented Reid’s algorithm/5/ so as to explore analytically

the stochastic diffusion into a bounding potential throughout the full viscosity

range. Our numerical results enable us to show that the predictions of ref.l rely

seemingly on a better determination of the extremely small viscosity rate of

escape from a metastable state.

The starting point is the FokRer-Planck equation for the probability distribu

tion p(x,v;t)

p !ix p
(1)

where the sinusoidal potential has been given the form -V0cosMx . In our nota

tionc2=k3T/m, =V0/m , is the friction constant (viscosity), kB is the

Boltzmann constant and T is the temperature. , x and v are respectively the mass,

position and velocity of the brownian particle. The relevance ofsuch a model

is well-known in many areas of science, most notably motions of defects or inter

stitials in crystalline materiais/6/, diffusion of ions in superionic conductors

/7,8/, relaxation and spectral properties of dipolar molecular liquids/5/.

Numerical The solution of eq(i) is assumed to be of the form

(1//La) H (/‘ / (2)
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whet e Hn(x) is the n-th orthogonal Hermite polynomial and the spatial dependence

q(x;t) may be expanded into a Fourier series:

(>C;t) A (€) eq Rpx)
(3)

On substituting eqs.(2) and (3) into (1) we obtain easily the set of linear

differential-difference equations/7,8/

A; 40 AR) -
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÷ ( A + (n4i) A = o

It is convenient to define normalized sums of coefficients by:
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(t) (
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Further, if the set of eqs.(4) are rewritten in terms of normalized sums and

differences and then Laplace transformed (t(S(t)=(s))into algebraic equations it

is found that the differences can be eliminated to leave a recurrence relation

which, in turn, may be written as an algebraic matrix equation/SI:

s;cs)= p€IN’. (6)

The elements of A are function of s and of the parameters , ,
‘

and M,

and S(O) are related to the initial conditions(i.c.), ((0)x(0);0). For delta

function i.c., S(x(o)-x0) S(v(O)-v0), Sn(o) read:

()/4z) (&)/d) cos(px(o)) /!

To solve (6) requires that we restrict the number of equations(4) by assuming

for n>N (up to SO) or p>P (up to 100). The consequent numerical



A
inversion of f\ yields a very accurate solution for S(s). Further details

about the performances of this algorithm are available in refs.5 and 9. Good

convergence has been achieved throughout the full viscosity range where previous

attempt failed/7/.

Theoretical, S(t) is readily related to the velocity a,c.f. by/5,9/

° / < .(t) /
I (8)

Analogously one easily finds that

cs x() co xIo)> / S° (t)/ S° (o), (9)

If denotes delta function i,c., (s) and (s) are solutions to the

algorithm of eqs.(6) and (7). The corresponding equilibrium a.c.f.’s, < >

are Lhen obtained by using respectively X(O)S(O) >eq and cos(O)S(O)) eq

rather than S(O) in eq.(6)/lO/. Reid’s algorithm provides us with the Laplace

transforms of the normalized a.c.f.’s of v(t) (delta function i.c.) and cosx(t)

(equilibrium i.cJ, denoted from now on by C (t) and Keq(t) respectively.

Ref.9 details the relation between the relaxation times of C (t) and K (t),eq

and the inverse of the rate of escape , of the brownian particle from a rnetastable

potential well/il!. In particular we learn that for M=l the s=O value of C (s)

coincides with the spatial diffusion coefficient. Indeed, in view of some Laplace

transformation theorems, we have/l2/

x x x(o) (o) -s x (s)> - x(o) s

<‘ lo) X Io)>
0

The zero frequency value of (s)Q(O)0 is therefore the linear term in the

time expansion of the translational a,c.f. x(Q) x(O)-x(t))0 (the Einstein

relation/13/). Such a diffusion coefficient can be estimated by means of the TARP/9/:

C (° (N4)
‘

(11)
0 L
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where the factor 8 accounts for the both periodic and bistable nature of the

potential under study/9/.

On the other hand, a detailed analysis/9,14/ of the orientational relaxation

allows us to conclude that, for M > 1 and high activation energies ( ‘‘ >> ),

K (t) exhibits an almost diffusional behaviour, no matter how small the frictioneq —

constant ( , i .e.

K () c[) (-
cQStl (12)

where

> t (13)

Both in eqs.(ll) and (13) we have employed the TARP activation rate (M)/ll/.

Two approximations for are actually available. In our notation:

(_2/) , (14)(N) + ii
-

K ( a

(large-i ntermedi ate values of /11)

i3NL
()

__

*

(15)

(small-intermediate values of /1/)

We note immediately that

R’r4L

() (16)

(S_O

(17)

(ti) (/ ) p (-2 ‘/<). (18)

The third limit enhances by a factor 4/ the corresponding expression intro

duced first by Kramers/3/ and then recovered by the authors of ref.2. This is

the consequence of a more refined accounting of the energy trajectory flow about

the top of the barrier/il,
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The results. Eqs.(ll) and (13) suggest

check on the internal consistency of our

results for . (M=l) as obtained from eq

and underdamped case, fig..lb. In fig.lb

the extremely small viscosity predi cti o

Our results agree fairly closely with t

which so far seems quite reliable.

Our results for 1(M=2), displayed in fig.2, have been determined by means

of eq.(l3). A very wide viscosity range is explored and, by way of comparison with

the analytical predictions of ref.l, a curve interpolating (M), (14), and

(15), is reported. The bridging function th(M=?) is defined as

follows/l5,lG/

The agreement obtained is still very confortable. This allows us to conclude that

the theoretical approach of ref.l to the activation processes in the limit of

very small viscosity is to be regarded as likely correct and, anyway, provides

better results than preceding studies/2,3/.

In a final remark we emphasize that the escape rate theory developed by

Kramers seems to explain very closely the relaxational dynamics into an M-fold

periodic potential/9/ contrary to some claims about its breakdown/7/.
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distinct measurements of (M) and a

approach. In fig.l we report our numerical

.(ll) for both an overdamped, fig.la,

we compare the numerical calculations with

ns of both BUttiker et aL/li and Kramers/3/.

he more recent prediction, (eq.(18),

(il::)
=

(1

-iK
(‘1 =2i)

—1.fJ4L ]I ri z) (1 ))



FIGURE CAPTIONS

Fig.l - a) the overdamped limit. 41(M=l), (11), versus l/3 for M=l,o =1 and

Our numerical results ( ) are compared with the corresponding

Kramers limit, (17) (solid line);

b) the underdamped limit, i,(M=l) (11), versus P for M=l,o =1 and

r’=lO, The dots ( 0 ) represent our numerical results. The solid lines

represent the theoretical predictions of Kramers/3/ (K) and Bttiker et

aL/l/ (BHL) respectively (see eq.(l8).

Fig.2 — (M=2), (13), versus for M=2, & =1 and Our numerical results

C 0 ) are compared with the interpolating function th=2 (18) (dashed

line).
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