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ABSTRACT

We discuss the relevance of global existence proofs. The

underlying mathematical theory is outlined, and it is shown how

the additional problems in the case of vortices and monopoles can

be overcome. Ways of building on the existence proofs are

indicated.
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INTRODUCTION

One of the most impressive achievements in the study of classical topolog

—ically nontrivial solutions has been the construction of static multi—rnonopole
1) 2) 3)

solutions. Since Forgacs, Horvath and Palla , Ward and Nahm have shown,

using different techniques, how to construct multi—monopole solutions, the

theory of static monopole solutions has been completed by filling in missing

details and unifying different aspects,4

With the theory of static monopoles in satisfactory shape it is natural to

turn to time—dependent monopoles. For the special case of slowly—moving

monopoles a particularly interesting idea to describe a time—dependent process

has been put forward by tIanton
. flanton suggested that the scattering of

slowly—moving monopoles in the Prasad—Sormerfield limit should be studied by

finding the metric and the geodesics in the parameter space of static multi—

monopole configurations. Atiyah and Hitchin 6), by an indirect method, have

found the metric for the two—monopole solution. The most interesting result of

their work is that monopoles can get converted into dyons.

Another possible step beyond static solutions consists in giving existence

proofs, both locally and if possible globally. We have taken this step for

vortices ‘1) as well as for monopoles
8) Our work involves no approximations

and should therefore be relevant as an underpinning to all approximation

techniques. As the example of general relativity shows, where regular initial

data can develop a singularity (black hole), a global existence proof, which

guarantees that this does not happen, is also interesting in itself.

SEGAL ‘S THEOREM

The global existence proofs for vortices and monopoles are based on

Segal’s existence theory for semi—linear evolution equations.9 Segal, first,

considers the integral equation

u(t) = W(t,O)u

+

W(t,s) K3(u(s))ds, (1)

and shows that, under suitable conditions,

u÷1(t) = W(t,O)u

+

W(t,s) K(u(s))ds (2)



is a Cauchy sequence, and the limit satisfies eq. (1). The conditions (i) u g

B, where B is a Banach space, (ii) W(t,s) is a linear continuous propagator on

B, and (iii) Kt(u): [O,°’) x B —> B is continuous and satisfies the Lipschitz

condition, are sufficient to guarantee a unique continuous solution locally.

The difficult part of the local proof is to show that Kt(u) e B and that

satisfies the Lipschitz condition.

To guarantee the existence of a global solution one has to show that

I Iu(t) II does not diverge at any finite time t. This is the most difficult

part of our proofs. After it has been achieved it is simple to go back to the

differential equation

= Au + Kt(u)i (3)

corresponding to the integral equation (1). All one has to do is to prove that

Kt(u) is a C1 map which is easier than to prove that Kt(u) is a C0 map when

Kt(u) is a polynomial in u. Then, assuming sufficient smoothness for the

initial data, global existence of a unique solution of eq. (3) follows.

THEORY

Instead of applying the general theory immediately to the cases we are

really interested in and be faced right away with complex technical

difficulties, let us study part of the problems which have to be overcome using

4
4 theory as a simple model. If there is no symmetry breaking,

u(t) = eAtu(O)

+

etK(u(sds (4)

with

4 o o
, A= I

2 2 / 2 3/

8—rn O/
t x

is the integral equation to be solved in 1+1 space—time dimensions,

For any integral equation, we are guided in our choice of Banach space by

the known results for the associated linear equation (K=O). It is known that A

given in (5) generates a 1—parameter semigroup on each Sobolev space H3÷1 x H3

(s > 0), where f e H if f and all its derivatives up to order s are square
3 2

integrable. Hence, H1 x L (s=0) should be our first choice and we have to show

that



H u H = ll+ll2 + llOxll + 117Th < (6)

implies

IIK(u)hl < (7)

and

hlK(u) — K(ji)Jl < C hi U — jill. (8)

For K given in (5), the inequalities (7) and (8) hold true if

6 < K h1thl and Hell 8< K hlôll (9)
L — H1 H1

hold. The inequalities are special cases of the Nirenberg—Gagliardo

inequalities,

ilhIfP < K hlDmfhlrllfhiqa
,

(10)

where 1/p = a[(1/r) — (rn/n)] + (1—a)(1/q), 0 < a < 1, (if rn—fir is a non

negative integer, only a < 1 is allowed) and f : if’ —* Rk. This completes the

local existence proof for the integral equation (4), and assuming sufficient

smoothness for the initial value data, the local existence proof for the

corresponding differential equation, as well.

2

That the local proof works already for H1 x L (s=O) simplifies the global

existence proof sonsiderably. Energy conservation,

f + 1(a) + )dx = 0 ,
(11)

alone guarantees that I hr II 2 and I ha II do not blow . What is left is

2 L xL
to study the L —norm of . To do this define

(12)

and calculate



= I dX<Cr. (13)

The inequality (13) implies

— 12
E< (C0 +1Ct) (14)

which isglobal bound on the L—norm of ö.

In the case of spontaneous symmetry breaking,

= +

— 2
(15)

is the relevant differential equation, and the solutions with asymptotic

behaviour

—> ± 1 for x —* + (16)

are the ones we are interested in. Because of this asymptotic behaviour, is
2

not in L , and we cannot repeat the proof given above literally.

The natural remedy in this situation is to subtract a background field

=°+f, a°=o , 1°—>+i forx—±, (17)

and work with the field f. On
°, we try to impose enough conditions to prove

existence for f, making sure at the same time that the topologically nontrivial

configurations we are most interested in are still allowed as fields . This

can be done successfully for the imodel (15). Furthermore, we can keep control

of the topology because f e H1 implies f —> 0 for x —+ ± , and therefore

lim_+ô(t) = lim(O). (18)

VORTICES AND MONOPOLES

The Landau—Ginsburg model in 2+1 space—time dimensions poses a number of

serious additional problems. Fortunately, the most difficult ones of these can

be solved by imitating Moncrief’s proof for the Maxwell—Klein—Gordon theory.W

In the Landau—Ginzburg model we have to solve the differential equation (3) for

Tu = (a0, aba. a1, Oa1. a2, aa2. f, it = af + ia0f) , (19)

where a and f are the fields after we have subtracted the topologically



nontrivial background, whereas in the Maxwell—Klein—Gordon theory we can work

with the fields A and themselves. The choice of Banach space, however, is

the same.

In both cases, the operator A (see references for this and other forrilae

to complicated to present here) generates a 1—parameter semigroup on each

Sobolev space (Hs+i x H5)4 (s > 0). Therefore, our first choice would be (H1

x L ) . However, with this choice of Banach space we have to show, in

particular, that if a, f H1, then K,, = — ia0 f e H1, which, in general, is

not true. Since a0, f c H2 implies af e H2, we can, however, choose (H2 x

H1)
, and show that the local existence proof goes through. The price we pay

for working with s = 1 instead of s = 0 is a major complication in the global

existence proof because the energy or pseudo—energies of the same order are not

good enough to bound the higher—order norms. A pseudo—energy of higher order

has to be used to prove global existence.

In a gauge theory, one, of course, also has to cope with the gauge

freedom. In our proof, we fix the gauge by imposing the Lorentz condition,

i.e., the Lorentz condition and the Gauss equation

— 3(a1a1 + 02a2) = i[(tb° + f)( + ia) + c.c.] (20)

are the initial value constraints. To complete the proof one rm.ist show that

these constraints are propagated by the evolution equation.

For time—dependent rrDnopoles, one goes again beyond the simplest choice of

space which works for the corresponding linear problem. Eardley and Moncrief

(ref.12) have shown that without a symmetry breaking potential (i.e., without

nxnopoles) putting the potentials A into H2 and the fields F into H1 is a

successful strategy. Eardley and Moncrief work in the A0 gauge and use the

formal solution of the constraint,

o 1
p(x)

F . = — — a. I d x’ ,
(21)

01 4it ij
Ix—x’I

with

p = [F00 A] — < o4, Ta > Ta i = 1,2,3, (22)

(Ta: generators of the gauge group).



This technique only works if the formal solution of the constraint i in

H2 if the potentials and fields are in H2 and H1, respectively. Because this

is no longer tri.ie in the case of topologically nontrivial configrations, we put

all the following fields into H2:

a., aba.. b: = 8k(aJak + aa< + [A, a:lt,
(23)

f, : = .f + af ÷ a° + Af.

We than extend the technique of Sega1’3 and of Ginibre and Velo14 to give a

local existence proof.

For the global existence proof we switch back to the Eardley4loncrief

technique, extending this technique to an order of differentiability necessary

to match our local proof. This involves deriving a priori L—bounds on F and

o , which follow form the equations of motion and energy—momentum conservation

I-I
integrated over a finite part of the past light cone. From the L —bounds one

2

can derive L and H1—bounds using the energy. Using the higher—derivative

pseudo—energies one can then push the bounds on the H—norms step by step up to

higher s • Since our local proof works in H2, two steps are enough to complete

the global proof.

OUTLOOK

With the question of global existence of solutions settled we can turn our

attention to the asymptotic properties of these solutions. One important

question to answer rigorously is whether in a scattering process of vortices or

monopoles some of the energy radiates out along the light cone. A positive

answer would be proof that vortices and monopoles are no solutions in the

strict sense. A possible technique to find this answer could be the one used

by Glassey and Strauss15. Glassey and Strauss have studied extensively the

conservation laws which also play an important role in the global existence

proof to detect radiation along the light cone.

An even more ambitious program for further studies centers around the role

of Sobolev imbeddings for classical existence proofs as well as for

renormalizability. As the inequalities (9) and (10) show, imbeddings play a

crucial role in our existence proofs, They also play a crucial role in the
16)

existence proofs for other classical equations. It can be shown, e.g., that

the equation



—Au = iuj u — u, u : it — R, n > 3, (24)

has no nontrivial solution if p > (n+2) / (n—2). On the other hand, it is known

that theory in d space—time dimensions is renorrnalizable if k < (d+2) I

(d—2)+1. That Sobolev inequalities play a role for renorrnalizability is not so

surprising if we notice that the inequality reflects the fact that the free
2 k

theory (L —norm of aô) controls the nonlinearity . To uncover a deep

connection between the existence of classical solutions and renormalizability

would be a very interesting result.
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