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1. INTRODUCTION

The notions of supermanifold and supergroup have been refined over the
years, the most useful definitions (in our opinion) being in the work of
Roger51'2 : One important feature of this development is that a
supermanifold X of even dimension m and odd dimension n over a Grassman

algebra Ei =E, + Eiz with L gensrators is topologically isomorphic to a
L-1

real manifold mL of dimension {(m+n)Z2

Many authors make use of this definition to build further structure onto

. 3 oA . . 4
supermanifolds” and to formulate physical thecries in sSuperspace . All
of these authors make the implicit assumption that any theory formulated
on superspace corresponds to some theory formulated on space-time.
However there are certain aspects of the relationship between these
formulations which require closer investigation, and these will form the

subject of a series of three papers, of which this is the first.

; 5 , .
In an earlier paper we were able to construct a theory of integration

ok

ar Lie supergroups by using the topological isomorphism mentioned above

and first investigated by Rogers? The integral developed there was . a
Haar integral for the Lie group gL equivalent to the Lie supergroup G
which is unique up to a multiplicative constant. In this paper we
examine the unitary irreducible representations of the eguivalent Lie
groups QL of Lie supergroups, for which the existence of a Haar integral

is an essential feature.

The method we are going to use is the theory of induced representations.
This concept was discovered by Probenius6 over eighty years ago 1in his
study of finite groups and was used by Wigner7 to construct the unitary

irreducible representations of the Poincaré group. Inducing was revealed



as an indispensible tool for constructing representations of non-compact
8 . )
groups by the work of Mackey . It has even been suggested that it is
the only method that has been used to systematically obtain non-
I . 9 :
trivial representations of such groups . We are able to use this theory
because the equivalent Lie group can be expressed as a segquence of

semidirect products esach of which contribute representations.

The representations we construct act on a complex Hilbert space and have
no Grassman analytic structure. In addition the representations given
for the super Poincare group cantain only particles with a single spin

acts might, at first sight. suggest that they have nothing

4y

value. These
to do with the representations of the super Poincaré algebra, as
described originally by Salam and Strathdeelo, but certain of the
representations constructed here prove to be the required building blocks
for the superfield representations of supersymmetry theories. This is

11
cavered in the last paper of this series

The plan of this paper 1is as follows: in section II we discuss some
necessary preliminaries. In section IIl we consider non-abelian Lie

supergroups. Section IV is a review of super Poincaré groups. Section V
is a preliminary discussion of the unitary irreducible representations of
the four dimensional super Poincaré group. In section VI we consider the
representations of the four dimensional super Poincare group induced from
a representation with L=0. In section VII we repeat this for L=1, and in
section VIII for L=2. Section IX gives our concluding remarks. Our
conventions for the Dirac Matrices are given in an Appendix. For all
other undefined terminology and conventions we refer to our previous

paper f(ref.5).



II.PRELIMIBARIES
First we need to define what we mean by a unitary representation of a
group §. We suppose that we have a Hilbert space ¥ with scalar product
x.v, x,yef , and that the action of the group elements on this Hilbert
space is by the operators U¢g), ge§, such that

(Uigly) (Uiglx) = v.%x gy

for each ge§ and x, yeX .

Now consider an arbitrary group §, and the set of complex-valued square-
2
integrable functions on G, L7, €. This set does not form a Hilbert
space, but if we define the set of functions
2z [ %
T = {fel (g, O, )ff dui(g)r = 0
=
then the set HX(§) = £ (G, € T is a Hilbert space with inner product
defined in terms of the left-invariant Haar integral by
. *
f.h = | £ h dulG)
For each ge§ a unitary operator U(g) acting on K(§) may be defined by

Uegrfigt) = fig lgt

for all g'e§. This, which is known as the 'left-regular' representation
of §, gives the archetype of a2 unitary representation of §. It will be

seen that the Haar integral on G plays an essential role.

Consider now a locally compact abelian group ¢, which will then be
isomorphic to R” for some n, and consider the set of functions H(§) as
defined abaove. Since all of the irreducible representations of an
abelian group are one dimensional, we would expect K(§) to decompose into
a sum of one dimensional subspaces. This does in fact happen and =a
convenient basis for these one dimensional subspaces is given by the

characters of § defined as follows.



DEFINITION II1.1

w
sy

(a) A character of an arbitrary locally compact abelian group 1

continuous function

yi§g - C
such that
lyigit = 1
and
vigixy(g') = yigg') for all g,g'€§
(b) For x = (XE,XE,A..,XH)fg and each peR the function

= explip. x}
Xp prip
is a character of ¢. The set {p)=ﬁn is called the dual group of § and

is denoted @.

-
& n

Each Xp is not an element of £ (4§, L) since

But we can write any f’EZ(G,E) in the form

. /2 ip.x
fix) = (2m) gipe dp

—n/: -ip. x
with gp) = o " 2[1‘{;{)9 PPy

That is, each element of the regular representation can be expressed as
an integral that can be thought of as being a weighted sum of the
irreducible representations. This is called a direct integral

4, +1, . . . »and 0 ¢ Ze2r

4

decomposition. For a compact group p ¢ (0,
* , s . .
so that jxpxpdx = 2r and we do have a decomposition into a direct sum of

irreducible representations.

This decomposition into irreducible representations given by the
characters is not unique, but whatever changes we make the representation

remains equivalent to the one we have constructed. This typifiez a



Type I representation. There are other types of representation called
Type II and Type III which do not possess this property, but fortunately
they do not seem to occur in particle physics. For an explanation of the

various types of representation see ColemangA

n o, , ) ,
Now 6 = F'7 is a locally compact Lie supergroup and is topolagically
P I (o] [a] v

L
cmin) -
isomorphic to &ﬁkm n , where & = EL l, s0 that the abaove arguments apply
here. If we recall the definition of inner product as given in the

appendix of ref.5 we can see that the characters of this supergroup G
can be labeled by (p,¢)EEf’n and written

X(p,¢) = exp i(p,¢). (x,8) faor (x,8)¢CG
These characters then serve as a basis for the one dimensional (complex
not Grassman) representations of the supergroup G and any complex valued

function f on superspace can be written

x i¢.8
e

fex,8) = |d"p d"¢ (gcp,dref’ ) 2)

for some function g:Ef’n --+ € and the integral as defined in ref.B.

Ot course a function taking values in CE_ must be written as a sum of

L
these integrals. Thus if f':Ef’n -== (Ei with component functions
£ ER® s € oand fL GEPT -2 € then
e, L £, 7L
i J
f'(x,8) = e f' (x,8) + i,fé (x,8) ;
Ty T4y 3)

with f'ix,8)

= e |d% d g p preiF ¥ei? 8 4 _ﬁ,Jdmp (g _(p, 9reP T8
1 = 1 “f.
1 1
for some choice of the functions g and Bp - For a given function
Q_l. 3
we determine the inverse functions Ea and g, by the inverse Fourier

1 J



transforms
+n) /2 4 -ip.x —1I
g, P9 = em {dmx de r! x,00e P e 0.6, 4
e. =
1 1
a e s
o p o) = 22 Be rr o pre P ETIT )
“f. £,
J J
Here e, are a basis of ELO with i=0,1,2,...,#1 and iﬁ are a basis of
Eil with j=1,2,..., as defined in ref.5 and the component functions are
the projections in the corresponding directions. Also  Thereafter

summation over repeated indices is implied.

Equations (2), (3), 4) and (3) give us the foundations of the theory of
Fourier analysis on superspace, which we return to in the last paper in

this series.

111.HON ABELIAN LIE SUPERGROUPS
Consider any (min) dimensional Lie supergroup G with Lie superalgebra

generators {o A }. The equivalent Lie group ¢ t+hen has generators
ol LA o Iy JA =

o
, A-1 ., A-1 . .
{Qiaﬂ,ijﬁv},1=0,l,...,2 ~-1; j=1.2,...,2 and the equivalent Lie group
' _ . _ . o qiti
GA+1 has generators {giap, LA+1£jaﬂ’ ijﬂa’ Qé+l§iﬁa } Th additional

. 3 - ~ = 14
generators in the step 4 » A+l ie. {gﬁ+1ija?, LA+1QiBJ} span an abelian

invariant Lie subalgebra of § which we will denote by gé+l. We then

A+l
have the semi-direct preoduct structure
= 4 G
Gpr1 = 9241 @ g ©
and we can construct QL for any L as a sequence of semidirect products as

follows

- ¥ 1} ".‘;" i § ') ﬁ)
G, =6 ® G, @Gy 0 C .. (G, 0G0 (7

with QO the Lie group with generators {ﬁadﬂ} , 80 that it 1s the graoup



corresponding to the even subalgebra of the supergroup G.

Now consider any Lie group § that admits the semidirect product structure
G =17 ®#with 7 an abelian invariant subgroup of g. Let ah(n)

denote the automorphism of 7 by # given by

1

a.(n) = hnh (8)

h

for each nefl and fixed he#  For each yell we define the transform of the

character Xv'by h by

1]

._l -
. P { =
Xy (y) (n. XY hnh T X._ (n) , (9)

and define the orbit of y to be the set of distinct elements h(y) for

all he#.
The group
(y 2 = = ¢
i Xy) {he #, Xp (v X}/ } 100
is called the stability group of Xy' ith these definitions we can state

the main two theorems on induced representations that we will be using.

These are as given by Mackeyg.

THEOREHM 1I1I1.1
For each y , ye7, choose an irreducible representation Aﬁf§ ) of Hva>

and consider the subgroup S& =1 @>%€XV) consisting of all hne 71 &@#

with h ¢ H(xy) . Then 24 s - AH€¥ X (n) is an irreducible representation
y y
of 5} and ‘the induced  representation (AS J#G is an irreducible
Y

representation of ¢. If Xy and Xy lie in the same orbit then every

n

(4 x.(n))tG is equivalent to some (4 ,(m2tg . Thus it 1
iy Xy 4 2o, Xy

sufficient to choose just one Xy from each orbit.



Let € be the set of characters which includes just one member of each
orbit. Then as Xy»varies over C and A varies aver the set of irreducible

representations of %(Xy) the irreducible representations 4, r§ are

P

)4

mutually inequivalent.

THEOREK III.2
Suppose it is possible to choose the set C of N such that it is a Borel
set. Then every irreducible representation of § is equivalent to some

Ao 1.
y

Of course we can replace ‘'irreducible representation' by ‘unitary
irreducible representation' in the statement of these theorems. Now
consider equation (7) in the light of these theorems. ¥e have the

following results:

THEOREN III.3

Let G be a linear Lie supergroup (ie. a Lie supergroup admitting a
faithful supermatrix representation). Then, given a value for L, we can
proceed through the sequence goe §1a 924 B gL and obtain all the
unitary irreducible representations of gL provided we can ascertain the

representations of go and its subgroups.

PROOF

Suppose we have all the unitary irreducible representations of goand its
subgroups. The stability group for each character of g} is then one of
these subgroups and using Theorem III.1 we can obtain all the
representations of gl. Now consider gg, the stability group of each
character of Qé is a subgroup of gl which will admit the decomposition
gg @ Qz with gg a subgroup of go and Gg a subgroup of Qi. Then since we

have (by supposition) all the irreducible representations of gg and all
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the representations of g; are given by characters we can, Dby inducing
twice, obtain all the representations of ¢, We can repeat this

procedure for each 4 =2, 3, . . . L.

Now since G, is a linear Lie supergroup the the orbit of each Xy Y€ !

L A4+1

is a closed subset aof ¢ and each X, lies in one and only one orbit.

7

A+1

The set C is then obtained by choosing one element from each of these
closed subsets and must clearly be a Borel set. We thus satisfy the

requirements of Theorem III.2

THEOREX I111.4
If go has only Type I representations  then QL has only Type 1

representations.

PROOF
if go has only Type I representations then every subgroup of QO has only

Type I representations, since if a subgroup of had Type II or III

P
o
representations they would induce to give Type II or III representations

for gO. Now the stability group of ne@é is one 0f these subgroups =0

that gl has only Type I representations. Then proceeding through the
sequence A = 2, 3, ... ,L we can see that § can have only Type I
representations.

THEOREX III.5

At each ste G, 2 G e ctabilit roup of the <character systenm
P A vy g p y

A+1 th

y(g) = expi0,0,... ). (x,8>, ie. x(g) = 1 for all gfgé+1 is QA, so that

we retain all the representations so far obtained.
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PROOF

This is an immediate consequence of Theoren I11.3.

Thus it is clear that to obtain all the representations of a linear Lie
supergroup we construct the representations obtained 1in each step
gA——e §A+1 for A=0,1,2,...,L-1 . To construct the representations at
each step we need to determine the set C and the stability group for each
yegé . This analysis then tells us which representations we need to
induce to representations of QL. To do this we need the definition of an
induced representation. The one we give is based on Mackeylg. It is not
the most general definition and is applicable only if § is unimodular and
if g/S} possesses an invariant measure, which 1is ftrue if the modular

functions for ¢ and S&.are equal so that we require that S} is also

unimodular. This is sufficient for all the cases we consider here.

DEFINITION 111.6

Let VA be a carrier space for a representation §A of SY = %& n and
i Y

and consider the linear space V of mappings of the right cosets §/S&'1nto
VA. For any ¢V and ge§ define the operator & by

é(g)¢{syf) = §A(Jgj' *)¢(S&J'> (1o
with J' the coset representative such that

JgJ"le S (a1

y

THEOREM III.7
(a) For any g,8" € §

F(gg') = $(g)E(g’) (120

so that # provides a representation of §.
(hy If (/S possesses an invariant measure and §A is a  unitary
representation with inner product ¢, ), then £ is a unitary operator

4
with inner product defined by
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(¢l ¢2) = (¢1(S J) ¢2(S J)>» d (13
] / . 4 ’ y 7 )ug/SV :

Now suppose we chaose y as a representative character for a given orbit,
then the set of characters in the orbit are given by

fx = xg g¢€4§
but g admits the decomposition g = sJ for some coset J and s € {Stability
group of y}. that is y = (y)sJ. Thus y = (y)J and this relationship
must be one to one, so that we can put

J =T, x> . (1)
Thus the cosets are labeled by our representative character and the
characters in the corresponding orbit. Equation (10> can now be
rewritten as

%(g)qb(SyJ(’,f,j()) = %A(J(y,:\f)gf_l (X',;())c;:(syj(x',;()) : (15)

Now equation (11) implies that y' must satisfy

X' = x8 (16)
That is

X = x'g (17)
and since the coset representatives are labeled by y we can put
¢(S&J(X,}) = ¢ (y> and rewrite equation (15) as

F(g)e(y) = ééwc}('g’l,xﬁgfl oty b g (18)

Now suppose that the %A admits a matrix representation A with basis {y )
ie.
F(s)y = A(s) , ¢4 , for s e § (19
n n'n'n v

and define

( i a— ¢
b =X
X0

0 otherwise ,
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so that
S .-
¢, "1 _(x) = 21
Xg 1 .0 otherwise N
¢n if x¥' = xg
and ¢ . nﬁgg) = (22)
X 0 otherwise

1f we consider the action of &(g) on these mappings we obtain, from

equation (19> using equation (21),

-1 . -1 ., -
Bg . 00 = A x'g x08T T x?e (k)
A('J()('o‘_l ,{r)ch“l (V, )“()) t[) lf XI = Y
_ / & ' (o g A+ AT mn’ m / ’
B 0 otherwise
-1 -1
= g T yogd Ty, x)) - ) (
AT g "8 T x? mn¢x‘g l’m{y , 23)
where we have used equation (22). Then replacing x' by x and deleting
the redundant argument of the mappings ¢ we obtain
-1 - -1 -
= o ) LRVE ] - 2
é(g)¢X)n allte'g oxlgdl “ iy ¢X§ l,m . (24)

Now the characters y are in one-to-one correspondence to the elements
y € 7l so that the above equation could equally well have been written in
terms of y. In fact this is the most convenient way to express it. To do

this we first have to determine how the group # acts on 7 in some

convenient way. In our case 7] = §é+1 , and # = QA‘ let g ¢ QA and
. - o - . .
8h € QA+1 . Now all elements of QA+1"A can be written in the form
- H o .
= + + (299
&, I a#x ﬁWB ,
, Mo ro_ a0, .
with x XgijiA+1 and € BiQiLA+1
The action of the automorphism ab(n) defined by equation (8> 1is then
given by agﬁgn) = 88,8
= ) 7
I +g@h g [ * J , 26)
e
a
here (a,ﬁ)a = (al TN ’ﬁl 'Bg .o )a and 1is an even row
supervectar, and X‘} is the even column supervectar
8
a

1.2 1 .z t , . : . .
(x ,x°, ., . ,8,8°, . . .0 . This 1is more succinctly written 1in



14

terms of the adjoint representation of G . This and the adjoint

representation of a Lie superalgebra are defined as follows.

DEFINITION III.8
Let G be a linear Lie supergroup of dimension (nim, let {a# ,ﬁy } be a
basis of its Lie superalgebra and let £ = EL ® L be the Lie supermodule
constructed from L. Then:
(a) For each g ¢ G let Ad(g) be the supermatrix defined by

-1

g(a,ﬁ)ag = (a,ﬁ)b(ﬂd(g))ba for a =1, 2, . . . ,mtn.

(b For every Yy ¢ £ define the supermatrix ad(y) by

r P = ‘ad (Y )
Y, (a, B b} Ca,ﬁ)a(ad ¥ ab

These representations are linked in the same manner as for Lie groups,
that is ad(y) is the associated representation of £0, the Lie module of

G corresponding to Ad(g). Now equation (26) can be rewritten

o
g -n

- o) l_ T
a (g ) I+ (a,B)b(Ad(C,, )ba‘t X } . (279
a

SR

and since the characters of 1] are given by

X(y,¢)(3n) = exp 1{(y,¢>. (x.6))
we have
C¥<y'¢)(gn))g = exp i{Cy,¢).<Ad(g))ba{ g } 3
a
= exp i{(y,¢)b(Ad(g))ba),(Xig)} ) (28)

Thus rewriting equation (24) in terms of (y,¢) we obtain:

~

&P % (g
ST (y, 9, n (20)

<2

= Y;‘f’;ﬂ - _1 Ag ) “1 A _
A H Ty, $)Ad(g "), (y, 828 T ((y, ¢, (Y'a’)“mn"”<y.¢).4d(g 1)’m .

Here (y,¢) are the parameters corresponding to the choice of a

~

° v ", )A
representative character y and we have written Ay’%’dﬁ and # 4 # to

indicate the dependence of the representation on the chaoice of
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representative character and the choice of irreducible representation of

e T
v, 9)

Ve note that equation (28) defines the orbit of a character. This can be
used to obtain the stability group, but in practice it is easier to use
the Lie algebra of QA acting on the Lie algebra of gé+l. To see this we
observe that there is a one to one correspondence between the elements of
fl and the elements of the Lie algebra of gé+1, s0 that requiring that h
be an element of the stability group of an element (y,¢) is equivalent to

demanding that h leaves invariant the corresponding element of the Lie

algebra of gé+1. Now h must lie in some one parameter subgroup of QA s0

that we can put h =expay , aecR, ¥ ¢ L(QA). Then our requirement
becomes be_l = § where & is the Lie algebra element corresponding to the
character ie. exp(ayl)dexp(-ay’) = & 50 that we require [y,4]1 = 0.

IY. A REVIEV OF =1 SUPER POINCARE GROUPS

N=1 Super Poincaré groups can be constructed inm most (but not all)
dimensions. In addition they are real supergroups only if it is possible
to define Majorana spinors in the chosen dimension. The generators cof

the Lie superalgebra of the Poincaré group are:
(i) L = -L , the Lorentz gemnerators,
AU HA -
(ii) K} the translation generators

and (1ii> Qa the supersymmetry generators.

Their commutation relations are:

ELAy’ pr] - gﬁvap B gApLym - gﬂvLAp ’ gprAa

ELA#, K 1= 5A0Kﬁ - gnyA ,

£LAp' Qa 1= %(yAxy)aﬁQﬁ ’ (30
[k , K 1=20 :



LKk , Qa I =20

and (g, g, 1 =a"c kK

- S B aff o
Here, if d is +the number of dimensions, A, u,0,p = 1,2,...,d and
a, B = 1,2,...,2“ with w given by w = #(d-1» for d odd and « = #d for d
even; g, = -1 for a spacelike dimension and iy = 1 for a timelike
dimension, with 8, " 0 if A # u. The Dirac matrices are as appropriate
to the number of dimensions. Our conventions for d = 4 and one time
dimension are given in the  appendix. Note  that we choose
o = diag(-1, -1, -1, 1I).

DA;‘(

A supermatrix representation of the superalgebra can be constructed in

the block form

- 10 )
L&ﬂ Ew U Qa
0 0 0 (3
) SR
0 V(Qa, F(ny !
i { 3 = - &
With ‘LAy'bﬁ Jbﬁgal ébxgay
(K ) =4
v a ar
ra, o, o= sy b 32
A ba 3y ea
) =
(V(Qa),a Jaa ,
a
) = KB )
and (U(Qa)'ab (y C b
A B
This representation has been written in the standard block form { c Dl
t .
and acts on the space <xﬂ, 1, 87" with w =12 .. .,dand o = 1,2,...,20,

+

ie. the extended Minkowski space (superspace) of supersymmetry theories.

Ve note that the choice of representation F(LAU) given, this 1is the
negative transpose of what one might expect, and is chosen to conform to

standard usage in the physics literature.
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The algebra, of course, admits the semi direct structure

.
, y
L A 0 0 ] 0 A(r U(Qa.
0 0 0 ; 0 0 0 (33
) j ) |
0 0 r (LA!U, ] 0 V@, 0 |

of the Lorentz algebra so(d-t,t;R? generated Dy {L\#} and the
supersymmetry algebra generated by {K}, Qy} and denoted by st(d-t,t;R).
8

The translations t(d-t, t;R) generated by {KW) also generate a subalgebra,

but the supersymmetry generators on their own do not.

Corresponding to the decomposition of the algebra we can construct the

SUpEergroup as

g =
I t T(~7) } { A 0 0 ]
0 1 0 Lo 1 0
0 -7 I J! K 0 ro
o t T(-m)r ) }
= 0 1 0 ; . (24)
|0 -7 ron ]
We note that the inverse is
g1 =
a7 0 0 I -t e |
1 0 1 0 1 0
oo 0 rort) j 0 7 I }
At o Al ]
= 0 1 0 . (3%)
0 ra by rarh

In these expressions /A is a Grassman valued Lorentz transformation in

the appropriate number of dimensions, [{A) 1is the representation

corresponding ta the representation F(LA#), t = t'e Eiis a column vector

corresponding to the translations, T =717¢kE a column vector
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corresponding to the supertranslations and (T(—7))ab = %Ta(xaC)gb, Note
the fact that we have -7, this is due to the rule for multiplying

supermatrices by scalars from EL . We observe that (T(-72)(-7) =0

)

onsider now the subgroup obtained by setting t = 0 and 7 = 0, this will
in general be a four component group corresponding to the four

components of the Lorentz group. These will be linked by the aperator

U]

corresponding to space inversion, time inversion and total inversion.
In this paper we consider anly the one component supergroup, the proper
orthochronous super Poincaré group, which we denote by SDO(d—t,t;EL), or
more precisely its covering group denoted by an(d—t,t;Ei), which for
d=4and t = 1 can be taken to be isomorphic to ST(S,J;EL) & SL(E;EELL
It is convenient, in the sequel, to denote an element of this supergroup
by [Alti?] where A, t, 7 refer to the matrix blocks of equation (34).
In this notation group multiplicaticn is given by

CALEIPICAY L 7' = LAY &+t + T(MDr i ror’ + 11 (36)

Also
tnsin =t teeraThe 37
In the sequel we will need the adjoint representation. I we choose the
order of the generators to be such that the mafrix ad(y) is given by
) = ) (ady)) (38
Ly, (L¢¢, Kk, Qﬁ 'a] (LEJ’ K&, Qr b ad (Y ba
for any ¥ in the Lie superalgebra of the super Poincaré group, then

ad(y) can be determined from the commutation relations of equation (30)

=)
to be the (#¢d  + d)lw) dimensional supermatrix written in block form as

b ¢
e f
h

2 2
Here a is #¢d° - di«#d - d) with the double index ¢4 labeling the rows

09 A

and €6 labeling the columns; e is dxd with p labeling its rows and 7
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labeling its columns and J is wxw with B labeling its rows and y its

columns.

The dimensions of the

that the matrices are

ad(k » =
o

ad(LAy):

and

ad@ » =

@

As

exponentiating the subgroups

representation is then the adjoint representation of the supergroup.

obtain

0
. T T
<g&gd§ g@yd@ )
0
£ .4 e 8
(gx¢§“d‘¢ g)\zb({}.ld‘ﬁ
) .8
- 5§86 + §.8 0
gﬂ¢ A 8p¢ AT
O
0
0
0
) t
(B ) 7)
X¢X¢ ya

before we can obtain a matrix

Ad(g) = AdT Al t171)

I 0
V+TU I z
u 0
Ad ) a
(V+TU) Ad (D A
Udd cA) 0

ge

other blocks follow from these.

(

o
Erptu

<

neratad

2T L
r

We find
0
0 (38a>
0
0
(380>
0
t
(—%( )7
XAX Y8 |
0
(x”C)aﬁ (38c)
0
of the supergroup by
and K , @} This
lig o
We
o |
i
o |
raa
(39

Here A, [(A) are the matrix representations of the covering group of the

Lorentz group as given before

in this section,

T is as previously

defined, Ad(A) is the adjoint representation of the super Lorentz group
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and the matrices U and V are given by

o t
U = Br ((y > 40>
pu,y T Yy Tya
T o T T
= o - )] s (4
and V¢¢ t (g¢ad¢ g¢0§¢ 41)

y. THE UNITARY REPRESENTATIONS OF THE SUPER POINCARE GROUP: PRELIMINARIES
In +this section we make a ctart in the study of the irreducible
representations of the super Poincaré group. We consider only the case
with d = 4 and t = 1. Ve are locking for representations that we can
associate with the well known representations of the Poincaré Lie
superalgebra, as originally described by Salam and Strathdeelo. These
are known to be labeled by a ‘superspin’ index 7 = 0, %, 1, ... and a
‘mass parameter' M. They consist of the direct sum of four Poincaré type
representations, in the massive case, (except for Jj = 0 which has only
three such representations) with =pins of 7, J+#, Jj-#B, J (the j-%#
representation does not exist for j = O together with the supersymmetry

generators Qa which link the representations.

We will show by a series of examples that the unitary irreducible
representations we can construct act on state vectors which have at most
one index that can be associated with spin, and that this is such that an
irreducible representation acts on state vectors with a single fixed
spin. The connection between the representations we construct here and
the Salam-Strathdee representations is the subject of the last paper in

, .11
this series

Ve consider group elements of the form g = [Alti7] for gsgL parametrized

- . leg . =
¢ = 1, 2, 3, 4 for the translations, T ek, a =1, 2, 3, 4

by t7cE 1

Lo

for the supertranslations and for the Lorentz transformations  we



21

A A A
parametrize by y’u EEi , M, A =1, 2, 3, 4; p#rand y# = -y’ which we
take to correspond to the Lie algebra generators pr ie. A = exp(yﬁkLuA)A

We will need to write these as a vector, in which case we choose their

2 3 1 23 2 3
order to be y = (yz“, yl , y‘4, v ?, v 4, b4 4). The elements of 4 = g;¢1
are then parametrized by
HA _ o - 4 B
05, v Easr t arnEiEar 71, car1®i5a41 ’
with C a basis for EAO so that 1 =0, 1, ... , 23_1—1 and ij a basis of
E _ so that J = I, 2, ,QA_I.

Al

Correspondingly the elements of 7 are in one-to-one correpondence to the

vector
¢ r = ] )
(f, K, @) (f#A, k&, ¢a ,
[, (A+1) , ( i, (A+1)
({J,(4 1 ' kj,(4+1)’ ¢1,(4 1 ) ’ (42)
HA g o
with u, A, 0,a, 1,7 taking the values defined for them abave. The
characters of 7 are then given by
Xeoe ko) = expi (t, k, ¢). (v, x, 7) . (43
] '

z£§G  on a characier is  then specifiad by

The acti £ 1 Y
The actiocn of a group element g 4

equation (28> to be

‘ = . 44)
Ntk 0078 = Xece, b, 924d0g))

s

We note that the 'translation' element of 7 1is often denoted by p
corresponding to the Hermitian generator of the Poincare group Fv = i Kﬁ
1l 0 0

this is related to our parameter k by P Av .

The action of g = [AltI71eG, on I is given by

4
¢, k, )] AdD 0 0
(V+TUAd A>T 2T (A
UAd (A0 0

= (tAd(A) + KC(V+TDAD(A) + ¢UAdCA), k , @A) + 2KTM(A)),  (48)
with the matrices V, T, U as specified in section II. The representation

r) is given by



o
A%}

[ -0 % 1
ro = s*[ reo p g st = exp —%yﬂA(X Y, (A7)
0 =
with the similarity transformation S as defined in the appendix
Ol 0
The matrix Ad(A) is equivalent to the representation o
0 FI’O(H)

It is convenient to have an explicit representation in this decomposed
form and to have the corresponding characters for this decomposition. Ve

find that a suitable matrix representation of ad(L  J is given by

MA
o0 1 0 ] 0 0 0 ]
-1 0 0 0 o 0 1 0
_ 0 0 0 B 0 -1 0
ad(ng) = 0 1 0 , ad(ng) = 0 0 o0 s
] -1 0 0 0 0 0 1
L a o 0 L o0 -1 0 |
r o 0 -1 1 0 0 1 ]
0 0 0 0 o 0 0 0
_ 1 0 0 _ -i 0 0
ad (L 3 = 0 0 -1 , ad(Llﬁ) = 0 0 -i ,
a o 0 0 0 0 0 ¢
L 1 0 0 . L i 0 0 |
r o 0 ] r o -1i 0 1
o 0 1 0 i 0 0 0
0 -i 0 . o 0 0
¢ = ; ( )y =
ad(L,,’ 0o o0 o | gy 0 i 0
0 0 0 -1 o -1 0 0
L o i 0 | 3 o 0 0

corresponding to this representation the vector ¢ takes the form

A ) - i ) ¢ - it
Bt t 1f24”/é(f23 €14’ J;({ 12~ as ’Jé‘{zs 1oy’
¢ + 7 >
Jé'fzs * 14 JL({zz Ttsy’
* A
- (rl ? rg # r3 3 rl Bl ‘2 s r3 ‘) * (48)
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YI. THE UNITARY IRREDUCIBLE REPRESERTATIONS OF THE SUPER POINCARE GROUP
SﬁO(S,I;Eb)
The representations of gO are the well known represgntations of the
Poincaré group. In our terminology we consider elements of the form
[ A1t17) which admit the semidirect decomposition

CAlLtlr] = LI EI710ALO1 O] . (49)
The elements of 7 are +the four vector ko = (kl, kg, 2/

0
. L . . .
action of /4 on k leaves invariant the quadratic form

3%}

o
O)“ - K B0

0.0 ux _ 02 02
k}ul«:/\gﬂ = - DT = iy

0.2
1 (A?) + (k

3 4 =]
where we have written the constant on the right hand side in its standard

form with X being the 'mass', ¢ the velocity of light and 4 Plank's

constant.

There are six distinct types of orbit, for which the set of
representative characters forms a Borel set, so that we obtain every

13
representation. We list these (for more details cf. Cornwell 7).

HMc
¥

o
<

>0 and kO >0

(1) The orbit consists of four vectars I for which 4

The vectors of the carrier space of these representations are interpreted

as particles of mass K and spin J.

s
(o o,
(ii) The orbit consists of four vectors k for which ﬁ; >0 and k4 < 0.
The particles corresponding to these representations are considered to be
‘non-physical’
f;l

. . Moo

(iii) The orbit consists of four vectors k& for which ¥ {0. These

representations are again considered to be 'non-physical’.

(iv) The orbit consists of four vectors k for which %; =0 but kZ > 0.

After inducing to G certain of these representations are interpreted as
massless particles of helicity A.
.

o .
(v) The orbit consists of four vectors k for which %; =0 Dbut k4 < 0.

These are again discarded on physical grounds.
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(vi) The orbit consists of the four vector ko = (0, 0, 0, 0). The

resulting representations are interpreted as space time symmetries.

=]

. . : y 11,14 : )
Our interest in the later papers 1in this series™ ™’ is in massive

particles. To show how we obtain a representation of gO in this case we
quote the result, first obtained by Wigner7 (our terminology is that of

Cornwelllg) in terms of the four vector ko that we are using.

0 .
& dcntioe o
k', m

1 0

,1—0)_1/1 B(ko,ff 210101 1

0,- ,
mm‘¢k AT, o oL

= expi {(koA'l,Jatg}DJ aBax’n

Mc

¥ ) and £ﬂ is the

Here the representative character is EO = (0, 0, 0,

(2j + 1)x(2j + 1) dimensional representation of SU(2), the covering group

of SO3,R). The coset representative B(ko,ko) is the inverse of the

0 N
coset representative J(k ,kO) and is known as the Lorentz boost from kC

to ko. (It is as given by CDrnwell13 with p replaced by RO.)

Now we want to construct a representation of {L from a representation of

§O. First consider inducing to a representation of gl = g} @7§O. We
. 1 )

choose the character of ;3 defined by ¢ = (0, 0, 0, 0> and the

representation of QO given by & (@ AIti01). The orbit consists of a

G
0 .
single element and the coset representative is J(¢l,¢l) = J, so that the

operators of the induced representation are given by

& AAtITI)  Lif AT ALtIT]0€§
g, 0

§g TAaltinly) = j
1 L 0 ,otherwise
This argument repeats at each step in the sequence QO 2 gz + g2 S . gL
so that the operators éb @Al ti7)) of a representation of QL obtained by
L
inducing from a representation éb aAltirl) of QO are obtained simply by
. 0
setting
g, CALtITY) it A AlLtl7]oeg ,
9, 0
g, CAltI?]) = 52)

gL 0 ,otherwise
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A consequence of this is that any operator corresponding to a group
transformation of QL/QO leaves the state vectors unchanged, thus the

i t d e z
eigenvalues of the operators QiK}, ﬁinA an ian are ero for

[
b

i=1,2 ... ,#1;, j =1, 2, ... # and each o, 4, A, = 1, 2,

SUO(S,l,El)
A basis of the Lie aleebra of §_1is (e L _,e K } and a basis of the Lie
“ 0 O ur" ~0 o
algebra of g; is {ilQa}' The action of the Lie algebra of QO on the Lie
algebra of g} is given by
e £ 1 = ~be (Y P 53
QOLyA —lQa‘ <1 ¥pX\ QEQB (osa
e K & 1= . 5
and *OKS QlQa g (530>

Thus we can deduce immediately that the translation subgroup generated by

ﬁgOKy} is part of the stability group for any character of gi.
P ; I )

Now consider eguation (53a) with o = 1. Using the Majorana
5

representation of the Dirac matrices, given in the Appendix, we find that

the group generated by {(iOLJB + 50L14), (QOL 5 iOL34)} leaves the

S8

character of ¢! invariant. It is also clear fraom

P

Yo, fpi, 0,0,0)

equation (53a) that the orbit of the character corresponding to the
choice of any non-zero ¢§ER is the complete set of non-zero characters of

gé. Thus if we set ¢§=1 the representations of gl are given by

!
p 1. j 4
(AH exp 1¢1 8)1@1 (54)
with 4, sone unitary irreducible representation of the group # generated
- r y - - s K i p i
by {{§0L12 el C;OL23 ;0L34),;0Ky}. The Lie algebra of # 1is
given by
I - = (55a)
[(iodzg + 50L14), (LOLQS §0L34)} 0 (B5a



3V
&)

i _ . L (58h)
Clel o el 0 €080 = 81,8057 35,8087 81,5057 84,505,
. (55¢c)
- _ - - = - - - - + K
Cleylyg = gglay’s €081 = 85,80K5 85,8057 85,2557 84,5075
and EQOK}’ iOK?] = 0, 554)

This algebra possesses the obvious semidirect structure, which we can
write symbolically as K @ L with both subalgebras generating abelian

rouns, which we will call respectively #° and 7. These will thus both
F IS y

g
iy

have one dimensional representations given by their characters. Tao
determine the nature of the group #' we exponentiate, using the

expressions for Lﬂ\ given in equation (32). Thus hed' is given by

= exp ale + e L Jexp ble - e L)
h=expatel,, eyl ,exp bleglys = Eolsy
; a0 -a 1 0 0 0
2 o el ol
a” a” - b°
-a 1 - - 0 2 o 1- P b >
0 0o 1 0 0 -b 1 b
2 2 2 2
-a - % 0 1 + % 0o - % b 1+ %

o
Hence it is isomorphic to R and has characters labeled by continuous

parameters. The two generatars of &' allow us to construct four

descending size order.

Case (1) Stability group = &',

Since both generators of #' commute with (iQKb + 50K4) we can identify

the characters of 7 corresponding to this choice of stability group as

expiko.t = expi (0, kK, 0, k0>.t for some kQER. The representations of

#' are also given by the characters
g 0, fO fO 0, —{0 J.y for f?

0
expit .y = expit 120 fog 23

Then since the stability group is equal to #' we obtain the one
dimensional representations of ¥ given by

By = expifo.y'expiko.x



which are labeled by three real numbers. The corresponding

representations of §, are then given by

1
L0 0 1
(expit .y explk .x expl¢ .T)T§l
and we can use equation (29) to obtain these explicitly. Since they do

not seem to have any physical significance we do not carry out the

induction.

Case (ii) Stability group generated by (iOLIZ + QOL14).
This generator commutes with {ﬁoﬁé, iOKé + £ KA}, and from equation (5%)

we can see that

(e - = - = -
Dleglos ~ £okay? €5 = £ * £,
Thus the orbit of any fixed element of T, kO = (0, 0, kg, 0) consists
of all elements of the form (0, a, kg, a) for acR. To obtain all

. 0
possible characters we need to allow k3 to range over all mnon zero

3 O

values (k

= 0 is coversd by case (i) above).

A

C

3

he representations of the stability subgroup of #' are also given by

0
characters of the form expif .y with ¢ = (¢

0

f12€ R.

The representations of # can now be obtained by induction  le.
s = (expifo.y expiko.t)TH . This will then be an infinite dimensional
representation labeled by two real numbers, one of which must be non
zera.

Case (iii) Stability group generated by (50L23 ~‘§0L34),

The analysis is similar to case (ii). Ve again have 1infinite

dimensional representations labeled by two real numbers.



Case (iv) Stability group is the identity of #
This case includes all the characters we have not covered in the other
cases. The representations in this case are labeled by a set of (at

most) three real numbers.
W¥hat is clear from this analysis is that any representation obtained in

this step is labeled by a set of continuous parameters and that none of

them has an integer label that can be associated with particle spin.

YI1I. THE UNITARY IRREDUCIBLE REPRESENTATIONS OF THE SUPER POINCARE GROUP

500(3'1;Eé)

A basis of the Lie algebra of gz is {iOLpA’ iOKw’ ilQa} and a Dbasis of
Li loebr f gL 3 z . : i a i

the e algebra of 92 is {£1A2 '’ QJAQK}' ggQa} The action of th Lie

algebra of G, on the Lie algebra of G, is given by

[€0ny’§la2pr] - gﬂv§1n2Lyp - gkpi2~2Lyw - gpwil«QLAp ’ ngQZAQLAm !
Le ey 2had = 801250 - £rof1. 25, ’
{ilQ ’ilAZLAy} =0 :
e ghaw &1 Fol T ity 9Ky T St QKA ’
fiﬁw,ngﬁ} =0 , (56)
E‘lQ , LZAZKW] =0 s
[iﬂLAp’ QQQa] - %(yAyy)aﬁEEQB !
ggﬁKy’ _QQJ =0

and
[£,Q, €05 = - (XQC)QEQLQK&

The characters of §/ are in one to one correspondence to the vector

g

2 2 .2
1 1 ‘). 1

S

LA » o is convenient to deal first with the three <cases

(t

b

such that the representative character in a given orbit is chosen such

1.2 2 - 1.2 1.2
that: 1) ¢ =0, ¢° = 0 for each u, i, a; (4i) £ =0, k = ¢ for
MA o MA g



each u, A, o and (iil) & © =0, ¢§ = 0 for each o, «.

Case (i) Representations obtained when inducing from a character of the
form X o, 1, 00

Ve can see from equation (56) that the stability subgroup must contain

ot
&)
et
1]
]

e,&_, £

K } and that, depending on our choice of character, it wil
1o 0w =

contain some subgroup of the Lorentz group generated by {goth}. In fact

[
=]

fact we can recognise that the possibilities are the same as for the

]

11}

epresentations given in section VI. That is we have five possible types

of orbit, for which we can choose the representative characters

1.2 1.2 .2
(i) k = (0, 0, 0, k.'7) with 2 0 ,
4 4
A2 .2 e
(ii kl = ¢, 0, 0, kj ) with kl <0 ,
4 4
L 1.2 1.z
(iii) % = <Ki , 0, 0, o ,
1.2 1.2 1.2 1.2
(iv) k = (0, 0 ¢ ) wi : 20
v) K o, 0, k4 , A4 with A4 >
; -2 1.2 P2 . N
and o 22 = 0, 0, k1% ¥ witn #10° <o
4 4 4
1.z A .
We do not consider the possibility & = ¢ since this gives us The

representations of that we already have.

"
‘1
For each of the five possibilities we have to consider representations of
the appropriate stability group. This again is a semidirect product of

the form (Some subgroup of the Lorentz group) ® (The group generated by

If we require that any representation we obtain is a candidate for the
representation of a physical particle, we need the representation to be
labeled by a number that takes integer or half integer values, which we
can then associate with the spin of the particle. This in turn implies

that the stability group must contain a representation of a covering
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group of a rotation group in two or three dimensiomns. The obvious

candidates warranting consideration are types (i) and (iv) above.

le} with

v

Type (i). The stability group is generated by {EOLij’ QOKU,

=1, 2, 8 and o, o = 1, 2, 3, 4 . This admits the semidirect

T,

1,

structure #' @& 7' with #' generated by {gﬁLij} and 7' generated by

lﬂOK}’ ilQa}

Now suppose we choose some character of 7' such that %l # 0 then the

stability subgroup of #' will be generated by the intersection of {ﬁoLij}

s

and the set (& L F
012

- 50L34)}, Thus for this character

m

k14’ o2z
choice the stability subgroup of ' is just the identity I The
resulting induced representations will not be labeled by an integer or

half integer valued parameter. Thus we conclude that we require p- = 0.

Now consider the choice of a character such that k =2 0. The obviocus

e}
|
]
[}
-
(o}
u
]
ot
fg
w
ps
=
fD

§S)
(oo
ot

choice ig that k does not alter the stabilit

1]
ot
s}
w
i}
(T
e
e
M
1)}
1]
)
ot
o]
ot
1
@]
]
o]
.

given by equation (52), which we can then induc

G.. Alternatively we can recognise that the result can be obtained in
[

one step by considering the character X0 ko with
k=0, 0, o, EZ;O, 0, 0, %§'5>, The result is then the same as equation
. 0 s 0 0 1-2
B with k and k replaced by k =k <) + k ;.2 and
; 5 L1.2
k=100, 0 0, kogo + Kl “51 ,) respectively, A an element of the super
Lorentz group with L = 2 and ¢KO o replaced by ¢k o Specifically we
have
9 ptio9
k,m
= expi{(kﬁ—l) ta}ﬁg(tB(kA—l,} )-ZA Bk, foorotory ¢, -1 . (B87)
o mm' kA T, m

¥e note that this formula is valid for all k such that EZ 2 0 and Ei'ﬁsﬂ,



with at least one of them non-zera, it then subsumes the representations
given by equation (52). The representation is complex valued even though
it is written in terms of Grassman parameters. We have ‘'encoded' ¢, in

Grassman form. The eigenvalues of the 'translation' generators are

I _ .0
QOKw¢k,m = lkw¢k,m (58)
_ .12
and £, ZK&¢k,m = 1A0 ¢k,m . (59)

A

It can now be induced to a representation of gL, in which <case in

addition toc equations (58) and (59) we have

K ¢ =0 for 1=1, 2, ... -1; e.# £ em
Sty k,om no ! PEyT E12

Type ¢iv). The arguments given above for typs {i) can be repeated, we
obtain ‘massless' type representations with a spin index. Ve do not

consider these.

Any other choice of k will result in a reduction of the (Lorentz)
1.2

stability group of k7. Ve do not consider these.

Case (

ke
ot
ot

Representations obtained

form X o, o, q’
Ve can see from equation (56) that the generators of the stability group
contain {§0K}} and that {ﬁan} are excluded as generators of the

stability group, which must include some subset of {g L }. In fact we

O 1A
can see that we have a repeat of the arguments of section VIIL. The
representations we obtain will be a copy of those cited there. Since

these are labeled by a set of continuous parameters none of them are

suitable for representing particles with spin.

Case (iii) Representations obtained when inducing from a character of the

form X(g’ 0, 0 "



We can see from equation (56) that the stability group generators must

include {nga}, and that & K&} are excluded. The stability group is

0

thus generated by some subset of ¢ L A} and by {nga}. If we choose a

0 u
) s 1
representation of the stability group to be such that ¢4~ # 0 then any
representation we obtain will be labeled only by continuous parameters

with no discrete labels. We thus choose ¢15 0 and examine the possible

subsets of {EOL#\} that can generate stability groups.

1.2
Recall that the action of the Lorentz subgroup on the characters 1%

HA
is given by the adjoint representation of the Lorentz group, a matrix
representation of which can be obtained from equation (38> and the
corresponding six-vector for the reduced representation is given by
equation (46). Ve «clearly need only consider one of the 3x3
subrepresentations of this, and choose to use the top left hand one

.2 1.2
r with recC.

N
1}

. 1 1.
acting on the vector ry o Iy

3

his representation is isomorphic to S0(3, ) considered as a real (six

parameter) Lie group. Since it is an orthogonal group it leaves invariant
2

2 1.2 2
the quadratic form (z) = (r )T+ (r

22 1.2.2

Y+ (r J with =zed. The

[
a

|

parameter z serves as a label for the reprasentations (except for the

1.2 1.2 1.2 . : : e :
case when r, =r, =TI, = 0 which we ignore, since it just gives us

the representations of § ). We can identify two types of orbit.

Type i) z =0.
Ve choose as representative character r = o, 1, 1) . The stability
group is then the abelian group generated by

{QiOLIQ - ¢ L (e L + QOL34>}. Ve note that in the representaticn

) ,
147 025

4

+ £ L To examine

I

afi ion (45) (e L -e, L )
defined by equatio €olyn ok 14

the structure of the stability group we exponentiate, using the this

= 1 ),
1eslog 34



representation to obtain

h 1 a ia —
exp a((gOng - §0L14) = -a 1 - gf 122 ,
ia igg 1+ %2
with asCl. Thus the stability group is isomorphic to ¢ and has

representations labeled by continuous parameters.

Type (11i) z # 0.

There are two possibilities for a representative character Xp either

r = ¢0, 0, z)or r = (0, 0, z). In either case the stability group is
isomorphic to SO@E,0). Consegquently in this case we do obtain a
character label that takes integer wvalues, ie. the parameter

corresponding to the suberoup S0¢2,K). Representations of this type are
p : g P i It

invariant on superspace, so that they are of no physical interest.

3
o
1]
ij]
D
ot

hree cases cover a large number of the possible orbits in the step

]
e

v be obta

[t

b, G, but not all of them. The others ca ned by chcosing non-

zero character representatives of the form y with at least two
S

1 -2 ~2
of {{l 2, o, ¢1 } non-zero. The stability group in each of these

t, kK, ¢

cases will be the intersection of the stability groups of the appropriate
characters of cases (i), (ii) and (iii). What is clear is that very few
of these representations will have a discrete label. For this reason we

do not investigate them here.
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IX. COBCLUDING REMARKS.

We have considered many of the representations of G G . and go. If we

0 1
continued to examine g?, 94, . . . we would obtain a larger number . of
representations at each step, many of which would be similar to the ones

we have already obtained and the majority would be parametrized by

continuous parameters.

It is clear that any unitary irreducible representation we obtain that

can be associated with an elementary particle - ie. it has a spin index,

will have only a single spin value. The representations constructed here

act on a complex Hilbert space, and have no explicit Grassman structure
44 10

so that they are nct directly related to the Salam-Strathdee

representations. How this is achieved is the subject of the last paper

. : 11

in this series

It is also clear that an examination of any supergroup in the ways

deszcribed here will reach similar conclusions, ie. there will be no

by
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APPENDIX
. 13
Our conventions follow Cornwell We use the
gyk = diag(-1, -1, -1, 1> with u, X = 1, 2, 3, 4; whictk used to raise
and lower indices.
. ) ;
For w=1, 2, 3 ool = oy ana o =yt P N = 2t
2.3 7 5
matrix xﬁ iz defined by y5 = ixly XJX4 so that (y5> =¥ also we
5 _ T R s R . 1o
Y= e The charge congugation matrix C is defined by ¢ ¥y C =
It is necessarily antisymmetric ie. Ct = - C. It is chosen such that
¢'c = I and such that in our Majorana representation C = -XZ .
Our Majorana representation vais given by
XM.: iog 0 y” ) 0 gy yﬂ- ir, 0
1 ] 0 “ira z T, 0 | 3 0 ir,
w_ [0 T x| 2 f (J{ 0
§, = ) b = ) ) L .
4 -, 0 5 0 7, T, 0
Our chiral representation Xt’is given by
- o - r
X,C: 0 (/‘j cor 121 o yC :] 0 J‘t
J Lzr, 0 e 0"
J L J
[ I 0 ~ [ 7, 0
- A < i
s | o I ’ ¢ | o ~o |
L < od
These two representations are related by the similarity fransformation S
given by
- Sfl ot p I - v, I+ 75 %
B " | T, Ity
Co— -G '
So that ¥ = 557, but note thar o = st @”

metric
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