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1 — INTRODUCTION

The application of stochastic methods. to astrophysical

problems has a. long, and colorful history. Perhaps the first area

of investigation,,. in analogy with the successes of nineteenth

century statistical. mechanics, was. that of’ stellar dynamics. The

sidereal universe was treated as. a gas of massive bodies in a

phase space whose natural coordinates referred to the galactic

plane and. center. This treatment, initiated by Schwarzschild (1)

and Kddington (2) was: capped with the review by’ Chandrasekhar(3).

It included, the elucidation: of the velocity distribution

function,, the’ variation of the: velocity dispersion with

galactocentric position and age (later in part explained by

Spitzer and Schwarzschild (4)) and the discovery of the rich

field of statistical stellar dynamics ( see e.g. reviews by Kurth

(5), Mihalas and Roatly (6), Qort (7), Mihalas and Binney (8) and

references therein). At about the same time, the methods. were

applied to stochastic line broadening in atomic systems and

eventually to stellar atmospheres (see: Mihalas (9), Griem (10),

Chandrasekhar (3)), The application of such methods to stable

fluctuations in the brightness of the Milky Way and the

statistical mechanics of gravitational encounters between stars

has also been one of great productivity (Barucha —Reid (11),



Chandrasekhar and Munch (12)). Turbulence theory has been

applied to dynamo models (see review by Parker (13)), and to

propagation of cosmic rays through. the galaxy by diffusive motion

in. both energy and spacetima (see Ginsburg and Ptuskin (14) for

review).

Since these areas have been covered extensively in the

literature (15) we shall, not add to the already groaning mass of

tomes on the subject with this survey. Instead, we shall

concentrate on those processes which have in the past decade been

brought to bear on the problem of galactic evolution, star

formation, and. global problems of the Large scale distribution of

the galactic population of the universe.. Most of these methods

tall into categories of broad generality and can in effect be

labeled by the methods employed in their investigation rather

than the area being studied. We shall therefore proceed with this

review by separating the problems according to the method rather

than the topic being investigated. This is done for several

reasons. The field of stochastic phenomena in astrophysics in

particular and physical science in general has taken on the

appearance of a growth industry since the introduction of

computer methods about 15 years ago. The time for diffusion of

techniques between fields has been decreasing, and still there is

some lack of communication between theorists in different

disciplines concerning the similarity of approaches. Since, for
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example, population ecology has spawned many of the nonlinear

methods used. in the modelling of the chemical history of the

galaxy, and since percolation techniques can be used for any form

of lattice—dominated phase transition from QCD to galactic

structure, we feel that this. separation by method will assist the

reader by allowing for easy comparison between techniques and

setting in the different areas of astrophysical investigation.

Having presented our philosophical justification, then, we should

now present our basic categories of methods:

Coagulation. phenomena: agglomeration and fragmentation

calculations. which bear direct kinship to the Fokker—Planck

treatments. but also include discussion of expectation of

N—body systems for which the initial distribution function

and dynamics cannot or are not treated in the continuum

limit.

Percolation: application of local interactions to the problem of

generating long range order, including phase transitions and

morphogenesis, to large scale discrete models.

Langevin systems: nonlinear deterministic and stochastic

representations of interacting states or populations with

and without consideration of spatial variance.

Fokker—Planck equations: fully stochastic realizations of the

Langevin systems and the Monte—Carlo simulations which they

give rise
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a — AGGLOMflAflON PHENOMENA C coagnlation equation applications )

astrtphysical

One recent development in. stochastic processes

• has been. the widespread use of coagulation

calculations botfr nucleation phenomena and dust formation and

processes that relate to the distribution function for masses and

mass ratios in. torm’ing stellar systems.. The use: of the

coagulation. equation for the study of s-tar and stellar system

formation. in particular has- been quite recent and warrents a

review..

(a) SOLAR SYSTEM- FORMATION.

4

Perhaps the first studies to employ agglomeration were those

related to the formation of the solar system. The use of the

coagulation. equation, essentially a macroscopic version of the

master equation for systems which can be treated as being

controlled by one independent variable and time, has been of some

importance in recent simulations of the process of star

formation. Employed for some time in the study of nucleation

(16), the results were first used extensively by Safronov and his

collaborators (17) in the modelling of planetary formation in the

solar nebula.

Various stages can be identified by the main physical



process acting: in the evolution of low—mass protosolar nebula

models.

In, the initial phase a disk was formed by the settling to

the central plane of the dust grains. The original disk structure

can be specified by the application of some rather basic

hydrodynamical constraints.. Generally it is assumed that the

disk is do:minated by turbulent heating and is not

self—gravitating (Shakura and Sunyaev (18), Pringle(19)). The

grains can grow up to: 1 cm, due to the condensation they undergo

in the cooling nebula. The turbulence can prevent the disk from

becoming;. dense enough to suffer the gravitational instability

which could fragment it in: higher mass pieces ( Weidenschilling

(20)). The mechanism that allows the growth of the grains up to

dimensions of the order of one meter or more, is the coagulation.

The grains

will proceed to collide with

eachother and then both fragment and stick ( Safronov (17),

Pechernikova et al (21), Nakagawa et al (22), Morfill (23)). The

growth of the individual, grains, or fragments, will then

Smoluchowski equation of the form

(2—1)



where Cj4,ii’) is. the sticking probability, is the mass of the

particle and. N(ii,t) is the number of particles of mass 11 at

time t... In. the case of: particles in the solar nebula, there are

several arguments which have been aduced. to supply some

phenomenological form for . .. These are: outlined by

Nakagawa et at (22),, Safronov and Ruzmaikina (24) and Wetherill

(25), Simple s1miilations can, be carried out with such systems,

assuming that the collision rules are well. specified, and the

results show that the formation of large scale agglomerated

bodies can proceed quite easily. The approximation which is made

in the treatment by Nakagaw.a et al (22:) and Morfill(23) is that

of a continuous medium., in. which case the equation for the

evolution of the sue distribution is a. diffusion equation. Such

an equation, the limit of the full master equation for the

system, can be solved: numerically for the distribution of surface

density (not particle sizes. explicitly) as a function of

heliocentric distance.. A mass spectrum äan be calculated as a

function of distance by introducing the agglomeration conditions

explicitly and then solving for the variation of an initial

particle spectrum. The evolution of that distribution can then be

followed as a function of time.

Within this new higher density medium, it is possible for

gravitational clumping to nonetheless occur; (Safronov (17),

Goldreich and Ward (26), Coradini et al.(27) )) and for bodies of
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sizes. of’ the order of 1 Km to form.

The subsequent evolution of this swarm of planetesimals is

governed by their relative gravitational interactions and

collisions With the exception of a thermodynamical model based

on phase transitions (Farinella et al (28)), this problem has

beerr treated numerically (29); the approach is to follow

explicit ly the evolution of the system of planetesimals as an

N’—body problem.. The individual particles are labelled with the

appropriate orbital parameters. and the equations of motion for a

large number of planetesimals are then integrated The

distribution of the particles initially simulates the structure

of the protosolar disk, and the subsequent evolution of the

protoplaneta can be followed allowing, for the same kind of

collisional dynamics first assumed by Dole (30) and Isaacman and

Sagan (31) in their models for synetic solar systems.

When a: fragment grows up to 1000 Km, it can

capture the residual gas in the nebula and this is the main

process of growth together with the rare collisions with

residual planetesimals.

The asteroid belt, which long suffered for lack of interest,

has provoked for its aspect of planetesimal system a series of
structure

theoretical works. Its dynamic&JYis intriguing for the presence

of chaotic regions in the distribution of asteroids in phase

space (32), revealing the intrinsic non—deterministic nature of



N—body non—integr’ab.le gravitational problem,, and. the

of testing Kolmogorov—Arno.ld—Moser’ theory (33). The

evolution, as determined by several dynamical models

on the coagulation equation and. other statistical

like Monte Carlo calculations,, affects the physical

these objects.. Detailed. observations,, like

lightcurves,.. can test the p.red.ction of the theory.

(b) STAR FORMATION — INITIAL MASS FUNCTION.

possibility

collisional

(34), based

treatments,

properties of

photometric

The basic data for stochastic simulations of galaxies and

their constituent populations and metallicity

initial mass fünction (IMF),. which represents

with which stars. are presumed to form.. Derived

distribution of luminosity among field stars

Philip and Upgren (36) and references therein),

stars C Salpeter (37), Miller and Scab (38)),

detailed corrections. for both stellar evoluti

variations. among. the observed population.

achieving the IMF from the observed distributio

Miller and Scab (38) . . , but can be

stated briefly , since they also relate to an

accurate testing of various proposed stochastic methods.

evolution is the

mass
theV distribution

from the observed

(van Rhijn (35),

and from clusters
its derivation

V involves many

on and abundance

The methods for
most thoroughly

n areVoutlined by
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tt should be noted that the problems encountered for stellar

distributions are quite similar to those with which studies of

galaxies. and their intrinsic properties have to deal.

Given the observed distribution of stellar masses among both

cluster and field stars, the problem is to correct for

evolutionary and metallicity effects. The actual mass is rarely
bolometric

measured; instead, one observes the britness and surface

temperature or color. The first correction which must then be

made is to determine the age of the star, and correct for the

variation in these parameters with time. If the star is in

a cluster, then it is possible toat least get a handle on the

appropriate age for all the members and to use theoretical

interiors models to trace all of the stars back in time and

surface parameters to the stage of hydrogen core burning, the

so—called zero—age main sequence (ZAMS). The population of stars

along this part of the evolutionary history of the cluster is

presumably the population with which the cluster formed. The

same is true for field stars if the relative populations of the

various main sequence groups (which are ordered by temperature or

spectral type) can be determined from a complete survey (that is

complete down to some limiting apparent brightness with

appropriate statistical corrections for the fainteç’ inaccessible

part of the sample). The rate of star formation can then be

assumed, and the IMF obtained from modelling the population



statistics.
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When this is done, some parametric form for the mass

spectrum has to be assumed. The initial approximation, that of a

power 1a,. is. referred ta as Salpeter mass function, following

Salpeter (37). This approximation, of course, cannot apply over

the entire range of possible masses, since the lower masses

produce divergence in the total population. it is usualto

specify three parameters::thupper and lower mass cutoffs

and the exponent While not useful in a fundamental way for

explicating the origin of the mass spectrum, it is a convenient

parametriaation for models. of star formation and the populations

of external, galaxies,

If we imagine that the stellar population has been formed

continuously over a. period of time., but that the distribution

function for the formation of new stars is stable (in a

stochastic sense) then the IMF should be reflected in the more

evolved members of the sample population. That is, the mean age

of stars should be younger for the most massive, and the relative

number of massive to low mass stars should be stable. The

primary complication to this would be, and in fact is, that the

stars of the upper main sequence do loose a considerable amount

of mass during post—hydrogen core exhaustion evolution, and

therefore can re—populate the lower mass tail of the IMF.

However this phenomen 8 not leally under control in the



theoretical work of tracing back the sample to. the ZAMS, under

the constraint of a history of star formation, since the

algorithms for the computation of the evolution of these massive

high 1uminosjj, dominated by mass loss, are not well

understood at present (see Chiosi (39), Abbott (40), Shore and

Sanduleak (41)), For the lower mass stars, specifically for those

less than 10 M. , the situation is a good deal better. These

stars evolve essentially conservatively until: the extreme red

giant stage, which represent only a few stars in any sample and

therefore can be ignored

The average star encountered in the field will be

evolved, and therefore corrections for the expansion of the

envelope and consequent increase in the luminosity must be

applied, as well as changes in the metallicity ( gradient over

both space and time) must also be applied to the lower mass

stars.

Et is still necessary to make assumptionc

many of them ad hoc, concerning the time dependence of the star

formation rate (see Section 4. for the Langevin nonlinear

treatment which allows to circumvent this problem as well), and

then evolve a chosen population forward in time to obtain the final IMF.

While the ideal way of proceeding would appear to be a

fully stochastic simulation of the population, including the
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effects. of mass loss and rotation,. all of which are chosen from

distribution functions which-are known at present, this has only

been done for a few cluster models by Elmegreen and Mathieu (42)

It would be most useful to apply this to the field population

In addition, models are currently being studied which

the formation of stars of different masses by using

reaction channels.. in. the Langevin systems of the

Sections in order to see whether the IMV is a stable

function of time. If it changes, the star formation

metalllcity- evolution of the disk and the IMF

become inexorably linked and impossible to separate

Duncan (43))..

Broadly speaking, the treatment of fragmentation of

molecular clouds: falls into, two categories in its astrophysical

guises: analytic approximations to the coagulation equation and

numerical simulations of accumulations among fragments or of

fragmentation during collisions or collapse of clouds. We shall

review these together, since the analytic treatment often

preceeds the introduction of numerical methods in a large variety

of different contexts. However, since we are dealing in this

review primarily with problems related to star formation and

galactic evolution, we shall ignore the work that has been done

on dust formation and nucleation of classical (chemical) systems.

These have been extensively reviewed by Abraham (16), Burton

in general.

allow for

different

fo lb wing

stochastic.

rate, the

variations.

(Shore and
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(16), Draine and Salpeter (16) -for problems of astrophysical

interest. We shall only refer to this literature for analogies

which may be of some aid in establishing new directions for work

on megascopic systems like interstellar cloads.

The idea that fragmentation is the source for stars in

clouds was first expressed most comprehensively by Hoyle (44),

who argued that the observed diatribution of galactic masses, and

the constituent stellar masses, can be represented as the result

of a hierarchical fragmentation. The dominant mass in this case

is the Scans mass, the size of a self—gravitating blob which will

be critically stable against collapse if it remains isothermal.

This mass given by:

Wilt
fERfl

M5
=
l.86j,—j •7t (2—2)

where R is the perfect gas constant, G the gravitational

constant, T is the temperature of the cloud and P is the mean

density. Hoyle’s consideration was elaborated on by Hunter (45)

who followed the collapse of a sphere through the critical stage,

and by !4estel (46) who argued that magnetic fields can play a

critical role in supporting such a self—gravitating system

against collapse. Indeed, if there is any charge present in the

cloud at all, the magnetic field will actually dominate the

stability of the system ( Parker (13)). The scale of the critical
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mass is then the most probable- mass to form at any stage in the

collapse of a cloud C Larson (47), Palla et al (48)). Armed with

this scale, it. is possible to compute whether observed clouds in

the intestelIar mnediuirr are stable against fragmentation. The

simple answer beIthat the average- molecular clou.d contains many

thousands of Jeans masses and. so should be unstable to

spontaneous. star formation.., The support of such systems has

alternatively been. ascribed to magnetic fields ( Mous1ovias

(49-)) an& turbulence C Fleck (50.),. Ferrini et al (50))

it is such considerations that have given rise to the

application of analytic treatments of the coagulation equation.

The first such tratment for clouds is that of Nakano (51), who

assume& that. initially all the- fragments. have the Jeans mass.

Taking several forms: for the agglomeration coefficient which was

assumed to be a simple mass dependent quantity ( or constans),

the coagulation equation was numerically integrated. Foraa(,ut )

constant or )‘3the resultant mass distribution is

peaked between log. rn of 1 and 2, while for ad,)J+11 and

I
‘‘

I .

1ab, ithe distribution is monotonically decreasing

function:of- mass. In general coefficient ‘ and a lead to
a b

something like a 1og-norma1 distribution, while ci tends toward

a power law. Case is intermediate.

An elaboration on this procedure was provided by Norman and

Silk (52) who treat the growth of T Tauri stars in turbulent
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clouds, by the: coagulation equation and provide an. analytic

solution for the evolution for a simple power law input. The

turb’u1ence of the cloud derives from the turning on of the. T

Tauri stage, which, through stellar wind stirring, maintains the

turbulence reQuired. to: support the clouds against collapse. The

key feature of their treatment is a concentration on the low mass

stars:, which are near the Jeans mass for the cloud and

consequently the most probable stars: to fo’rm (Elmegreen (53)).

This treatment,. however’,, has several shortcomings. It ignores the

infall of material,, which. may be of some importance in the

evolution af the system (especially if’ there is any stimulated

formation of fagraents or agglomerat:ion process) and it also

ignores the decay of individual fragmen:ts. The latter may be due

either to collapse and the subsequent formation of a star C if

the mass is greater than the Jeans mass and the fragment is not

supported either by turbulence or magnetic field) and the

evaporation by stars. which may already have formed. This is a

relevant problem for the evolution of molecular clouds, since

recent observations (Montmerle et al (54)) have shown that X—ray

emission by T Tauri stars which have been formed previously in

the cloud may alter the subsequent evolution of the fragments

Therefore, one of the pressing problems in the theory of

fragmentation and evolution of the cores of molecular clouds is

the inclusion of the effects of previously present stars on the



dynamics and thermal—ionization structure of the medium, While

Norman and Silk (52) do. treat feedback processes in a simple way,

there is still lacking a general theory of the detailed effects

of the appearance of stars. on the internal structure and

evolution, of molecular clouds.

A simple treatment of fragmentation which includes the

hierarchical model is due to Larson (55), Assuming successive,

but random, bifurcations of a sample of collapsing fragments, he

derives a binomial distribution for the mass spectrum:

f(n,m)= ((j (2-3)

where there are n stages of fragmentation and each fragment has a

mass fraction. 2 if’ the probability of fragmentation is p,

then this generalizes, to:

f(n,m;p)=pm(1)n_m ( (2-4)

which for fl —* N , becomes a Gaussian distribution for the

fragments:

f(N,m;p) (2p(1-p)Nexp _m()N (2-5)

Since each division is essentially a Poisson—type trial (that is

there is a probability p at each step which is independent of the
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previous history of th’e fragment) there is. a random, normal

distribution of the fragments waitb the meant value being Np and

the. dispersion being 2p(l—p)N . The fluctuation is therefore of

Vthe’ order of N! ,.. as expected from such a Poisson trial. There

are no terms related to the agglomeration, of these fragments,

which. sill. teni to cause the distribu.tion to’ evolve away from the

Gaussiarzz fornt. Larsort points out that such’ a fragmentation scheme

will ultimately teat,, in its fulL realization, to a fractal

distribution of masses (see Mandelbrot (57)) which is

4racteristic of turbulent distribution (relevant also for the

properties of molecular clouds— Ferrini et a). (50)). It should be

notedithat the tMFto’whicb Larson (55) compares his data does

not agree with’ that der’ived4 b MiLler ant Scab (38), and his

function is quite different front the results of the coagulation

calculations. The treatment of statistical fragmentation has

recently been discussed. by Zinnecker (56) and Elmegreen (53) for

clusters and binary systems formation. Returning to the picture

advocated by Hoyle, they treat fragmentation as a multiplicative

stochastic process in which the probability of fission of a

fragment at any step is Markovian, that is, independent of the

history of the fragment. Zn this fashion, they do not

explicitly include the dynamics of the collapse phase. As in the

case of the broken—stick distribution known from ecological

models (see May (58) for a review), they obtain a log—normal mass
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spectrum which is in good agreement with the initial mass

function obtained for galactic stars by Miller and Scab (38) and

which asymptotically provides the power law spectrum suggested by

Salpeter (37). Klmegreen and Mathien (42) have generalized this

treatment to the formation of stir clusters by arguing that the

formation of massive stars shuts off the process of stable

fragmentatioa—star formation within the cloud. Therefore, only

in the moat massive systems, where there is a likelihood of

forming OR stars, will there be a short formation time.

Elmegreen (53) argues that statistically long formation times (of

the order 10’ years for the typical system) may characterize

the formation of clusters. The resultant mass spectrum should be

dominated by the low mass stars. En addition, the long formation

period may give rise to an intrinsic spread in the metallicity

and time —‘dependent properties of the stars.

A novel approach to the fragmentation problem is due to

Ferrini et al.(59) who describe the internal cloud dynamics by

means of a nonlinear Lagrangian in a scalar field, whose modulus

square represents the density distribution inside the cloud. By

solving analytically the nonlinear resulting Klein—Gordon

equation, they calculate the fragmentation spectrum. Although

the model is not explicitly self—gravitating, the Jeans mass

enters into the calculation for the growth time of a fragment and

in the renormalized mass, and therefore the gravitational



triggering and dynamics of the collapse are implicitly included

in the model. The model is essentially a log—normal distribution,

when the time scale for the propagation of perturbation in the

nonlinear field is smaller than the local free fall time, and

therefore agrees well with the Miller and Scab (38) fits for the

field stars. In addition, the IMP’ is of the form suggested by

Elmegreen and Zinnecker for the mass spectrum resulting from

multiplicative stochastic processes, as discussed above.

Moreover, since the Jeans masa of the cloud depends on the

possible presence of magnetic fields the expected cloud

fragmentation spectrum can be derived under very general

astrophysical assumptions

The formation of multiple star systems has long plagued the

theory of star formation. Usually termed the angular momentum

problem, it is the product of the fact that molecular clouds

rotate. Assume that the rotation rate for a 1 Me (solar mass)

cloud is 1o” r’ , simply the galactic differential rotation rate

for a 1 parsec cloud. If the angular momentum is conserved during

the collapse, the resultant velocity of the finally formed single

star would be enough to prevent stability (the rotational

distortion of the final star will be such that an equatorial cusp

is inevitable). - . Calculations using three dimensional

fluid dynamical codes (60,61) show that the collapse of rotating

clouds will certainly form multiple systems.



We refer the’ interested reader to tKe paper by Boast et

aL.(Ga-),. where this problest4t -‘
discussed itt detail, in its

paraflett aspects of star formation: ant planetary system

formation,...
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3 PERCOLATiON MODELS

There are two primary treatments of percolation in

astrophysics, one connected with galactic structure and the

other, far less well developed or understood, with magnetic

dynamos. We shall concentrate on the first (see the reviews by

Broadbeut and Eammersley (63) and Hamrnersley (64)). The

morphological structure of disk galaxies has been a problem of

long standing, since the introduction of the Hubble classification

scheme (Hubble (65)) This taxonomy uses both t

spheroid (the so—called bulge to disk ratio) and the

the spiral arms in the disk to provide a classific

deterministic basis of this scheme, that there is a

evolution between the taxa as originally described by

has been shown not to apply, but the system has survi

numerous other properties of galaxies appear to b

correlated with the Hubble type. A fully hydrodynamic (in

deterministic) description is provided by the Density Wave

due to Lin and Shu (67)

(68). The theory is well

only discuss it briefly,

stochastic scheme.

Disk systems composed by stars and presumably gas, and which

are selfgravitating are intrinsically unstable to the growth of a

he nuclear

openness of

ation, The

sequential

Jeans (66)

ved because

e well

effect

theory

and its nonlinear elaboration by Roberts

reviewed by Toomre (69) and we shall

since it can be shown to fit into the



spectrum of longitudinal density waves. The stellar population

acts as a compressible fluid whose number density perturbation

causes the gravitational potential to vary with azimuth and

radius in the disk. This in turn, produces accelerations which

support the density wave, and in principle the system might be

self—sustanding The resultant structure of the disk would be

spiral in appearance, since the shear of the system will produce

spiral longitudinal perturbations, and the pattern speed through

the system should be fixed by the local condition of shearing,

given by the epicyclic frequency. If the wave is sufficiently

strong, nonlinear hydrodynamical models show that a standing

shock will, develop at the spiral arms, resulting in compression

of the disk gaseous component and the possible driving of either

star formation or cloud formation. Although this should in

principle also feed into the distribution function for the

stellar population, such an effect has not yet been included with

sufficient generality in the (analytic) models to comment on this

reaction with the basic density wave predictions. Toomre (69) and

Zang (70) have both shown that the system is unstable to winding,

and that the spiral pattern is indeed not stable on long (many

rotation) timescales. It is in this context that the percolation

models have been introduced.

The idea that star formation can have an induced component

which depends on the available stellar population in the disk was
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first realiaed by Elmegreen. and. Lada (71) and Herbst and Assousa

(72) and at about the same time by Mueller and Arnett (73) for

stellar systems.. we shall discuss. the effect of such an

assumption on models of star formation in local models in Section

4, now we can show that this picture carries over quite nicely

into the global models.. However, in these pictures, since there

has. been. little analytic work on the large scale structure (with

the exception of Shore (74) and Fujimoto and Ikeuchi(75)), we

must confine the discussion. to the more abstract aspects of

percolation theory on differentially rotating planes and then

discuss the re—interpretation of the results in light of the

modelling that has been. done to date..

The simulations of the stochastic models, for the study of

the morphology of star forming disks as a function of the

probability of stimulated star formation and the rotational

velocity of the system, have been performed by several groups,

notable Gerola and Se:iden (76), Schulman, Seiden and Gerola (77),

Comins (78), Madore and Freedman (79), Statler et al. (80),

Feitzinger et al.(81).

The basic principle of all of these models is that star

formation can be viewed as a percolation phenomenon, with the

metastructure of the system resulting from the short range

interaction between neighboring cells. The stimulus of Conway’s

Life game has proven of great importance in this field Governed
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by the rules that the activity of a cell is controlled by the

neighboring, population of active cells, and that the propagation

of influence’ between. two cells can occur with or’ without time

delay, are’ the’ basic properties of the systems. This is

augmented with the “dynamical” condition that the disk on which

the percolation occurs can be treated as differentially rotating.

Unlike the’ Conway game this means that there is a global

structuring and replentishment of active sites. In addition, it

implies that the’ percolation, if not taking place on a fixed

grid, will have a variable’ critical probability from place to

place in the’ disk.. This latter problem’ is circumvented by

assuming that the’ rotation curve for the disk, is flat; that is

the rotational frequency’ varies as the inverse of the radius.

Such an expedient not only fixes the number of cells that are

needed to treat the evolution of the’ disk, it also provides for a

global percolation parameter. The models show that the peak of

the rotation curve, that is the rate at which the cells are

1\ynamicallyi to communicate) is the basic percolation

parameter. The primary success of the models has been the

reproduction of stable spiral structure. The propagation of the

spiral pattern occurs at the percolation velocity, determined

only by the maximum of the rotational frequency, The rate of

replentishment of a cell’s gas is also determined by this

velocity, since the differential rotation is scaled to this



—25—

speed, and therefore the robustness of the global star formation

is dominated by the maximum of the rotational velocity.

Predictions of the color, metallicity and star formation

gradients across such disks can be compared directly with

observations (Wray et al (83)) for a few galaxies, and also the

rates of star formation with time can be derived as well. One of

the most remarkable observations, which is in effect similar to

that observed in chemical systems, is that modes of coherent

oscillations are possible (Feitzringer et al (81)) which have the

appearance of ring galaxies. The implicitly nonlinear stochastic

models do not allow one to follow the details of the star

formation as such, but rather present a morphology which can be

classified, in. the same fashion as those of galaxies. This

classification has been stressed by Shore and Comins (84) and

also by the originators of the various systems ( Hubble (65), Van

den Bergh (85)). In the absence of detailed information about the

rotation curve and distribution of stellar constituents, the only

information available for a galaxy is global in nature ——its

morphology, total gas content, integrated luminosity and

integrated spectral type. Ultimatly, the goal of the SSPSF or

density wave models must, it seems fair to say, be to provide

some causal connections between these gross features of these

systems and the detailed “microphysics” by which they come into

being.
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4 LANGVIN SYSTEMS AND FOKKER—PLANCK EQUATION

Langevin systems of coupled nonlinear equations have been

used recently in the- modelling of galactic evolution, in the

framework of the so—called, one—zone—model (OZM). By OZM it is

understood a model in which a certain limited region of a galaxy

is considered, its content in gas, stars and eventually clouds is

studied by neglecting the- variations of the basic galactic

properties across the region ( Ostrike-r- and Thuan (86), Tinsley

(87)); it can be allowed for exchange of matter with the external

medium.

The- astrophysical. problem of justifying on theoretical

grounds the- morphology of galaxies (spiral and elliptical, with

their different content in stars and gas), their chemical

evolution (initial rapid enreachment of metals i.e. any element

heavier than Hydrogen and Helium) and finally the attempt to

trace a classification based on different physical aspects of the

evolution, has been tackled on employing the approach of

cooperative systems. In these models a scenario is proposed

where the large scale dynamics is related to the local

microscopic interactions, At the same time a macroscopic

description (e.g. the interplay of various phases, the

metallicity) is derived by means of few (stochastic) variables.

The mathematical structure of the models is their unifying
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background: systems of nonlinear coupled differential equations

with eventually nonlocal terms Approximate analytical solutions

have been calculated for lineariaed or reduced models and their

asymptotic behaviours have been determined, while various

numerical simulations have been performed for the complete models,

The structure of the fixed points, their values and stability,

have been analyaeci and some preliminary correspondence between

fixed points and morphological classes of galaxies s evident,

for example the parallelism between low and high gas content with

respectively elliptical and spiral galaxies.

rypical is the oscillating behaviour of the solutions, the

astrophysical meaning ofthis phenomenon being straig tforward:

the

bursts in star formation rate have been observed in young

galaxies, and the color distribution of older ones is again an

evidence of nonmonotonic star formation history. The burst time

scale can be calculated from the parameters of the models, At

the same time, the local models are particularly suited to

describe irregular galaxies, while the nonlocal models reproduce

the large scale pattern of spiral galaxies. Finally the chemical

evolution of galaxies can be reproduced with great care. In

conclusion, the common matrix of modelling is the synergetic

behaviour of the system: a few variables would describe the

evolution, while microphysics intervenes in the processes which

determine the values of the parameters,
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Shore’ (8S) first introduced some Langevin models in which

the effects of induced star formation on the evolution of a

galaxy are investigated. In table I we summarize all the models

described in the literature; we presently analyze only the main

features, and we refer to the original papers for a more detailed

discussion.. Let us call s(t) and g(t) the mass fraction of stars

andY gas. respectively. A simple model assumes the rate of star

formation to be deternrined by the rate of depletion of

interstellar gas as follaws

(t)=—rs(t)÷as(t)g(t)
(4—1)

where the rate’ of infall of halo: - material, f, is assumed

constant,. r is the rate’ of return of stellar material to the gas

phase, a is the rate of induced star formation, and d is the rate

of’ gas consumption. A more realistic model can be obtained from

the generalized one zone’ three phase model consisting of diffuse

gas, clouds and stars:

(t)=—rs(t)+as(t)c(t)÷bg(t)

(t)=—dc(t)—a’s(t)c(t)÷eg(:t)m (4-2)

(t)=rs(t)+f_eg(t)m_bg(t)n

Now b is the modified Schmidt (89) rate (spontaneous star

formation, assuming that clouds and not diffuse gas are
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responsibLe for spontaneous star formation) d is the rate of

clouds destruction by background sources, a is the rate of

formati.onr of clouds oat of dtffltse gas..

The nonlinear one zone models can be generalized by the

introduction of explicitly sto.chaatic terms for any of the rates.

The easiest, and physically moat interesting,, one to introduce is

that of time—variable infall. In. this case Ferrini et al (90)

have showa that there are analytic solutions possible for the

simple two component gas model, which agree well with both the

equilibrium behaviour predicted by the linearized models and the

deterministic, systems..

Consider the system:

;(t)=i.vsct)+a(t)wct)
(4-4)

a(t)=_dg(t)+rrl S(tthS(?r.,-f+P()

where all of the variables have the’ same meaning as for the

deterministic systems, but the additional term 1(t) is assumed to

be a— random variable with the- property:

<F(t)F(t’)> =2D6(t—t’)

This is the approximation of a Wiener variable, which renders the

system (4—4) a coupled Langevin system. The correlation function

for F is therefore of the character of a diffusion coefficient,

and the system can be solved by standard Lagrangian methods.
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Assuming that the change in the gas. fraction is negligible,

rwrini. at a’L (90.) solver the system by putting it into, the fqrm:

oItts(f—t0)s(t)+s(t)t_$s(t)1+-a(t)F(t) (4—5)

• wtzere f is detine to be rd/a. This is then an equation

associatet with. a potential function V(s), which is

characteristic of systems with. multiplicative noise and which is

of the formz

±V(a) =_.4f_t0)st..j..s! 5n+
(4.4)

It should. be noted. that if a is of the orther a,. this is a cusp

manifoli (which. is one which will. shois bifurcation behaviour of

the form discusse& b Shore ant tomina (86)). The analysis of

this ayatem presentet in rerriai at at.. (901 shows that this. is

indeed. a. system. with multiple equilibrium states. Having this

form for- the potential, there exists a Tokker-.Planck equation for

the evolutioni of the probability distribution function for the

stellar population of the system,. which: is one that yields the

expectation for the number of stars as a function of time. The

evolution equation for this system is:

P(s;t)=5[(t—t0—hs1÷0sIs;t) +J#P(s;t)] (4—7)

which gives:

____

= (_dh
\“t\ ° d

+ o’2(s)=_aD (4—8)
\aon) dh

L\aDn I
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As expected, the variance is linearly dependent on D, while the

mean stellar fraction varies as D (noting that the case n=2 is

then essentially that of a Poisson limit evolution).

A similar treatment in which the rates themselves can all be

treated as random variables has been given by Shore (74). Here

the treatment by Bartlett (91) is used, which allows for the

evolution of the coupled.. system under the explicit assumption

that g=1—s. This will not be true in the case of infall, but well

approximates the evolution of the closed system. The

Fokker—Planck equation in this case results from the

interpretation of the coupled one zone evolution equations as

both being Langevin equations. The infall characteristics are

not specified, nor is it necessary to state at the outset what

the variance of the rate coefficients is like. The equation is of

the form:

P(s;t)=as(1_s)._yP(s;t)_d(1_s)!_P(s;t) (4—9)

which has as a solution:

P(s;t)=P.et[2Fi(a,S,y;s)+AaFj(a,B,y;s)] (4—10)

where
y=—d/a , —(a+B)=1÷d/a , aS = A/a (4—11)

and 5÷ are the roots of 5÷(1+d/a)5 +A/a=0
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Again, this is. a solution which shows multiple roots and the

bifurcation character one is led to expect from the deterministic

models.

A numerical treatment of these equations has been provided

recently both. by Ferrini and Marchesoni (92) and by Ferrini et

al. (9a).. The analysis proceeds as follows.

The system is coupled to the metalilcity equation:

(Zg) = —(1—R)Z - Zf (4—12)

where Z is the metallicity of the infalling material, z

the rate of stellar production of 1 and R is the rate of return

The distribution function for the metallicity has

Ferrini et al (90), and the explicit deterministic
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evolution of the system has been solved by Shore (88). A version

of the systeni with deterministie (that is constant) infall of

haloL material has been presented previously by Lynden—Bell (97)

and agrees with the more detailed solution by Shore (88).

In the previous exploration of these systems the analytic

solutions. were sought which would describe the asymptotic

stability of such a system. We now drop the assumptions required

for the linearized treatment and examine the full system. We

begin by assuming that the infall can be a stochastic variable in

time.. Such a behaviour is expected for a galaxy in a cluster, for

example, for which cbllisional stripping or infall might be

occurring, or for any region of the galaxy through which stars

are randomly passing. In such a case as this last one, the rate

coefficients should also be random functions. For the moment, we

will examine only the metallicity evolution of the system. We

have computed a set of models for reasonable values of the

parameters with stochastic infall. The values chosen for the

parameters are:

a = a’ = 0.10 h = 0.05 n = 1.84 (Sanduleak(98))

= r’ =0.10 f = 0.04

—3
and Zf =10 . It was alo assumed that the infall had no

metallicity dispersion, but that the infall had a mean value of

with a dispersion +0.04 . We have, for comparison, also
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computed a fully deterministic model

with the same parameters. In all cases, the initial ratio

3 —3
g/s is 10 (essentially all gas) and 10=10 The

results are shown in Fig.. 1. The stellar fraction rises quickly,

with. an asymptotically linear form, while the gas fraction

decreases slowly and thereafter remains fixed. The metal

abundance of the system saturates, even while the stars continue

to increase.. There is little differenc.e in the evolution, in this

particular system, of the stellar and gas phases with the

deterministic rates.. However, for a critical value of r=0.08,

all other parameters kept fixed,, the metallic:ity reaches an

initial maximum and then slowly declines. This sort of behavior

is reminiscent of Larson (99), which shows that when the star

formatio.n rate is very large in comparison with the death rate,

the metallicity actually peaks during the early evolution of the

system..

We have also tried models in which the fluctuations

increased in amplitude with time, and the metallicity also

increased stochastically with time. Again the metallicity of the

system saturates at approximately solar values, although the

stellar fraction behaves like the stochastic system described

previously. Finally, in Fig.2 we show the results for the

-ptevolution assuming that the infall decreases like e where P

is a free parameter. This is the result of allowing f to
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fluctuate to zero during the course àf the infall, although the

rate can temporarily increase. Here, the stellar fraction

saturates (decreasing ‘f” ). Again, the metallicity changes with

time in a fashion almost indistinguishable from the previous

cases. In short, models of this sort seem to suggest that while

the infall. is. necessary in order to explain the general evolution

of the system, very different histories of this infall can

produce essentially the same result in the final state. That our

galaxy- seems to have essentially constant metallicity, constant

birthrate and increasing star to gas ratio at abott the same rate

as the birthrate suggest that the appropriate description is one

with either constant or stochastic infall at a rate comparable

with the rate of induced star formation.

In order to specify the nature of models further, we should

add that a three—level system is the only one completely

appropriate for the modelling of a galaxy. This has also been

discussed recently by Seiden (100) who has labelled these phases

“active” and “inactive”. The active phase is the gas, since it is

from this that the clouds and eventually the stars are formed.

The inactive phase, or the clouds in our picture (Seiden and

Gerola (76)) is a form of holding phase for the material.

It does not seem without interest to evaluate the linearized

stochastic case, both from the standpoint of introducing the

formalism and because there is some evidence that systems forming
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stars caa be treated as self—regulated and therefore equilibrated

systems (Franca and. Co3c (lO1), Norman and Silk (52), Franco and

Shore (lOZ)) Let us assume a simplified two level system:

(t) =as(t)g(t) —rs(t)

(4—13)
(t) =r’s(t) —a’s(t)g(t) ÷f

so that we now have:

d
(4-14)

where

a s g —r- s.
-t°° -to

(4—15)

a r’ —a’ g +f
° 1 0 a

and

( ag0—r0 a0s0

(4—16)

\ r’0—a’0g0 —a’0s0 )

are the; state operators for the system. Now consider the

diagonalizing transformation T such that:

/ (r /r —a’ /a )r s ÷
—1 1 1 ° 1 0 00

T
= ( (4—17)

(a /a —r /r ÷a’ /a —r /r )s r —f
\ 1 ° 1 ° 1 0 1 0 00

The equation (4—14) can now be integrated to yield:

rt
—a s t I

g(t)=c0e 00

j
(R—A)r0s0exp(—a0s0[t—xJ )dx+

÷ exp[a0s0x—t)] f(x)dx (4—18)
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The important thing to note here, where we can take C0 to be

given by the initial conditions, is that the entire process can

be viewed as a stochastic Ito equation, nowehere assuming

anything about the differentiability of the infall parameter

f(t). The advantage of this approach for the generalization of

the evolution equations to the stochastic regime in which we do

not linearize the system is therefore clear; the infall (or

outflow, we need not specify the sign of f) can be a stepwise

continuous function of time, or even discontinuous. The rate of

change of the gas fraction in the system will be determinable

regardless.

The reason for dwelling on this point is that the evolution

of any galactic system will be influenced by random processes

occurring in the environment in which it finds itself. The chance

encounter between two galaxies in a cluster will cause

time—dependent but stochastic in character infall. The occurrance

of supernovae in portions of the system will be random in time,

and the input of energy to the interstellar medium and consequent

alteration of the local conditions for star formation will also

be inherently stochastic in nature. Thus, having in hand a

qualitative formalism for the analysis of such effects may serve

as a useful starting point for a discussion of the further

developments in the nonlinear theory. Further, this will be

useful in the explication of the stochastic metallicity evolution
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gas fraction in any part of the system that will drive the

alteration of the metal. abundance of the disk. Provided the

system.. is. well mixed, which is fine- for the laboratory but not

necessarily for a spiral galaxy, there will be a predictable

spread in the abundances derivable from the evolution equations

for the- system..

The extension of these models to two dimensions, a

prerequisite for realistic models of spiral galaxies, can be

accomplished by using stochastic methods for justification. A

diffusion equation for the stellar population including birth and

death terms was first asserted by Shore (74) and also recently

emploted by Nozakura: and Ikeuchi (103). It is possible, however,

to derive this equation from first principles provided the

spatial distribution for the stellar velocities has a random

component as well as. that due to the differential rotation of the

galaxy.

Assume that the distribution of orbital eccentricities is a

random function of space. Then at any position in the galaxy,

there will be stars on either inbound or outbound legs of their

orbits, distributed about the mean motion at that galactocentric

radius. The master equation for the stellar population of that

region of the disk will be given, then, by:

P (x,t)AP(x—dx,t—dt)+AP(x+dx,t—dt)—BP(x,t)_Bp(x,t)
t + - + -

(4—19)

—rP(x,t)+f((P(x,t—dt)(1—P(x,t))+P(x,t)(1—P(x,t—dt))
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where the coefficients and refer to the motion of stars

through the region without changes in the composition of the

stellar component of the system and r and f are- the death and

stimulated birthrates. It is assumed that the- gas fraction g is

given by 1—a, as before-, It is then simple to see that this

equation reduces, in the- continuum limit, to the diffusion

equation:

as as
riV2sQ -as(1—s) —rs (4—20)

which is given by Shore- (74). The key reason for the diffusion

term appearing, is that the Master Equation couples the population

at x—dx with that at x,÷dx, thereby giving rise to a second

derivative. It is also the case that the diffusion is dominated

by the tendency, due to the random distribution of orbital

eccentricities, to appear like- a small diffusive variation in the

stellar population in the zone superimposed on the convective

derivative due to differential rotation of the centroid. Clearly,

this model can be generalized to three dimension, depending upon

the choice of the vertical structuring of the rotation law, since

for the halo polulation the orbits form a more or less spherical

distribution about the galactic plane. The two population can,

in fact, be coupled through the stellar distribution function

P(x,t), which can be broken into subcomponents (subpopulations)
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and which can then change the birth and death terms (since, for

instance, there is. no current formation of halo stars while these

become supernova or f’orm. planetary nebulae during, their passage

through the disk).

In. the one zone’ picturee, the metallicity evolution can be

solved using the’ coupled star—gas evolution equations and the

same is true for this. case’. If we assume that the terms in the

metallicity function are only spatially dependent through the

stellar population evolution equation then it is possible to

solve explicitly for the’ metallicity as. a function of position in

the galaxy..

One recent attempt at a phenomenological model for evolution

of the metallicity of the galactic disk has been presented by

White and Audouze(104). Their picture assumes that gas is

re—cycled, possibly non conservatively, between the interstellar

medium and stellar interiors, where’ nuclear processing alters the

abundances and increases the’ metallicity. The material, on being

returned to the’ interstellar medium, is mixed so that subsequent

generations of stars will draw from this polluted source of

matter. They proced as follows. Take f to be the fraction of the

disk locked up in long—lived stars and g to be the remaining

fraction in gas, which can be polluted by an amount Z in its

heavy metal abundance (the species of element being considered

will remain momentarily unspecified). The yield of the medium is
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defined to be:

= (f—1)giZ1 (4—21)

The probability that any parcel of gas will not have been

incorporated into stars in. N events, and will finally find itself

inside a long—lived star is:

(4—22)

while the probability that this parcel will have been enriched n

times out of N will be the conditional probability :

P(nIN)
= N gfl(1_g)Nfl

(4—23)

If the Poisson. process of enrichment is assumed (the gas is

completely mixed and randomly enriched). Then, using the

Chapman—Icolmogorov equation, we have:

P(n) ! P(nj N)P(N) (4—24)

Nc

for the probability of n enrichments. Therefore, the metallicity

increase is the expectation value:

= AZ1 EnP(n) (4—25)

This is simply, for the gas—star model we have chosen:

= (C1 —1) az
I 1

(4—26)
o2 =<z> (1—a)



—42—

The rate of increase of metals is therefore dependent upon:

a/(g-f—fg) (4—27)

which is the probability that the parcel wil1 be in the gas phase

at the time of sampling We note that this system is assumed to

be open, since in the. case of f=l—g, we see that the system is

unbounded. if g=l arrd that therefore this is not a realis.tic

model for the system The inherent stochastic dispersion of the

model results front the fact that the infalling. material will not

be contaminated until it is incorporated into the disk material

and enriched. from the star formation. occurring in the disk,

Altoiigh the model has be.ert elaborated by White and Audouze

to study the variations among different elements, the essentials

of the model remain unchanged We have described it as

phenomenological because it does not include the effects of the

alteration of the conditions of the galactic disk on the star

formation rate or the spectrum of mass and processing of the

stellar component of the system. This absence of feedback which

is essential to an understanding of the time—development of the

metallicity, is also one of the basic features which we have

covered with our models. This paper is however, noteworthy in

being the first attempt to understand both the variation of metal

abundance and the cosmic spread associated with the star

formation and enrichment processes in the disk. The conclusion of
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this paper is that infall is indeed necessary, as discussed by

Lynden.—BeLL (97) and Shore(74), and also by Thuan and Ostriker

(86). The Lack of consideration of the change in the star

formation, characteristics as a function of the change of the

composition of the disk do, however, limit severely the use of

this model to real galaxies.



—44—

5 MAT’HEM’ATICAL TREATMENT OF A SIMPLE ASTROPHYSICAL MODEL

explicitly a simplified astrophysical model where the stochastic

processes introduced, for mimicking, the complexity of the relevant

interactions, are dealt with by recourse to the analytical tools

of the previous articles (notably Grigolini and Marchesoni, from

now on referred to. as GM)..

Even/thotrgh: we focus on: the detailed treatment of a single

example,. we make some preliminary rem’arks: Ci) all the approaches

mentioned above which adopt the Langevin or the Fokker—Planck

formalism are to be regarded. as merely phenomenological in their

nature. The corresponding Langevin (or Fokker—Planck) equations

can not be derived from a proper’ global Hamiltonian description,

no matter which restrictions are imposed.. That is mainly due to

In: the foregoing Sections

for the stellar form’ation and

in the literature.. In the’

we reviewed some stochastic models

galactic evolution widely employed

present Sectioii we shall discuss

our scarce knowledge of the intimate

under study. Generally our Langevin

are written down by two steps. First of

caracterjze the relevant constituents

to determine the time evolution o

quantities (i.e. the choice of

deterministic terms). Thereafter, we

structure of the systems

pheñomenologi cal equations

all we must recognize and

whose interplay is likely

f the observed physical

the variables and the

try to account for the
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presence of the remainder on. assuming that some parameters, first

introduced as deterministic, undergo stochastic fluctuations with

statistics; that can not be readly referred to the actual dynamics

of the systerw. (ii.) This procedure in spite of the possible

criticism, as arbitrary, is useful for testing the stability of

more refined, but purely dynamical models.. Ferrini et a (90,92)

showed that: small fluctuations of the parameters of nonlinear

models can affect dramatically both the time evolution and the

stationary equ.ilibriunr state of the system. This effect can be

explained in terms of basic mechanisms such the so—called noise

induced phase transitions introduced in great detail by Faetti et

al. (present Volume) The problerw of the exact Langevin equations

lies outside the limits of our’ discussion. (see Marchesoni Part

2). (iii) Most of the mathematical techniques reviewed in the

present volume provide subsidiary tools to the authors addressing

the stochastic methods in astrophysics. The reduced model

approach (GM) can be successfully employed for treating delay

equations like those involved in the metallicity problem. In this

case we can suggest a sensible criterion for adding new

macro—variables to a simpler starting model (Ferrini et al (93)).

On the contrary, an abiabatic elimination scheme (like the AEP in

GM) is of great use when we need to simplify a set of stochastic

equations without loosing relevant information. An example of

this reduction technique for a specific astrophysical model is
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worked out in the following Finally, the CFP by Grosso and

Pastori-Parravicini (present Volume) is certainly a flexible

numerical algorithm for explicitly compu.ting the time dependence

of related statistical. quantities of astrophysical interest.

Let us chàose as a starting point for a stochastic galactic

evolutionary model, the set of deterministic equations (4—4).

Such a simplified version of a two phase picture of the galactic

medium assumes s(t) and g(t) as the relevant constituents of the

system. If we imagine that the matter exchange with the galactic

halo is a random process, the rate of infall f is nOw being

jiv&w’.. by F . For simplicity we assume a

white Gaussian noiae with-zero mesa value and correlation:

“tit) uittoTh = Zt cr-i)
The two phase stochastic model we address now reads:

S(t rs(t) .i- a.sft)t(t)
(c-a)

[t) r’s(t)a’s(fr)%fr) 4441(t)

Here r is the rate of star decay, r’ is the rate of return of

mass to gas, a is the rate of induced star formation, a’ is the

rate of star’ breeding.

In spite of its simplicity, application of AEP to the

Langevin system (5—2) is not straightforward. Most notably we

must slightly improve the procedure summarized in GM so as to
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deal with systems like this one, where the distinction between

fast and slowly relaxing variables is not clearcut. Let us start

by studng the fixed point structure of (5—2). In the absence of

stochastic terms. (LO) we find oni3r one fixed point (s0,g0),

,) a
with when

circumstance

This inequality corresponds to the that stars burn

gaatter with a positive rate.. The energy production by

Ste11&âcombustion is not accounted for by our model. It is

noteworthy that if s(t) is. positive at a fixed. time, it will be

bounded in the positive axis for all the times. We can procie this

statement bY noting that all time derivatives of s vanish when

s vanishes.. Indeed, if at t s(t. )=O then (t0)=O. From

eq.(5—2) we also write down a. general expression for the n—th

derie

4[) ))
where the r,h.s. is to be expanded formally as the n—th power of

a binomial, but the powers denote the derivative order. By

induction, at tr0 S(t)O for any n. This property holds in the

presence of external fluctuations as well. Let us change

variables as follows:

,—,

s—, Ss—s0 (s)

‘t:t
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The set of stochastic: equations. (5—2) can be rewritten as:

On changing notation: f

so
eqs.(5—6) show a form resembling the explanatory systems studied

in. GM

(7)
V -)C V ...CV +

The corresponding Fokker—PIarick equation reads:

=

(5_2)

÷x
x. a. v è v a1 v

‘

where denotes the probability distribution of at

time

In the following we apply the AEP in the case of large

viscosity and small fluctuations intensity D We

determine explicitly the range of parameter values for which our

now

perturbation approach is valid : Our strategyAconsists

of- considering v(t) as a fast relaxing variable and x(t)
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—related to the star population— as the observable of interest.

We notice that in the present case the usual prescription for

writing down the Langeviri equation corresponding to the first

order perturbation approximation is very suspect. Indeed, the

Smoluchowski approximation is often obtained by putting V tO

in eq(5—7) so that we obtain:

+

___

(T)

The corresponding rokker—Planck equation is given by:

Ec LLr± -J ELxyt) (5-io)
rn;

where <j)

and is the reduced probability distribution of the

observable x. The equilibrium distribution is:

£__ (v-I’)
\ ZV)

a normalization constant. From eq.(5—5) we know that

50(x(bE) i) (-)

It implies that evenkhough the equilibrium distribution (5—11) is

centered around x=O (i.e. s=s0), negative values of s(t) are

allowed. This is in contrast with the exact result proven above.

The naive approximation on eq.(5—9) fails because can

not be considered so a fast relaxing variable with respect to
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x(t) as to assume VO in eq.(5—7). The presence of a mixing

term, ,.would lead us to employ AEP with some caution.

We can get rid, of r(t) as promised but only when ID can be

considered small. 1he’ condition of a. large as imposed by

Srnoluchowsk, is no longer enough for treating our system.

In order to apply the AEP of’ GM we separate the

Fokker—lanck operator on eq.(5—8) into an unperturbed part

IF , and a perturbation part , so that

(s-i3)

where

÷ (‘)
LV

and

t a

The three relevant parameters ±. 4V2) have been suitably

defined above. The result of our perturbative approach is a

Fokker—Planck equation for the reduced probability

distribution PLxy) of the form:

where are the perturbation terms of the Fokker—Planck

operator of order rth with respect to the perturbation parameter

However, such a counting rule is not reliable in the

present case because of the last term is proportional to



If we proceed further disregarding such a warning, we easily

find, the explicit expression for

(7)

w i th

Q 3vZ>x(L)C) (i)

and

QI3x2-zx
We adopted GM notation.

The diffusion coefficient Q,(x’) exhibits the following

properties: i ; (ii)

(prime denotes derivative after x); (iii)

According to eq.(5—12), .).1 corresponds to s=O and x=l to s=

2s0 . On the other hand, the (stationary) equilibrium

distribution, , of a standard Vokker—Planck equation of the

type (5—17) is given by:

[2 (2o)

Q) L J Q2[x’)

where is a suitable normalization constant. We can easily

check that x) vanishes in x=—1 as it should be, but becomes

meaningless (i.e. negative) around x=1. Moreover, on calculating
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we wou1& notice that the term L ‘ in is

responsible for producing contributions proportional to

while those shoulcL be wholl3r accounted for by . Such a

mechaaisrn works at higher perturbation orders as well, so that

our perturbation criterion has to be completely restated.

Let us assume that

(Szi)

so that Q1[x) can be approximated by:

Q1Lx) (52L)

Restrictions (5—21) are not enough to make all terms coming from

(with ) negligible for determining Q2(x) . On the

contrary, we must aunt al1contribution to each 1I in order to

pick up the terms proportional to . For

large ‘ ,i.e, (4y’) ) the remainder is

certainly comparatively small.

In Section 3 of GM is shown that can be written as a

sum of terms 4J with m÷n=r and of their products

- -

- with Among these only
‘

(mo)

can give rise to contributions proportional to

the others generate terms of order or higher.

Let us now focus on any single pair ,/J and

n>,O, Following the basic rules of our AEP (GM, Section 4), we

note that:
,L2)o)

(i) Each is the integral product of 2n÷2 LL1
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(ii) consists of terms ‘oddt in v, but the last one which

is the cause of our difficulties and is ‘even’ in v;

(iii) The first 1J1 in any product ot/ contributes by means

of two ‘odd’ components , _ViXV1 , only;

(iv) Since the global balance of the powers of v must be even and

non—negative, another at least contributes to the

product through its ‘odd’ components;

rr
Cv) The other 2n i11 in can contribute a factor

each. The formal perturbation order (2n÷1) is then

decreased at most by 2n: these are precisely the terms

I /E which are to be resummed,

(vi) On counting the derivative order after x, we note that only

the components of which are proportional to v (i.e.

‘odd’ ) contain an x—derivative. Since we are interested in

the contributions displaying only two of such components,

Cv), and factors like do not affect the final power

of v, we conclude that the corresponding terms are order

contain a second—order x—derivative, and therefore

contribute to Q(x);

(vii) We readily prove that the numerical factors coming from the

internal integrals cancel out those obtained when moving

I. towards the left exactly.
tJ-j

Table II helps the reader to visualize our resummation

rules. From (vii) we prove immediately that the contributions to fr



Q(x) from the: (Zn÷1) terms in (b:) are identical. Contributions

wo) o)
frornf the pair JJ + di can be reordered as in (c). The

signs are as in Table II. The operatorial part of the integral

factors, in sqiiare brakets can be rewritten as follows( = / x):

(A)= (1—x—Zx)

(c-z3)

(a)= a (I’+x)x

Since: any circle corresponds to the operator (1+x) and any

cross to a power of x, finally we: obtain

2 w+) Q) 2 (‘ ?t1 -2

where Cx) is given in eq.(5—l9) If we truncate the series on

eq.(5—24) for n=O, we: recover the: naive approximation

(5—17)—(5—19).

The series (5—24) can be easily resummed on employing the

properties of the geometrical series:

r Jxl>L

Q (x)= (s-ac)

The corresponding equilibrium distribution is determined, by

substituting eqs,(5—22) and (5—25) into eq,(5—20) (Stratonovitch,

1967): F
(-2)

I z

)
24v2>J
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After a very complicated elimination procedure, we recovered a

Fokker—Planck equation. (and the corresponding equilibrium

distribution) which closely resembles the- ingenuous approximation

in eq.j5—9).. The stochastic observable now ranges within the

Jft1
interval L—L,l1 so that the normalization constant (A” in

eq.(5—26) is not to be mistaken with in eq.(5—l1). This

implies that. the astrophysical quantity s(t) assumes values

between 0 and 2s.

The upper_bound 2s0. is to be regarded as an artefact of the

perturbation criterion we adopted for calculating Q(x) in

eq.(5—2S). rrr arder to- check the- reliability of our treatment, we

carried out a numerical. simulation of the stochastic system

(5—2). A detailed description of the numerical algorithm is

available elsewhere (Ferrini et at. (93)). The comparison between

the analytical expression for (x) and the result of our W

simulation is illustrated in Fig.3. We- note that the agreement .

with our predictions is fairly close. The lower—bound for s(t) is

correctly recovered while a long tail lingers over the limiting

value 2s Such a constraint is expected to disappear when

proceeding further with our perturbation method.

We finally summrize the restrictions under which the

oceciure described above is reliable. Taking into account

definition (5—3), we rewrite conditions (5—21) as follows:

(-27)



The conditions previousiy state& now read:

Z

O4(f) <<( C
We notice that these inequaIities can be satisfied for many

different choices of the physical parameters.. We reê&ll that in

our perturbation approach we defined, only three effective

parameters, f/a, and
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TAL CAPTION

Table I — Langevin systems presented in the literature for the

modelllng of galactic evolution.

Table II — The resummation. procedure is visualized. (a)
1zi1o)

notation;. (b:) th cotutting,. rule. for reckoning oLI terms

contributing to Q.(x); Cc) diagrammatic expressioj oE Ø(x) (see

text).

FIGURE. CAPTION

Fig. 1 — s, g, 1 vs. t, in the case of constant infall f s and g

are in. arbitrary units3 unit of time is lO8years.

Fig. 2 s, g., 1 vs. t, in the case of exponentially decreasing

infall.

Fig.3 — (Stationary) equilibrium distribution for i(s). ()

refer to the result of our numerical simulation for f/a=1,

The accuracy of our data is evaluated to be

about 10%. The solid line represents our theoretical prediction.
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2n
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2n-1
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2n÷t. terms

____
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