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ABSTRACT

Deviations from constancy of the CM

function, are considered on the basis of a

one-dimensional oscillator model in which the

valence electrons are assumed restricted by

infinite potentials, but interact with all

others through dipolar forces.

A computer calculation shows that the

density-dependence of CM is qualitatively in

agreement with experiment, but the

temperature-dependence is negligible.

An interestin feature is the occurrence

of neab..ve polarizabilities for the excited

states at modest densities - indicating an

insulator-to-metal transition. This result is

in conflict with the basic precepts of the

model which does not permit fully delocalized

electronic states.

However, this analysis suggests a more

promising three-dimensional model which admits

of realistic atomic potentials, dynamical

dipolar interaction and repulsive potentials

which ensure the existence of the ionized

state of the atom.
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I INTRODUCTION

Experiments carried out over the past fifty

years have established the form of the

Clausius-Mossotti function, CM as a function

of density and temperature for many gases (see

the excellent review article by Sutter,

In almost all cases, as the density increases

CM at first increases, goes through

a maximum at a few hundred amagats, and

thereafter decreases with increasing density

There are, however, some important

exceptions to this general rule; namely, the

CM-functions for He, Ne and possible H2. In

He, CM actually deczea4eI with increasing

density at -Low densities as well as high ones

and no maximum occurs in the whole density

range 100-900 amagats, Vidal, e- a-L, [2]. In

Ne, dCM/dp is also negative at low densities

with a slope about 5 times greater than that

for He, Orcutt and Cole [3]. For H2, Michels,

eI a-L, [4], found dCM/dp 0 within their

range of experimental error; but Orcutt and

Cole -Loc cLt reported that at low densities

dCM/dp > 0 (with a small magnitude numerically

about equal to that of He).

Theories to account for the deviations of

CM from constancy are, generally, one of two

types:
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(a) StaLica-L T/oitLei in which the

polarizability of the particle is treated as

constant, but where the medium surrounding it

experiences density fluctuations.

(b) Con-U.ruLum ThQoivLe,-i which ignore

fluctuations, but in which the polarizability

of an individual particle depends on the mean

density of the surrounding medium.

Theories of the first type were initiated by

Yvon, [5], and Kirkwood, [6], while those in

the second category commenced with the work of

Michels, e aL, [7], and Ten Seldam, and

deGroot, [8]. Some theories; e.g., Mazur, [9],

combine the two approaches, but in general no

theory has been able to account for all the

experimental results observed for typical

nonpolar gases over wide rdnges of density

and, to the authors’ knowledge, no theory has

yet been developed which accounts for the

negative, low density values of dCM/dP

observed in the exceptional gases He and Ne.

The main object of the present paper is

to point out a fundamental deficiency in

existing theories, namely; the neglect of a

LrzLte activation energy for the valence

electrons and the consequent neglect of the

delocalized electronic states and their

ability to screen the interparticle dipolar

forces.
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To illustrate how this oversight can

completely change the conceptual basis of

theories for the CM function, we consider here

a very simple model of a one-dimensional

harmonic oscillator which is restricted by

infinite potential barriers, (arising from the

finite density of the surrounding medium) but

which interact with all others in the ensemble

through long-range, dipolar forces. The

present theory is of the “continuum type so

that changes in CM are proportional to changes

in the polarizability of the individual

particle, and it is found that the calculated

ground state polarizabilities lead to CM

functions in qualitative agreement with

experiment for typical gases such as Ar, Kr, N2

and CO2. These results are valid, strictly

speaking, only at T = O°K. However, if one

seeks the temperature dependence of CM it is

necessary first to calculate the

polarizabilities of the excited electronic

states since when T > O°K not all electrons

will be in the ground state. Here a

surprising result occurs, namely; that at

quite mode-i-t densities (several hundred

amagats), easily achieved experimentally, the

computed polarizabilities of the excited

states can become nexz-Uve. This result may

be interpreted to mean that electrons in these
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levels have become de-localized through the

well-known mechanism of the dielectric

catastrophe which occurs when the particle

density is sufficiently high that the

attractive dipolar forces overcome the binding

forces of the electron to its core.

At T > O°K the model thus breaks down

completely since the possibility of the free

electronic state occurring at modest densities

was not considered at the outset. In this way

we are reminded of the important omission of

the existence of a finite activation energy in

the present model and in others.

II THE ONE-DIMENSIONAL MODEL

To circumvent difficulties of

inhomogeneous reaction fields and divergencies

occurring in three-dimensional models (see §V)

we first concentrate attention on a very

simple model of a linear dipole which, in

isolation, has a frequency Wc, and whose fixed

positive charge q is at the origin with its

negative charge, -q free to move in the

x-direction. We imagine this dipole located

in a plane slab of dielectric constant unity

and with walls at x =±X0. The regions xl >x0

we take to represent the surrounding medium”

of permittivity, E
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If E is a uniform macroscopic field in

the x -direction at xl = , the field in the

slab is homogeneous and given by F =EE = E + 4np

where P = -qN0x is the dipole moment per unit

volume. Here N0 is the number density of

(like) oscillators in the medium. The energy

required to polarize the dipole is

W = (1)

where wp = (4HN0q2/m) is the plasma frequency

of the bound charges, -q in the medium. Thus

taking account of the back-reaction of the

medium, the effective potential energy of the

oscillator is

÷X÷cjEX (2)

where

a 2..€4, (3)

is the density-dependent frequency of the
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oscillator in interaction with its

surroundings. Clearly the equation of motion

corresponding to (2) leads, for static fields,

to the Clausius-Mossotti function

—
----(= 4A D(
3EI

where E5 is the static dielectric constant, p

the mass-density, l1the molecular weight,

A = 6.02 x 1023 is Avogadros number and

ao = e /mw is the polarizability of the

isolated oscillator.

Let us now imagine that the walls at x = ± x0

are characterized by infinite potentials for

lxi >, x. The oscillator is then confined to

the region -x0 .ç x x0 and experienc?s both

long-range, dipolar forces and short-range

forces. In the absence of a macroscopic field

the dimensionless Schr8dinger equation for the

charge, -q is

— -i-V1)‘tJ (j) _
‘WQi) (5)
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where

I>0

In (5) we have introduced the dimensionless

coordinate y = (2mw0/’fi)x and dimensionless

energy w = W/hwo. Here (/2mw0) is,

essentially, the do Broglie wavelength of the

isolated oscillator. In (5), i(y) must be

solved subject to the boundary condition

(6)

The computer program which solves (5) subject

to (6) is too long to present here. Full

details may be found in the thesis by

Tjipto Margo, [10]. For present purposes it
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is sufficient to state that wave-functions and

energies for the first 8 oscillator states

(n= = 0,1 ... 8) are on file for the gases

Ar, Kr, N2 and CO2.

Values of w0 where found by extrapolating

experimental C4 functions to zero density

giving, in units of l&6Hz, for Ar = 1.243

for Kr : = 1.009; for N2 : wo = 1.220;

and for CO2 : w0 = 0.924. The connection between

density and cavity thickness was taken to be

I
a

and y0 values were assumed in the range

2 5 y0 . 5 This thickness range

corresponds to density ranges (in amagats) for

Ar 1166 - 146, for Kr 853 - 107, for

N2 : 1134 - 142 and fr CO2 : 748 - 93.5. For

simplicity we also assumed q = e = electron

charge.

III GROUND STATE POLARIZABILITY

The polarizability of the restricted

oscillator experiencing dipolar interaction is
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found treating the energy H’ = qEx(E—O) as a

perturbation. The ground state polarizability

is then

0)_ç kwj1I-9i2 (8)

°

where eight terms in (8) gives results to five

significant figures. The Ci function is now

given by

(v)

cM-cM(()

where C is given by (4). The results for

are shown in Fig. 1 for the gases under

consideration. At low densities dC1/dp > 0

because of the increasing importance of the

dipolar forces as density is raised. However,

at high densities the oscillator is so

restricted that its energy level spacing is
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increased as density is raised - resulting in

dCM/dp < 0. The maxima in Fig. 1 occur at

about the right densities for these gases, but

in all cases IdCM/dPI is larger at both low

and high densities than observed

experimentally

IV TEMPERATURE DEPENDENCE OF CM AND

POLARIZABILITIES OF EXCITED LEVELS

The temperature dependence of CM may be

calculated assuming the medium is a mixture of

nonpolar oscillators with polarizabilities

and number densities = (N0/a) exp(-W)

where a
= nLD exp(-SWn) is the partition

function. Assuming the same local field, F for

all states leads at once to

(10)

where
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z wøJ
-(11)

yields the average polarizability at temperature

T. Apart from noting that <a> has a

negligible, negative temperature coefficient

we do not calculate (10) since W—W0 is so

large compared to kT(=1) that <a> reduces

to a(°) at all temperatures. This result

emphasizes the limitations of the oscillator

model for calculating any property associated

with excited levels. The difficulty is that

the potential function of an oscillator is concave

whereas that of a real atom is corzvx. The

latter results in energy levels which cluster

together at high principal quantum numbers

whereas those of an oscillator do not.

Nevertheless, for the sake of

completeness, we calculated the

polarizabilities of the excited levels. These

are given by
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<(h) c<4}’(9)I1I1/J1)Y
(l2)

cx0
Yt#1

and are shown in Fig. 2 for argon, and in

Fig. 3 for C02. As mentioned in §1, the fact

that c(n) can become negative at mode’i-

densities indicates that at densities, p such

that a(pn) = 0 the level n does not exist

since, if occupied, the electron would be a

free particle - in conflict with the

assumption of an infinite activation energy

which precludes the existence of fully

delocalized states.

Clearly for any model there should always

be a finite potential barrier for the valence

electron(s) and as density is increased the

strong overlap of potentials of neighbouring

atoms would decrease the barrier height so

that wave functions, energies and

polarizabilities would be different from those

calculated assuming an infinite activation

energy. In addition, there should be a finite

number, N of excited levels possible at any
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given density and one may argue that N and the

barrier height should be self-consistent with

the non.-appearance of negative polarizabilities

for all bound states. With such a model

dipolar forces between atoms or molecules

would be screened by the existence of a finite

density of free electrons resulting in a

slower change of CM with increasing particle

density than in theories which ignore the

possibility of delocalized electronic states.

As may be seen, the above argument alters the

conceptual basis for the calculation of CM.

V FUTURE PROPOSALS

The present model is unsatisfactory in

that it is:

(a) one dimensional

(b) unsuitable for calculating properties

associated with excited states

(c) lacks a finite activation energy.

A better model must start with a correct form

for the atomic potential, Va(r) for the

valence electron of the isolated atom. Va(r)

will generally be coulomb or screened-coulomb

with screening provided by the other atomic



14

electrons. This atom may then be thought of

as being in a vacuum-filled sphere of radius a

with its fixed core charge, e at the origin

and electron,- e at Ora. If E is the

permittivity of the medium surrounding the

sphere, it is then a straightforward matter to

calculate the classical self-energy of the

extended, atomic dipole in its own reaction

field, viz,

where

-

___________

-
4- -NJ

It may be observed that, as expected,
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(13) diverges at r=a since at the surface the

electron and its image charge are infinitely

close. We may also note for all 1 , E

and all 1 n , that 0.75 Bn() 1 and

there is little error in assuming as a good

approximation that Bn = 1 in which case (13)

becomes

(14)

where, as a further good approximation, we

have used the unrefined Clausius Mossotti

formula to replace the factor (E-l)/(2E+l) in

(13) by the factor in [...] in (14).

The potentials Va(r) and Vself(r) are

shown in Fig. (4) as lines ... and their

sum asthe line ----. This sum clearly has a

maximum, Vmax at r = rmax < a. It is now

required to add a repulsive potential such

that continuous states of the electron are

possible. The simplest way to accomplish this

so that the total potential is monatonic

increasing is to assume a repulsive energy:

z
self
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r (15)

as shown by the line — — — in Fig 4 The

total potential i s then

() +,r) ; o r

1 c/
(16)

and is indicated in Fig. 4 by the hatched

line.

Fig. 4 may be taken to represent the

situation at some intermediate density, but as

density increases Vmax would increase and

rmax, and the activation energy, AN,L would

decrease, but the energy levels En,,e would

begin to rise above their values in the
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isolated atom. For sufficiently low densities

free electron screening will be unimportant but

as the density is raised and ANL continues to

decrease there will come a point, probably

rather suddenly, at which sufficient free

electrons will exist at ordinary temperatures

that screening of the interatomic, dipolar

forces will be significant. This point may

occur when the screening radius r5= (€kT/4nNee2)

is of the same order of magnitude as the

dielectric radius a = (3/4nN0). Here the

electron density, Ne may be calculated from

the mass-action law

Kp(-AL)
(17)

where N0 is the density of centres and

$ exp (_,3c2)
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is the partition function of the bound

electrons corresponding to maximum principal

and orbital quantum numbers N and L. In (17)

the free electron mass, m* may be larger than

m if there are a large number of

bound states with energies just below the

continuum level.

When screening becomes important, the

self-energy (14) must be modified and, as

shown by Frood, [1), the polarizabilities,

of each bound state (n,Z) together with the

number density, N” of electrons in that

level must be non-catastrophic; i.e.

(kl,t)
&ii’)

(18)

where

(•_
—

3
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is the reaction field factor for the level (n,z).

When equality holds, (18) determines the

maximum quantum numbers N(,T) and L(,T)

which can exist at a given temperature and

density.

A computer calculation based on the above

model in which at each temperature and density

the activation energy, AN[(P,T) the number of

excited states, N(,T) the free electron

density, Ne(P,T) and the permittivity, €(,T)

are all mutually self-consistent would be of

interest.

The foregoing remarks are closely

connected with the possible appearance at high

densities of the metallic state

Experimentally, it may thus be of interest to

examine dielectric and/or conduction losses in

very dense nonpolar gases as well as the

static, or low-frequency CM function
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VI LOW DENSITIES

At low densities ANL will tend to

(the ionization potential of the isolated

atom), and (17) ensures that at ordinary

temperatures there are too few free electrons

for static screening to be possible. At such

densities rmax a, where a is the dielectric

radius, and Vmax e2/a increases as the

power of the density.

As density increases all energy levels

will begin to rise above their values in the

isolated atom because of the increase in”Ise]f(r),

but more and more excited levels will become

catastrophic, Thus the ground state

polarizability will tend to increase from the

first of these effects, but decrease because

of the second.

In He and Ne, which have small incipient’

polarizabilities and where all excited levels

are closer to the continuum than in ordinary

gases, this may mean that the decrease of

ground state polarizability due to

catastrophes in the excited levels will be

greater than its increase arising from the
broadeningH of its effective potential

V(r) = Va(r) + Vself(r) in (16). In this way

CM may be found to decrease with increasing

densities for He and Ne at low densities.
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The opposite situation should then

pertain for ordinary” gases, e g , Ar and

Kr, in that the increase in polarizability due

to Vself(r) should more than compensate its

loss due to catastrophes in excited levels

resulting in a CM which increases with density

at low densities. Only detailed calculations

for specific gases using the catastrophe

criterion, (18) rather than the simple

potential-overlap (Vmax e2/a) can verify

these possibilities.
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FIGURE CAPTIONS

Fig. 1 Ground State Polarizabilities of the

One Dimensional Oscillator Model for Ar, Kr, N2

and CO2.

Fig. 2 Polarizabilities of Excited States of

One Dimensional Oscillator Model for Ar.

Fig. 3 Polarizabilities of Excited States of

One Dimensional Oscillator Model for CO2.

Fig. 4 Potential Function of Valence

Electron in Interaction with the

Surrounding Medium.
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