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I. zrrRoDucTzo,

The notions of supermanifold and supergroup have been refined Over the

years, the most useful definitions (in Our opinion) being in the Work of

Rogers1’2 One important feature of this deveiop is that a

supermanifold N of even dimension a and odd dimension ii Over a Grassman

alger EL
= 2L0 3L1 With L generators is tOPOlogicaly

isomorphic to a

real manifold
1L

of dimension (a+33)t

Kany authors make Use of this definition to build further structure onto

supermanIf
015Sand to formulate Physical theories in superspace4 All

of these authors make the implicit assumpti that any theory formulated

on superspa correspon to some theory formulated on space—tie

However there are certain aspects of the relationship between these

formulations which require closer investigj
0 and these will form the

subject of a series of three papers, of which this is the first.

In an earlier paper5 we were able to construct a theory of integration

for Lie supergroups by using the topological isomorphism mentioned above

and first investig by Rogers The integral developed there was a

Haar interal for the Lie group
L

equival to the Lie supergroup G

Which is unique up to a multiplicative constant. In this paper we

exaane the unitary irreducible representations of the equiva Lie

groupe
L

of Lie supergroups for which the existence of a lLaar integral

is an essential feature.

The method we are going to use is the theory of induced representations.

This concept was discovered by Probenius6 over eighty years ago in his

study of finite groups and was used by Wigner7 to construct the unitary

irreducible representations of the Poincare group. Inducing was revealed
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as an indispensible tool for constructing representations of non—compact

8
groups by the work of Nackey . It has even been suggested that it is

the only method that has been used to systematically obtain non

trivial representations of such groups9. We are able to use this theory

because the equivalent Lie group can be expressed as a sequence of

semidirect products each of which contribute representations.

The representations we construct act on a complex Elilbert space and have

no Grassman analytic structure. In addition the representations given

for the super Poincare group contain only particles with a single spin

value. These fasts might, at first sight. suggest that they have nothing

to do with the representations of the super Poincaré algebra, as

described originally by Salam and Strathdee10, but certain of the

representations constructed here prove to be the required building blocks

for the superfield representat±ons of supersymmetry theories. This is

covered in the last paper of this series11.

The plan of this paper is as follows: in section II we discuss some

necessary preliminaries. In section III we consider non-abelian Lie

supergroups. Section IV is a review of super Poincaré groups. Section V

is a preliminary discussion of the unitary irreducible representations of

the four dimensional super Poincare group. In section VI we consider the

representations of the four dimensional super Poincare group induced from

a representation with L=O. In section VII we repeat this for L1, and in

section VIII for L=2. Section IX gives our concluding remarks. Our

conventions for the Dirac Matrices are given in an Appendix. Por all

other undefined terminology and conventions we refer to our previous

paper (ref.5).
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ii. pmIxIInIRs

First we need to define what we mean by a unitary representation of a

group Q. We suppose that we have a Hubert space If with scalar product

z.y. x,yeff , and that the action of the group elements on this Hubert

space is by the operators U(g), geQ, such that

(U(g)y). (U(g)x) = y.x (1)

for each geQ and x,yeR

Now consider an arbitrary group Q, and the set of complex-valued square

integrable functions on G, F(Q, C). This set does not form a Hubert

space, but if we define the set of functions

T = (fet2(Q, C), Jff’dp(Q) = 0)

then the set 31(Q) = ?(Q, C)/T is a Hubert space with inner product

defined in terns of the left-invariant Haar integral by

f.h
=

fIi dp(G)

For each geQ a unitary operator U(g) acting on 31(Q) nay be defined by

U(g)f(g’) = f(g1g’)

for all g’eQ. This, which is known as the ‘left—regular’ representation

of Q, gives the archetype of a unitary representation of Q. It will be

seen that the Haar integral on G plays an essential role.

Consider now a locally compact abelian group Q, which will then be

isomorphic to for some n, and consider the set of functions 31(Q) as

defined above. Since all of the irreducible representations of an

abelian group are one dimensional, we would expect 31(Q) to decompose into

a sum of one dimensional subspaces. This does in fact happen and a

convenient basis for these one dimensional subspaces is given by the

characters of Q defined as follows.
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DEFIflTIOH 11.1

(a A character of an arbitrary locally compact abelian group is a

continuous function

k’:Q C

such that

= I

and

= yç’) for all g,g’sq

10 n
(b) For x = Cx ,x.. x )s and each peF the function

xp = exp{ip x)

is a character of Q. The set ip}= is called the dual group of and

is denoted .

2
Each is not an element of (, C> since

* I -Ip.x
ydx j e - e dx =

But we can ite any in the form

jn v
f(x) = (2yr> jg(p)e dp

D
with = (2w) jf(x)e L dx

That is, each element of the regular representation can be expressed as

an integral that can be thought of as being a weighted sum of the

irreducible representations. This is called a direct integral

decomposition. For a compact group p E 10, ±, ±1, . and 0

so that I’ dx = 2rr and we do have a decomposition into a direct sum of

irreducible representations.

This decomposition into irreducible representations given by the

characters is not unique but whatever changes we make the representation

remains equivalent to the one we have constructed. This typifies a
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Type I representation. There are other types of representation called

Type II and Type III which do not possess this property, but fortunately

they do not seem to occur in particle physics. For an explanation of the

various types of representation see Coleman9.

Now G = is a locally compact Lie supergroup and is topologically

W(m+n) L-l
isomorphic to , where 4’ = , so that the above arguments apply

here. If we recall the definition of inner product as given in the

appendix of ref.5 we can see that the characters of this supergroup G

can be labeled by (P,)En and written

= exp i(p,). (x,9) for (x,9)eG

These characters then serve as a basis for the one dimensional (complex

not Grassman) representations of the supergroup G and any complex valued

function f on superspace can be written

ni n ipi8f(x,8) = d p d g(p,)e “e .) (2)

tor some function -- C and the integral as defined in ref,5,

Ct course a function taking values in CE must be written as a sum of

these integrals. Thus if f’:E’ with component functions

P —-fl’ C and P ——-‘ C then
, L f, L

1 J

f’(x,8) ,±‘ (x,9) +.f’ (x,9)
ie jf

_1 (3)

with f’(x,B)

jdmp dngp,)e.xe 83
+ .Jdnip d

for so choice of the functions g and . For a given function

we determine the inverse functions g and gf by the inverse Fourier
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transforms

(p, ) = d8 {f (x, 8)e
6

(4)

= d8 f} (x,8)e

Here
.

are a basis of with iO,i2,.,,,N-1 and
,

are a basis of

with Ji2 .. , as defined in ref.5 and the component functions are

the projections in the corresponding directions. Also hereafter

summation over repeated indices is implied.

Ecuations (2), (3), (4) arid (5) give us the foundations of the theory of

Fourier analysis on superspace, which we return to in the last paper in

this series.

III.NON ABELIAN LIE SUPERGROUPS

Consider any (mm> dimensional Lie supergroup G with Lie superalgebra

venerators fa 8 }. The equivalent Lie group then has generators

l_1;1=12,,,,2A1
and the equivalent Lie group

A+i
has generators A+lI’O-

). The additional

generators in the step A -ì A-f-i ie.
A+ijt’ A+iI-

an abelian

invariant Lie subalgebra of which we will denote by Q. We then

have the semi—direct product structure

=‘ c C (6)
A-fl A+i A

and we can construct for any L as a sequence of semidirect products as

follows

= L—i L—2

with the Lie group with generators , so that it is the group
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corresponding to the even subalgebra of the supergroup G.

Now consider any Lie group Q that admits the semidirect product structure

Q = fl @itwith lj an abelian invariant subgroup of Q. Let ah(n)

denote the automorphism of 7? by at given by

ah(& = hnh1 (8)

for each neT? and fixed helL For each yell we define the transform of the

character by h by

—1
Xh(y) = y7(hnh ) = x71(n) , (9)

and define the orbit of x to be the set of distinct elements h(y) for

all heit.

The group

= (heat, Xh(y) v (10>

is called the stability group of Xy With these definitions we can state

the main two theorems on induced representations that we will be using.

These are as given by Mackey8.

THEOREM 111.1

For each x yell, choose an irreducible representation 4
,

of
y

and consider the subgroup S7 = 77 4 Jt(Xy) consisting of all hn e 1? It

with h e It(X7) . Then 4
=
43 Cn) is an irreducible representation

7 7

of S and the induced representation )tQ is an irreducible
y 7

representation of Q. If and lie in the same orbit then every

4It(x )X7fltQ
is equivalent to some

4K(x )X7MfltQ . Thus it is

7 7’

sufficient to choose Just one from each orbit.
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Let C be the set of characters which includes just one member of each

orbit. Then as y varies over C and varies over the set of irreducible
/7

representations of ) the irreducible representations & D( are
7 V

mutually inequivalent

THEOREM 11L2

Suppose it is possible to choose the set C of N such that it is a Borel

set, Then every irreducible representation of is equivalent to some

y

Of course we can replace ‘irreducible representation’ by ‘unitary

irreducible representation’ in the statement of these theorems. Now

consider equation (17) in the light of these theorems. We have the

following results:

THEOREM 111.3

Let C be a linear Lie supergroup cje, a Lie supergroup admitting a

faithful supermatrix representation) Then, given a value for L1 we can

proceed through the sequence and obtain all the

unitary irreducible representations of Q provided we can ascertain the

representations of and its subgroups.

PROOF

Suppose we have all the unitary irreducible representations of Q0and its

subgroups. The stability group for each character of is then one of

these subgroups and using Theorem 111,1 we can obtain all the

representations of . Now consider
,

the stability group of each

character of , is a subgroup of which will admit the decomposition

with a subgroup of and a subgroup of . Then since we

have (by supposition) all the irreducible representations of and all
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the representations of are given by characters we can, by inducing

twice, obtain all the representations of Q2. We can repeat this

procedure for each A = 2. 3, . . . L.

Now since GL is a linear Lie supergroup the the orbit of each x,,, ye G1

is a closed subset of GA,c1 and each lies in one and only one orbit.

The set C is then obtained by choosing one element from each of these

closed subsets and must clearly be a Borel set. We thus satisfy the

requirements of Theorem 111.2

ThEOREM 111.4

If G0 has only Type I representations then has only Type I

representations.

PROOF

If G0 has only Type I representations then every subgroup of has only

Type I representations, since if a subgroup of G0 had Type II or III

representations they would induce to give Type II or III representations

for G0. Now the stability group of neGI is one of these subgroups so

that has only Type I representations. Then proceeding through the

sequence A = 2, 3, ... we can see that Q can have only Type I

representations.

THEOREM 111.5

At each step GA - GA,l the stability group of the character system

(g) = expi (0,0,... ). (x,8), ie. (g) H 1 for all is
A’

so that

we retain all the representations so far obtained.
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poF

This is an immediate consequence of Theorem 111.3.

Thus it is clear that to obtain all the representations of a linear Lie

supergroup we construct the representations obtained in each step

A.1
for A=O,1,2. . .,L—1 . To construct the representations at

each step we need to determine the set C and the stability group for each

yeQ . This analysis then tells us which representations we need to

induce to representations of To do this we need the definition of an

induced representation. The one we give is based on Mackey12. It is not

the most general definition and is applicable only if Q is unimodular and

if VS7 possesses an invariant measure, which is true if the modular

functions for Q and S are equal so that we require that S7 is also

unimodular. This is sufficient for all the cases we consider here.

DEPlETION 111.8

Let V be a carrier space for a recresentation # of S = It Ti and
4 Y K7

and consider the linear space V of mappings of the right cosets Q/S7 into

V4. For any •V and geG define the operator by

=f4(JgJ’1)(57J’) (10)

with S’ the coset representative such that

.TgJ’’c S . (11)
I

‘IBEOREI 111.7

(a) For any g,g’ e Q

f(gg’) = l(g)(’g’) (120

so that f provides a representation of Q.

(b) If Q/S possesses an invariant measure and is a unitary

representation with inner product ( ,
),then i is a unitary operator

with inner product defined by
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(,1,2)

= f (‘(SyJ);#2(SyJ)) dPQ,,5 . (13)

Now suppose we choose k as a representative character for a given orbit,

then the set of characters in the orbit are given by

xke geG)

but & admits the decomposition g = at for sone coset .1 and s e (Stability

group of k• that is x = k)S• Thus x = (k and this relationship

must be one to one, so that we can put

= (14)

Thus the cosets are labeled by our representative character and the

characters in the corresponding orbit. Equation (10) can now be

rewritten as

=f4(J(Kk)&J1ft’k))•(S/(x’sX)) (15)

Now equation (11 implies that x’ must satisfy

= x& (16)

That is

—1
It’ X’& (17)

and since the coset representatives are labeled by x we can put

= #X1 and rewrite equation (15) as

=#4U(X’g ‘X1& v’,x’’)v&) . (18)

Now suppose that the admits a matrix representation 4 with basis (46)

ie.

= 4(s) 46 for S t S (19)
11 fl’flfl’ 7

and define

ifXX’
• (,y’) = (20)

t 0 otherwise
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I sb
—1 =

,\i&
,n ILO

and
,

(kg) 1
If we consider the action o

equation (19) using equation (21)

(y) =(=)
A’ ‘

f f(”g’,)gJ1Xmnm
-

0 otherwise

=I+g(a,13)g x
a

a

here
‘a 1 2 1 ‘2

supervector, and x 1 is the even
ej

a

so that

if xt
(21)

otherwise

if
‘ = A’S’

(22)
otherwise

f (g) on these mappings we obtain, from

if x’ x

, (23)

where we have used equation (22) Then replacing ‘ by x and deleting

the redundant argument of the mappings we obtain

= -i (24)
Li

Now the characters ‘ are in one—to—one correspondence to the elements

y E so that the above equation could equally well have been written in

terms of y. In fact this is the most convenient way to express it. To do

this we first have to determine bow the group ? acts on TI in some

convenient way. In our case and A’
= .

Let E and.

g E . Now all elements of 17’’4 Dan be written in the form

g (25)
n ji

with
= jA+1

and 8°’ = 8i4+1

The action of the automorphism ah(n) defined by equation (8) is then

given by a(gn) =

(26)

and is an even row

column supervector

12 12 t ‘ .

(x ,x ,.., 8 ,8 . . . . ) . This is more succinctly written in
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terms of the adjoint representation of 0 . This and the adjoint

representation of a Lie superalgebra are defined as follows.

DEPIJITIOI 111.8

Let G be a linear Lie supergroup of dimension (nit, let {a ,fi,, ) be a

basis of its Lie superalgebra and let £ = EL • L be the Lie supermodule

constructed from L. Then:

(a) For each g e 0 let Ad(g) be the supermatrix defined by

g(cr,B)6g1= (u.fl)b(Ad(g)), for a = 1, 2, . . . •m+n.

(b) For every V e £ define the supernatrix adO’) by

(Vt (a,$)) = (asfl) (ad(7))
b

These representations are linked in the same manner as for Lie groups.

that is adO’) is the associated representation of £, the Lie module of

0 corresponding to Ad(g). Now equation (26) can be rewritten

ag(gn) = I + (a;S)b(Ad(s))[ j . (27)

and since the characters of 77 are given by

= exp i((y.’. (x8)J

we have

= exp i(Cy,. (Ad(s))[ Ia
= exp i((y’,)(Ad(g))). (1,8)) (28)

Thus rewriting equation (24) in terms of (y,) we obtain:

(y,),n (29)

= s’0’4x (J(Cy,)Adçq1),(yJ))g.T1((y,),

Here (y,) are the parameters corresponding to the choice of a

representative character k and we have written
Jtt4 and to

indicate the dependence of the representation on the choice of
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representative character and the choice of irreducible representation of

ita =Iff
YJ Xj,,.*

We note that equation (28) defines the orbit of a character. This can be

used to obtain the stability group, but in practice it is easier to use

the Lie algebra of
A

acting on the Lie algebra of To see this we

observe that there is a one to one correspondence between the elements of

lj’ and the elements of the Lie algebra of so that requiring that h

be an element of the stability group of an element y,#) is equivalent to

denanding that h leaves invariant the corresponding element of the Lie

algebra of Now h must lie in some one parameter subgroup of

that we can put h = exp a)’ , a e R , r e £(Q1). Then our requirement

becomes hdh1 = C where C is the Lie algebra element corresponding to the

character ie. exp(ar)Cexp(—aY) = 8 sc that we require [y,8i = 0.

IV. A REVIBY OP 1=1 SUPER POIICARE GROUPS

N1 Super Poincare groups cars be cor.stncted in most ‘but not all)

dimensions. In addition they are real supergroups only if it is possible

to define Najorana spinors in the chosen dimension. The generators of

the Lie superalgebra of the Poincare group are:

Ci) L = —L , the Lorentz generators,
Ap pA

(ii) K the translation generators
0’

and (iii the supersynimetry generators.

Their commutation relations are:

EL ,L ]g L -g L -g L tg L
A/i op Airpp AppLY perAp ppAo’

[L,K]gK-gK
Ap 0’ Arp ,iwA

[LAP? = ‘)‘A)’paFfl $ (30)

[K,K]0
0’ p
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[K,Q]0

and t’ =

Here, if d is the number of dimensions, A,p,o-,p = 1,2,.. .,d and

a,fi = 1,2,... ,2” with w given by w = hid-i’ for d odd and 0 = 3M for d

even; = -1 for a sDacelike dimension and = 1 for a timelike

dimension, with = 0 it A p. The Dirac natrices are as appropriate

to the number of dimensions. Our conventions for d = 4 and one time

dimension are given in the appendix. Note that we choose

= diag(—1. —1, —1, 1).

A supermatrix representation of the superalgebra can be constructed in

the block form

L K U(Q
kp a
o 0 0 (31)
o V(Q) rcL

a

with (L ) 6z -ig *

kp ba b,s-aA b au

(K’ =6
ü’ .3 at

F(LAP)ba = Tht I.eit)ha
(32)

(1’(Q)) =6

and (U(Q:)):b
= Jj(;ac)

This representation has been written in the standard block form [
and acts on the space Q/’, 1, with ,u = 1,2,...,d and w =

ie. the extended )tinkowski space (superspace) of supersymmetrv theories.

We note that the choice of representation F(LAP) given, this is the

negative transpose of what one might expect, and is chosen to conform to

standard usage in the physics literature.
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The algebra, of course, admits the semi direct structure

r
L 0 0 0 K U(Q)

ALt a

o 0 0 0 0 0 (33

o 0 (L 0 V(Q) 0
ku i a

of the Lorentz algebra so(d-t,t;) generated by (L} and the

supersymmetry algebra generated by (K, Q} and denoted by st(d-t, t;).

The translations t(d—t, t;) generated by {K} also generate a subalgebra,

but the supersymmetry generators on their own do not.

Corresponding to the decomposition of the algebra we can construct the

supergroup as

0’ =
C

I t T(-T> A 0 0 1
o 1 0 0 1 0

o -T ]o 0 PEA)

- A t T(-r)r(A)

= 0 1 0 . (34)

[ 0 —

We note that the inverse is

—1
8’

A’ 0 0 I -t Tr)

o 1 0 0 1 0

F o 0 r(A1) j [ o I

A1 - A1t A1T(-T) 1
= 0 1 0 (35)

0 r(A1)T

In these expressions A is a Grassman valued Lorentz transformation 1T

the appropriate number of dimensions, (A) is the representail:r

corresponding to the representation r(LAJI) t te EL1C a column vector

corresponding to the translations, = TaE
EL a column vector
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a a
corresponding to the supertranslations and = ( C),. Note

the fact that we have —‘r, this is due to the rule for multiplying

supermatrices by scalars from EL . We observe that (T(-’r>)(--r) = 0.

Consider now the subgroup obtained by setting t = 0 and ‘r = 0, this will

in general be a four component group corresponding to the four

components of the Lorentz group. These will be linked by the operators

corresponding to space inversion, time inversion and total inversion.

In this paper we consider only the one component supergroup, the proper

orthochronous super Poincaré group, which we denote by SO0(d-t, t; or

more precisely its covering group denoted by SOOE’d-t.t;EL) which for

d = 4 and t = 1 can be taken to be isomorphic to ST(Sl;EL) $SL(2;CEL).

It is convenient, in the sequel, to denote an element of this supergroup

by [AItlr] where A, t, r refer to the matrix blocks of equation (34).

In this notation group multiplication is given by

EAItIr]EA’It’Ir’] = £,I’I t’ 4 t 4 Tcr)rcA)r’Irour’ til . (36)

Also

(AltI’r]1 = cA11—41t1—r(A1’n . (37)

In the sequel we will need the adjoint representation. Il we choose the

order of the generators to be such that the matrix adfl) is given by

[77 (L,. K,,,, Q a1
= (L66,

, b°’7ba
(38)

for any r in the Lie superalgebra of the super Poincaré group. then

ad(7) can be determined from the commutation relations of equation (30)

to be the 4 d)Io) dimensional supermatrix written in block form as

abc
def
ghf

Here a is - d)wli(d2 - d) with the double index ++ labeling the rows

and €6 labeling the columns; e is dkd with p labeling its rows and it
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labeling its columns and ] is a with labeling its rows and ‘ its

columns. The dimensions of the other blocks follow from these We find

that the matrices are

F C) 0

ad(K) = (gS -
gS 0 0 (38a)

o 0 0

r
5E6ó’ -

1
‘j 0 0

ES ES
—g 66 + 66

ad(L )
A (38b)

Ai
o (r 5- 5) 0

LAp u A

o 0

and

o 0 0 1

ad(Q ) = 0 0 ( C) (38c)
a a3

)t)
0 0

L

As before we can obtain a matrix representation of the supergroup by

exponentiating the subgroups generated by L\) and K, Q This

representation is then the adjoint representation of the supergroup We

obtain

Ad(g) Add Al tI r]

I 0 0 AdA) 0 0 1
= V+TU I 2T 0 0

U [ 0 0

Ad(A) 0 0

= (V+TU)Ad(Jl) 2Trul) (39)

UAd(A) 0 T(A)

Here A (A) are the matrix representations of the covering group of the

Lorentz group as given before in this section, T is as previously

defined, Ad(J1) is the adjoint representation of the super Lorentz group



20

and the matrices U and V are given by

— )t) (40
fly

— r,v ya

and = to’ — g/) . (41)

V. THE UIITART REPRESEITATIOIS OP THE SUPER oiicm GROUP: PEEL IILIIARIES

In this section we make a start in the study of the irreducible

representations of the super Poincaré group. We consider only the case

with d = 4 and t = 1. We are looking for representations that we can

associate with the well known representations of the Poincaré Lie

superalgebra. as originally described by Salam and Strathdee10. These

are known to be labeled by a ‘superspin’ index I = 0. 16, 1, .. and a

‘mass parameter’ if. They consist of the direct sum of four Poincaré type

representations, in the massive case. (except for j = 0 which has only

three such representations) with spins of j, fl16, j-6, J (the i-If

representation does not exist for j = 0) together with the supersymmetrv

generators Q which link the representations.

We will show by a series of examples that the unitary irreducible

representations we can construct act on state vectors which have at most

one index that can be associated with spin, and that this is such that an

irreducible representation acts on state vectors with a single fixed

spin. The connection between the representations we construct here and

the Salam-Strathdee representations is the subject of the last paper in

this series11.

We consider group elements of the formg = [Altir] for
‘L

parametrized

by t°’6EL0 o’ = 1, 2, 3, 4 for the translations, ?cELl a = 1, 2, 3, 4

for the supertranslations and for the Lorentz transformations we
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parametrize by

take to correspond to

We will need to write

order to be y (y

are then parametrized by

pA
(A+1 ‘IA+1’

i
cA+i)jA+i’

with . a basis for so that I = 0, 1,

so that j = 1, 2,
, A-1

(1

(, k, ) ((i’, Ic, )Ad ‘) -

We note that the ‘translation’ element of

corresponding to the Hermitian generator of

this is related to our parameter Ic by

The action of = [AItIr]EA on is given by

(, Ic, 1)[ Ad(A) 0

(V+TU)Ad(A) I

L U.4d(A) 0

= (tAd(J1) +

with the matrices V,

rc4) is given by

1, 2, 3, 4; and = -y which we

the Lie algebra generators L ie. A
= expvLA).

these as a vector, in which case we choose their

13 14 23 24 34
y y y , y , y ). The elements of A =

}

A—i
2 1 and . a basis ot

I

Correspondingly -the elements of ‘i7 are in one—to—one correpondence to the

vector

(i’, Ic, ) = Ic , P )
o t

= j, (A+1
A3’

(A+1) i, (A+i) , (42)
0

with p, taking the values defined for them above The

characters of T/ are then given by

= expi (f, A, ). (y, 1, ) - (43

The action of a group element sQ4 on a character is en secified by

equation (28) to be

i7 is often denoted

the Poincaré group P0, =

=

by p

0

2 IT (A)

P (A) I
k(V+TU)Ad(A) + •UAd(A), Ic , PA + 2ATP(A)), (46)

T, U as specified in section IL The representation
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TM) = E0’(A) 0 -1
I (S )

T0(A i
£JA MK

exp —y (47)

with the similarity transformation S as defined in the appendix.

The matrix Ad(11) is equivalent to the representation
r0’1(A)

0

0
in

F’ ‘ (A)

It is convenient to have an explicit representation in this decomposed

form and to have the corresponding characters for this decomposition.

find that a suitable matrix representation of ad(L) is given by

We

10
00 0
00

0 1 0

0 —i 0 0
000

0

0 0—i
0 000

100

0

0 0 0 L
0 0 0—i

010

010

0 —i 0 0
000

0
—1

0

000
001
0 —1 0

0 0 —1
000
100

ad(L72) =

L

ad(L23) =

[

ad(L24)

= [

001
000

—i 0 0

ad(L13) =

ad(L14)
= r

[

ad c’L4)

000
001
0—i 0

0 —1 0

100
000

corresponding to this representation

+

the vector ‘ takes the form

- 14’’ 12
-

13

J23 + 14.i2
+ H34) )

= 1
‘ ft

* *
ft ) (48
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VI. ThE UJflARY IRREDUCIBLE REPRESEITATIOJS OF TKE SUPER POIJCARE GROUP

S0(3,1;H0)

The representations of are the well known representations of the

Poincaré group. In our terminology we consider elenents of the form

[AttIrJ which admit the semidirect decomposition

[AIt’rl = [II tI’r)EAI 010) . (49)

The elemsnts of Ii are the four vector k0 = (kg, kg, kg and the

action of A on k0 leaves invariant the quadratic form

= _(14)2
- (kg)2 - (kg)2 + (k)2

= 2
(50)

where we have written the constant on the right hand side in its standard

form with N being the ‘mass’, c the velocity of light and .K Plank’s

constant.

There are six distinct types of orbit, for which the set of

representative characters forms a Borel set, so that we obtain every

representation. We list these (for re details cf. Cornwell13).

(i) The orbit consists of four vectors k for which ?0 and k ‘ 0

The vectors of the carrier space of these representations are interpreted

as particles of mass Hand spin I.
2

o
(ii) The orbit consists of four vectors k for which K

>0 and k4 0.

The particles corresponding to these representations are considered to be

‘non-physical’
2

(iii) The orbit consists of four vectors k for which CO. These

representat ions are again considered to be ‘non—physical’.
.2

o
(iv) The orbit consists of four vectors k for which 7 =0 but k4 ) 0.

After inducing to G certain of these representations are interpreted as

nassless particles of helicity A.
2 0

(v) The orbit consists of four vectors k for which =0 but k4 ( 0.

These are again discarded on physical grounds.
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(vi) The orbit consists of the four vector (0, 0, 0, 0). The

resulting representations are interpreted as space time symmetries.

11,14
Our interest in the later papers in tnis series is in massive

particles. To show bow we obtain a representation of in this case we

quote the result, first obtained by Wigner7 (our terminology is that of

Cornwell’3) in terms of the four vector that we are using

i° l Al tl 0] )0

= expI(k0A1)ta)({B(k°Al,k°)lA B(k0,k0)l0l0]) , 0 -1 (51)
aO mm kA ,m

Here the representative character is = (0, 0, 0, ) and is the

(2] + 1)(2] + 1) dimensional representation of SU(2), the covering group

of SO(3,), The coset representative B(k0,k0) is the inverse of the

coset representative J(k0,k0) and is knoi as the Lorentz boost from

to k0. (It is as given by Cornwe1l’ with p replaced by k0.

Now we want to construct a representation from a representation of

First consider inducing to a representation of = We

choose the character of defined by = (0, 0, 04 0) and the

representation of Q given by . (t Al tI 0]). The orbit consists of a

single element and the coset representative is J(,) = I, so that the

operators of the induced representation are given by

. (t Al tl r]) ,if (1 Al tI T]

Altlr])
=

0 ,otherwise

This argument repeats at each step in the sequence

so that the operators t Al tI Sr]) of a representation of obtained by

inducing from a representation (t Al tl T] ) of
0

are obtained simply by

setting
0

([AltLr]) ,if (tAltlT])EQ0

tAltl])
= 0 (52)

L 0 ,otherwise
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A consequence of this is that any operator corresponding to a group

transformation of leaves the state vectors unchanged, thus the

eigenvalues of the operators 1rt’, £ILPA and
1ja

are zero for

11,2, ... ,N-1; f1,2, ... K, andeacho’, p, A, a=1, 2, 3, 4.

VII. THE UNITARY IRREDUCIBLE REPRESEflATIOIS OF THE SUPER POIJCARE GROUP

rn0(3,I;31)

A basis

algebra

algebra

zf the Lie algebra of is and a basis of the Lie

of is Ci1Q). The action of the Lie algebra of on the Lie

of Gj is given by

(iOLk.lc = J&iYpV)apQp

and [j0K5L3Qd = 0

Thus we can deduce imiiediately that the translation subgroup generated by

Ct0K) is part of the stability group for any character of G.

Now consider equation ‘53a’ with a = 1. Using the Kajorana

representation of the Dirac matrices, given in the Appendix, we find that

the group generated by ((c0L1, + 0L14, (L0L23 -t0L34)) leaves the

character x(0.1 ot G invariant. It is also clear from
, 1,

equation (53a) that the orbit of the character corresponding to the

choice of any non—zero is the complete set of non-zero characters of

Qj. Thus if we set the representations of are given by

(a exp

with .asone unitary irreducible representation of

by ((j0L1, + L0L14, (L0L23 —L0L34),L0K,). The

given by

(53a)

53b’

(54)

the group it generated

Lie algebra of it is

£ (j0L12 +j0L14, (j0L23 - L0L34)] = 0 (55a
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[(j0L12
+ rA14’

i0K) =g11,i0K1-2A0? 1A94
3/55b)

((j0L23 -j0L34), j0K,) =g2t0K3-g3K2-g30,t0K4+
/55c)

and Ej0K9,, c0K1 = 0. (55d)

This algebra possesses the obvious semidirect structure, which we can

write symbolically as K fP L with both subalgebras generating abelian

groups, which we will call respectively H’ and 11. These will thus both

have one dimensional representations given by their characters. To

determine the nature of the group it’ we exponentiate, using the

expressions for given in equation (32). Thus belt’ is given by

h = exp a”j0L1, •i0L14)exp b(j0L23 -

1 a 0 —a 1 0 0 0

2 2 2 2
- i- o o 1_k b k
a 2 2 2 2

0 0 1 0 0 —b I b

2 2 2 2
-a _A 0 l4 o _k b

2 2 2 2

Hence it is isomorphic to t?2 and has characters labeled by continuous

parameters. The two generators of It’ allow us to construct tour

possible stability groups. It is :onvenient to deal with these in

descending size order.

Case (i) Stability group = 2€’.

Since both generators of 2€’ commute with • L0K4 we can identify

the characters of 17 corresponding to this choice of stability group as

expik0.t = expi(0, k°, 0, k°Lt for some k°eFL The representations of

2€’ are also given by the characters

0 0 0 0 0 00 0 0
expit .y = expiCC12, 0

‘l2
t93S 0, fort129t23eR; €12t23 0.

Then since the stability group is equal to It’ we obtain the one

dimensional representations of 2€ given by

0 0
= expit .y expik .1
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which are labeled by three real numbers. The corresponding

representations of are then given by

(expit0.y erpik0.x ezpIi.’r)tQ1

and we can use equation (29) to obtain these explicitly. Sin:e they do

not seem to have any physical significance we do not carry out the

induction.

Case (ii) Stability group generated by (j0L12 +

This generator commutes with 1L0X, 0IC2 + £. K4), and from equation (55)

we can see that

C (j0L3 - L0L34), i0K3) = + L0K4.

Thus the orbit of any fixed element of 1?, k° = (0, 0, kg, 0) consists

of all elements of the form cO, a, kg, a) for nit To obtain all

possible charatters we need to allow kg to range over all non zero

values ‘kg = 0 is covered by case (i) above).

The representations of the stability subgroup of 21’ are also given by

characters of the form expi(0.y with f (t,, 0, C, 0, 0, 0 for

tç2e -

The representations of 21 can now be obtained by induction i.e.

S = cexpif°.y expik0.t)t2f . This will then be an infinite dimensional

representation labeled by two real numbers, one of which must be non

zero.

Case (iii) Stability group generated by (L0L23 — L0L34).

The analysis is similar to case (ii). We again have infi.nie

dimensional representations labeled by two real numbers.
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Case (iv) Stability group is the identity of

This case includes all the characters we have not covered in the other

cases. The representations in this case are labeled by a set of cat

most’ three real numbers.

What is clear from this analysis is that any representation obtained in

this step is labeled by a set of continuous parameters and that none of

them has an integer label that can be associated with particle spin

VIII. THE UUTKRY IRREDUCIBLE REPRESENTATIOJS OF TEE SUPER POINCARE GROUP

SV0(3,1;E2)

A basis of the Lie algebra of is Q) and a basis of

the Lie algebra of is 12K, The action of the Lie

algebra of on the Lie algebra of is given by

[0L.12L] =g12L - - g l2LAp +

[. K L. i = “ . ,K - g
3 c po 1 \ 1’ j

‘12p
= 0

= -

EK, = 0

a’ 1
2K] = 0

[I. =

[0K
2’c2

=

and

[Q , = (yC)12K

The characters of are in one to one correspondence to the ve:t:r

12 12 2
( , k , . it is convenient to deal first with the three cases

pA a

such that the representative character in a given orbit is chosen such

1 2 12 12
that: (i) f = 0 = 0 for each ,u, A, a; (ii) 0, k = 0 for

pA L
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each p, A, r and (iii) k2 = 0, = 0 for each a’, a.

Case Ci) Representations obtained when inducing from a character of the

form

We can see from equation ‘56) that the stability subgroup must contain

(ILiQaS c0K,,) and that, depending on our choice of character, it will also

contain some subgroup of the Lorentz group generated by (LOLAP). In fact

In fact we can recognise that the possibilities are the same as for the

representations given in section VI. That is we have five possible types

of orbit, for which we can choose the representative characters

1.’ 10 12
Ci) k (0,0,0,k4’withk4 O

(ii) k’2 = (0, 0. 0. k2’ with k2 (0

- 1.2
(iii) k — ‘k4 , 0, 0, 0)

(iv) k’ = (0, 0, k’2, k2) with

and Cv) k12 = (0, 0, k,’2, k2’ with k2 0

10
We do not consider the possibility k ‘ since thIs gives us the

representations of that we already nave.

For each of the five possibilities we have to consider representations of

the appropriate stability group. This again is a semidirect product of

the form (Some subgroup of the Lorents grDup) @ ‘The group generated by

If we require that any representation we obtain is a candidate for the

representation of a physical particle, we need the representation to be

labeled by a number that takes integer or half integer values, which we

can then associate with the spin of the particle. This in turn implies

that the stability group must contain a representation of a covering
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group of a rotation group in two or three dimensions. The obvious

candidates warranting consideration are types (i) and (iv) above.

Type (i). The stability group is generated by (0L1 1QJ with

1, j = 1, 2, 3 and o-, o = 1. 2, 3, 4 This admits the semidirect

structure ‘ ‘f) ii with ?“ generated by and 11’ generated by

fe K, Q }
‘JO’ L

Now suppose we Dboose some character of fl’ such that 0 then the

stability subgroup of 2’ will be generated by the intersection of (0L1)

and the set (0L12 + 0L14), (0L93 L0L34)). Thus for this character

choice the stability subgroup of ?‘ is just the identity I. The

resulting induced representations will not be labeled by an integer or

half integer valued parameter. Thus we conclude that we require E 0.

Now consider the choice of a character such that 0 The obvious

choice is that k does not alter the stability group, so that we put

(0, 0, 0, k) with 0. The representations of are then

given by equation (52), which we can then induDe to a representation of

2
Alternatively we can recognise that the result can be obtained in

one step by considering the character k
with

k = (0, 0, 0, k;o, 0, 0, k’). The result is then the same as equation

(51) with k and ic replaced by k = k + k and

.0
k (0, 0, 0, A- + Ic respectively 11 an element ot the super

Lorentz group with L = 2 and
A0

replaced by Specifically we

have

tO] )
A-, m

expi(kA t)(tB(kA1,k)1A B(k,Ic)lOO] ) • -1 . (57)
mm kA ,in

We note that this formula is valid for all k such that 3 0 and
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with at least one of them non—zero, it then subsumes the representations

given by equation (52). The representation is complex valued even though

it is written in tens of Grassman parameters. We have ‘encoded’ in

Grassman form. The eigenvalues of the ‘translation’ generators are

0
= iktr•k,m (58)

and 1/rk,m
= Ik 1’k,m

(59)

It can now be induced to a representation of L’
in which case in

addition to equations (58) and (59) we have

0 for I = 1. 2 ... , —1; (60)

Type ‘iv). The arguments given above for type (i) can be repeated, we

obtain ‘massless’ type representations with a spin index. We do not

consider these.

Any other choice of k will result in a reduction of the (Lorentz)

stability group of k12. We do not consider these.

Case (ii) Representations obtaIned wnen Inducing from a character of the

form X0, 0, q)

We can see from equation (56) that the generators of the stability group

contain and that lLiQ) are excluded as generators of the

stability group. which must include some subset of In fact we

can see that we have a repeat of the arguments of section VII. Tne

representations we obtain will be a copy of those cited there. Since

these are labeled by a set of continuous parameters none of them are

suitable for representing particles with spin.

Case (iii) Representations obtained when inducing from a character of the

form Xj 0, 0)
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We can see from equation (56) that the stability group generators must

include (t1Qj and that (0K,) are excluded. The stability group is

thus generated by some subset of (LOLPA) and by
%a1

if we choose a

representation of the stability group to be such that 0 then any

representation we obtain will be labeled only by continuous parameters

with no discrete labels. We thus choose 0 and examine the possible

subsets of CL0L,) that can generate stability groups.

Recall that the action of the Lorentz subgroup on the characters (tj2)

is given by the adjoint representation of the Lorentz group, a natrix

representation of which can be obtained from equation (38) and the

corresponding six—vector for the reduced representation is given by

equation (46). We clearly need only consider one of the 3v3

subrepresentations of this, and choose to use the top left hand one

12 1.’ 1.2
acting on the vector (r1 z- F3 ) = r with FEC.

This representation is isomorphi-’ to SLU3,C) considered as a real (six

parameter) Lie group. Since it is an ortbowonal group it leaves invariant

2 122 1’° 12’
the quadratic form (z) = ) + iF, - + Cr3 t with zeC. The

parameter z serves as a label for the representations (except for the

case when r2 = r,2 = r,2 = 0 which we ignore, since it just gives us

the representations of Q1). We can identify two types of orbit.

Type ci) z 0.

We choose as representative character r = (0, 1, 1) . The stability

group is then the abelian group generated by

— . L14). (j0L23 +f.0L34)). We note that in the representation

defined by equation (45 cj0L12 - L0L14) = i(j0L23 + . L3). To examine

the structure of the stability group we exponentiate, using the this
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representation to obtain

1 a ia

2 2
expa(%L12—L0L14’ -a 1—

ía is2
2

with aeC. Thus the stability group is isomorphic to C and has

representations labeled by continuous parameters.

Type (ii’) z 0.

There are two possibilities for a representative character x,. either

r = 0, 0, z) or r = (0, 0, z. In either case the stability group is

isomorphic to SV(2,C). Consequently in this case we do obtain a

character label that takes integer values, ie. the parameter

corresponding to the subgroup 50(2,1?). Representations of this type are

invariant on superspace, so that they are of no physical interest.

These three cases cover a large number of the possible orbits in the step

Q1-i Q3 but not all of them. The others can be obtained by choosing non

zero character representatives of the form k, • with at least two

of it12, 1*2, ,1.2) non—zero. The stability group in each of these

cases will be the intersection of the stability groups of the appropriate

characters of cases Ci), (ii’ and ciii). What is clear is that very few

of these representations will have a discrete label. For this reason we

do not investigate them here.
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IL cOICLUDIIG REXARIS.

We have considered many of the representations of Q0, 1
and Q2. If we

continued to examine Q3, Q4, . . we would obtain a larger number of

representations at each step, many of which would be similar to the ones

we have already obtained and the majority would be parametrized by

continuous parameters.

It is clear that any taitary irreducible representation we obtain that

can be associated with an elementary particle — ie. it has a spin index,

will have only a single spin value. The representations constructed here

act on a complex Hilbert space, and have no explicit Grassman structure

so that they are not directly related to the Salam—Strathdee1°

representations. How this is achieved is the subject of the last paper

in this series”.

It is also clear that an examination ot any supergroup in the ways

described here will reach similar tonclusions, ie. there will be no

‘mixing’ of spins within a unitary irreiu:ible representation.
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