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Abstract: A grand—canonical description of a photon gas implies Bose—

Einstein condensation above Planck’s mean photon number density of black

body radiation. For a finite reflecting cavity approximately all excess

photons would occupy the Dirichiet ground state thereby forming a

monochromatic radio wave.

1. Introduction: It is common to describe black body radiation in terms

of a canonical ensemble with unconstrained number of particles. One can

ask the question what, in the absence of a black body, would be the impli

cations of a grand—canonical photon equilibrium where the particle number

density could be fixed independent of the temperature? As a consequence

Bose—Einstein condensation is inescapable if one chooses the second

approach, in contrast to the first one. For a rigorous discussion of

Einstein condensation in a general free Bose gas we refer to van den

Berg et al. [11.

We consider an increasing sequence of finite smooth cavities C(R), with

volume V(R), spheres or parallelepipeds say, labelled by some character

istic length R (radius, edge length). We assume Dirichiet boundary condi

tions (reflecting walls). The photon hamiltonian H(R), relevant for

thermal equilibrium, is [2]

H (R) = Z. Ii ., 6 , r &,,, iyJ c ,,i , E 6,,, 4 =

p=(k,e) runs over the energy states k of the cavity C(R), and the two

helicity states e. Let €(R,p) x )/R >0 be the eigenvalues of the

single—photon hamiltonian h(R), the restriction of H(R) to the one—parti

cle subspace of the Fock space. The integrated spectral density FR of

h(R) is uniquely given by
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asymptotically it is
= (/c)3/(37r2)÷ 0(4) [3].

2. Grand—canonical approach: We calculate the infinite volume limit where

the inverse temperature is given, and the grand—canonical mean particle

number density
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is assigned a fixed value., thus makingdependent onA,F, and R:

To use the results in [1], we define
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Since

lim ç) (2/1rz)(,tc)3, ll r(R,,) = 2,

p (,) = (2): !
the following theorem is an immediate consequence of [11:

Theorem: Givenfl,AE Define,/..(,,7) to be zero fort> pcc’ and to

be the unique real root of

(Z/7r(,c)(e/?) j5, for

Then:

(j) =

(ii) the limit of the grand—canonical pressure is

(4/)(a/,ra) (,,tc)3

(iii) the ground state occupation density is given by

limp1ç4,7(4,)) =
where (x)+ is the positive part of x.

3. Discussion: Above the critical number density the excess photon

density fl—() occupies the ground state. Since, in the thermodynarnical

limit, the ??condensate?? does not contribute to the pressure which is

one third of the energy density, there is a paradox. — The thermodynamic

limit provides an approximative description of a photon gas in a finite

region. Condensation in this situation would mean that, for a cubic cavity

with 1 m edge length say, it is possible to form a 2 m radio wave in the

cavity by an arbitrary large amount of photons without disturbing appreci—

ately the temperature of the photon gas. It would be interesting to know

if this has any consequences which can be detected experimentally.
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