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Abstract: A grand-canonical description of a photon gas implies Bose-
Einstein condensation above Planck's mean photon number density of black
body radiation. For a finite reflecting cavity approximately all excess
photons would occupy the Dirichlet ground state thereby forming a
monochromatic radio wave. :

1. Introduction: It is common to describe black body radiation in terms
of a canonical ensemble with unconstrained number of particles. One can
ask the question what, in the absence of a black body, would be the impli-
cations of a grand-canonical photon equilibrium where the particle number
density could be fixed independent of the temperature? As a consequence
Bose-Einstein condensation is inescapable if one chooses the second
approach, in contrast to the first one. For a rigorous discussion of
Einstein condensation in a general free Bose gas we refer to van den

Berg et al. [1].

We consider an increasing sequence of finite smooth cavities C(R), with
volume V(R), spheres or parallelepipeds say, labelled by some character-
istic length R (radius, edge length). We assume Dirichlet boundary condi-
tions (reflecting walls). The photon hamiltonian H(R), relevant for
thermal equilibrium, is [2]

HR) = Zho, 674, , L4, 631 =8, [bp, 4, 1=0;

p=(k,e) runs over the energy states k of the cavity C(R), and the two
helicity states e. Let €(R,p) = £(1,p)/R >0 be the eigenvalues of the
single-photon hamiltonian h(R), the restriction of H(R) to the one-parti-
cle subspace of the Fock space. The integrated spectral density FR of
h(R) is uniquely given by

o -AA(R,p) ® -2 L .
B (p) = 75- e P - é e A dFe (2), AR,p):= E(R,p) 5(2,4);
asymptotically it is 'FR(J\)=(A/ﬁc)3/(317'z)+ 0(%) [3].
2. Grand-canonical approach: We calculate the infinite volume limit where

the inverse temperature 4 is given, and the grand-canonical mean particle
number density
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is assigned a fixed value §, thus making M dependent on/g,jF, and R:
P(Rrﬂ:/‘(?»ﬁnf))’zp To use the results in [1], we define
-AV(R) A(R, p)

T('R,/S):z % e P‘(_R’p’x):= 2 (C‘/Sx- 1)-1/V('E)‘ -Xf?:
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Since
Lin (8 = /7 (phe)”, 1 pRE) =2,
plpY= P (f) = (2T (ph) g (1), g @)= Z 2"/,

the following theorem is an immediate consequence of [1]:

Theorem: Given 0, ,Geff Define/u.(/a ,j?) to be zero for g > PC(/G), and to
be the unique real root of

/T (phe) g (/) = B for §< R
Then:

(5)  lin pm(R,p, 5) = VAV DY

(ii)  the limit of the grand-canonical pressure is
(1) (2/7%) (fte)* g, (efrehe?)),

(iii) the ground state occupation density is given by

lin p"(8, «(®,6,5)) = (F-p ()T,

R-> oo

where (x)+ is the positive part of x.

3. Discussion: Above the critical number density 5Ega) the excess photon
densitygp—f%(ﬁ) occupies the ground state. Since, ifi the thermodynamical
limit, the  ~"condensate" does not contribute to the pressure which is

one third of the energy density, there is a paradox. - The thermodynamic
limit provides an approximative description of a photon gas in a finite
region. Condensation in this situation would mean that, for a cubic cavity
with 1 m edge length say, it is possible to form a 2 m radio wave in the
cavity by an arbitrary large amount of photons without disturbing appreci-
ately the temperature of the photon gas. It would be interesting to know
if this has any consequences which can be detected experimentally.
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