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ABSTRACT
We discuss a class of mean field hamiltonians for interscting
many-fermion systems characterized by their dynamical algebras.
For such systems one can easily derive the finite temperature
Green's function in an algebraically explicit way. This
generalized Green's function G is well-known in the case of
superconductivity, for example, where it possesses the pseudo-
unitary property 66" = §%I (where G2 is a scalar). 1In the case
of Helium Three, however, this property of the Green's function
is not automatic. By analogy with this latter case we define
unitary systems (or the states of such systems) as those which
satisfy this pseudo-unitary constraint. Such constrained systems
are particularly easy to treat both theoretically and
experimentally; and we explore some of the consequences of
unitarity in the cases of coexisting superconducting and density

wave systems.

The method of Green's functions is standard in field theory and
many body physics, and it is unnecessary to reiterate the wvalue of this
approach in the present note. In the many body case, the Green's

function Gij is introduced as a thermodynamic expectation
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for any operator Q and hamiltonian K = H - uN.



We assume that we are dealing with fermion field operators
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Here x,x' are the spatial co-ordinates, and Tz is a T-ordering operator
for the parameter 7, which is in general complex; in this latter vase
note that &i(XT) # ¢i(x1}+. For v = it (t = time) this gives the usual
Heisenberg evolution. We shall work in the Fourier transformed case,

with
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when the Green's function becomes

6, (kr) = —<TT<Ai(kT)Aj<ko))>

Using the periodicity of this latter function, period 2B, we may write
B .
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[For Fermi statistics w takes values w = (2n+1)0/B, n = 1,2.3,...]
It is straightforward to evaluate this in the mean-field case, where we

assume that our hamiltonian may be written

K = K(k)
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The fermion operators A.(k) satisfy the standard anticommutation relations
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Writing Xij(k) = Ai(k)Aj(k), (1,3, = 1,2, ...,0)
these anticommution relations lead to the commutation relations
[X.. = § - §. X
‘le’xkﬁj jkTig Slﬁ'kj

{suppressing explicit k-dependence) which shows that our hamiltonian K

is an element of ‘a subalgebra of éZ}ng(n}(k). [If the complex



coefficients mi:(k} are such that each K{k) is hermitian - the usual
J

case ~ .then the dynamical algebra is a subalgebra of u{n) rather t

g2{n).] Since the {A.} form a first raunk contravariant tensor under

i
the ¥X.., we may readily obtain
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where m is the matrix {mij(k)), and A
A standard manipulation [1] then gives for the transformed Green's

function Gi.(km}

Glkwy = {iuﬁ“m}w?g

As mentioned, the matrix m is hermitian. " If m is

that is

2 2
m = 961

for some scalar Q then G(kw) is explicitly invertible
0’ 2 y

Clkw) = (~inI - m)/0°

where

In this case G is also pseudo-unitary,

These are the systems which we vefer to as unitary in thisnote.

Although this condition is highly restrictive, it is satisfied

systems of physical interest - as we now illustrate - and makes
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treatment that much simpler, both theoretically and experimenta

An idea of just how restrictive thiszﬁnitary condition is may be
obtained by looking at the dynamical algebra g of the system.. {In the
above case, if the hamiltonian K 1s an element of L8, s with each
81 isomorphic to g, we refer to g as the dynamical or spectrum

generating algebra of the system with hamiltonian K.} For a rank-2
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algebra g there will be invariants Ir = trm {(r = 1,2,...) assc
with the matrix m of the hamiltonian K(k):; at most £ of these will be

independent. For a unitary system this number is
3
. . s N £
two invariants, corresponding to tr m and £¥ m =

(semi-simple) case, there is only one invariant. = Thus su(l) is

automatically unitary - the case of superconductivity; but so(5)
of rank 2, unitarity imposes one condit ion ~ and this

superfluid helium three (from which siluation we have

nomenclature [2]). We describe the helium three case

a Hartree-Fock linearisation, the effective hamiltonian for an

acting fermion fluid with pairing in opposite momentum {(but not

necessarily opposite spin) states is given by K = /

k
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Choosing a basis of fermion operators {Aik)}g
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we may write the matrix m in the spin-triplet case as

E v

where E = ng (with gk = € - p; we suppress the momentum index) and
P
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The unitary condition m? = (92 - m2}1 leads to
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a form given by, for example, Leggett.

For such unitary states the 4 x 4 Green's function is of course

. . . 2 2 2 2

immediate, with @7 = o” + £+ |d]|".

This exemplifies a characteristic feature of unitary systems; there 1is

a single degencrate energy gap, in the helium three case given by



ld|4, For a system described by a rank-2 spectrum generating
algebra we would expect & 'gaps”. This gives a usef:

¢riterion,which we now illustrate by referenc

Sooryakumar and Klein on a system of coexisti

and superconductivity [4]. We may write the

for the hamiltonian for this model as
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Here £' = £(k-Q) = €(k=Q) - u,

wave vector for CDW propagation. The couplings for ¢

superconductivity and CDW are given by A and y respeé

e
and A__ are so-called anomalous terms, appearing in the hamiltonian
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The dynamical algebra here is su(4) [5], which is ran
condition forces &Q = &_Q =0, and £ + £' = 0.

known as the nesting condition. As the experime

neglecting the anomalous terms, this means that the

fails.

For the many fermion systems

generating algebra is compact, and

hermitian representation.  Unitary



one invariant associated with the matrix represeanting the
In that case the system exhibits a single energy gap, and
temperature Green's function is immediately obtainable wi

inversion in the mean field case.
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