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Abstract

We analyze a model Hamiltonian for a 0 many=
electron system which unifies - " superconductivity,
charge density waves and spin density wa&es, We show that the .
spectrum generating algebra for this systeﬁ is su(S), and identify
all 63 generators of this Lie algebra as symmetry operators which
are broken in transition to the condensed state, together with 56
orcder operators, whose expectations give the‘order parameters of
the various phases present in the model. We tabulate the discrete
symmetry properties df these operators. We construct a chain of
subalgebras of sub-models with corresponding decoupled phases.

We finally indicate how the finite temperature Green's Functions
may be obtained and used to solve the problem of self-consistency

of the order parameters in the model.



1. Introduction

The pioneering experiments'of Sooryakumar and Klein [1]
on the coexistence of superconductivity and charge density wave
phases, and many subsequent investigations, both theoretical and
experimental [2], have sparked interest in those systems for ;
which the coexistence of these and’other phases, such as ferro-
and anti~ferromagnetic, are possible. In this paper we give a
purely theoretical description, based on the approach of Lie
algebras, to a system which is capable of embracing the phenomena
of superconductivity and density waves. The model we analyze
incorporates conventiohal homogeneous singlet superconductivity -
and, perforce as a consequence of algebraic consistency, homogeneous
triplet superconductivity. The density wave phenomena are those
of charge density waves and spin density waves (antiferromagnetism);
within the same algebréic framework it is also possible to include
ferromagnetic effects.

The approach we adopt is that of the spectrum-generating

Lie algebra (SGA). Our model will be described by a Hamiltonian

H given in terms of fermion creation and annihilation operators

a+
ko 7

system. Under suitable approximations, which we detail, H becomes

a for electrons constituting the electron gas in the

kitg?
a sum of bilinears in these operators; and so the terms of H
generate a compact Lie algebra, the SGA of the model. For a
model sufficiently general to include the physical phenomena noted

above, the algebra is su(8).



The advantages of this algebraic approach are manifold.
Firstly, the various phenomena are synthesized into a single
structure in which their relationships are transparent. The
most striking example of this is the relationship between the
existence of singlet superconductivity and density waves on-the
one hand, and triplet superconductivity on the other [3].

Another example is the description of the large number of "order
operators" - these are operators whose expectations give the
order parameters - which it would otherwise be difficult to
classify. Secondly, although such a complex systém does not

lend itself easily to explicit calculation, the existence of
low-dimensional faithful representations (8x8 matrices in the
case of the full system, smaller matrices in the case of subsystems)
simplifies explicit calculation of such physical quantities as
spectra'and phase coexistence boundaries, as we have previously
illustrated in the simpler'superconduétivity._ charge density wave
su(4) case [41, as well as selection rules [5] for various
transition processes.

Thirdly, this model may be regarded as unifying a variety
of submodels, obtainable as subalgebras of su(8), which describe
interesting physical systems of one or more phases, many of which
have been previously treated separately in the literature [6].
Finally, within the context of mean field theory, where our model
is firmly situated, finite temperature effects may be treated
using the therﬁél Green's Function method, and problems of self-

consistency may also be tackled in this manner. We touch upon

these gquestions in the final section of this paper.



2. Model Hamiltonian

Our starting Hamiltonian is a conventional sum of contribu-

tions from kinetic energy, superconducting and density wave terms,

thus:
H = Hpp + Hge + Hpy - (2.1)
where
H._ =7 e(k) a._ a (2.2)
kK L € %5 %ko .
B =7 AT(k) a. a .. + h.c (2.3)
sc t 70 kt T-ky T ;
H =Yy (k) a. . o a_ + h.c (2.4)
DW L Ty k+Q “u “k T

S . .
In the above, aka is the fermion creation operator for an

electron in the Bloch state labelled by wave-vector k with spin o,

and energy e(k). We have the anticommutation rule

f al, ¥ =5

ko, Tk'o? Sggt (2.5)

with other anticommutators zero. The BCS parameter Ao(k) may be
taken complex, as may the density wave coupling constant Yu(k)-
Here Q = ZRF is the characteristic wave-vector of antiferro-
magnetic order,iwhere kF is the Fermi level. We have implicitly

summed over the spin indices (understood) in H and over the

DW’



index p = 0,1,2,3; we include p = 0 corresponding to a Yo charge~
density wave coupling, while ' (i = 1,2,3) is the épin~density
wave term.

In principle, the summations in the above terms are over
all k-values. However, we now effect a considerable simplifica-"
tion, which leads to a decoupling and eventual algebraic solva-
bility, by assuming that our model is guasi-one-dimensional, with

no contributions from terms for which |k| > Q. The first two

terms (2.2), (2.3) may then be rearranged by use of the identity
0 Xp . )
) of(k) =) {f(k) +fk) + £(k) + £(-K)}
-Q 0
where kK = k - Q; and a similar reduction of (2.4) leads to the
model Hamiltonian H = ) H(k), where
k=0 )
H(k) = e(k)(a;(}akO + afk a_y ) o+ g(i)(af a + a+~ a )
o ko ko -ko kg
+ A - *
0 2krdiypy T a_, ,a, , + A a_a _+ A} a_a_ + h.c.
o0 kR0 el Ry 0 SR R
o1
Y Ay, U%Ba_ *’Kia+_ o*F a_yg + h.c.
H kg ~ka *

(2.6)

Here, as throughout the paper, we sum over repeated indices. We

allow a k-dependence of the BCS singlet gap parameter A and so

O!

s ' -
write AO for Ao(k), and AO for Ao(k).



We note that [H(k), H(k')] = 0 for k,k' & [O,kF} so we
have decoupled the Hamiltonian into a direct sum. As in reference
[7], where we treated How in more detail, we now define the set
{B,(x)} (i =1,2,..., 8), by

+ + +
(B, (k) ={a,, a_, 2 ;a%_ Pay,r Ay, sa_,a _}
o ' kt o~k k4 ~k4
(2.7)
. e +
From (2.5) we have {B., B.} = §.. whence the operators X,. = B, B.
i 7 ij i3 i3
generate the Lie algebra g% (8) with commutation relations
[Xij’ inl = §jk Xi% - 5i£ ij. The Hamiltonian H(k) in (2.6)

is a linear sum of hermitian combinations and has trace zero since
e(k) = e(-k); therefore H(k) may be considered as an element of
su(8). The spectrum generating algebra (SGA) of the model

Hamiltonian H is thus a subalgebra

® Ik) € 8 Su(8)(k) '

with each g(k isomorphic to a fixed Lie algebra g (which we

)
shall call the S8CA of our model). We shall determine g later;
we show that the presence of singlet superconductivity and spin
density waves is sufficient to generate the whole su(8) algebra.
Thisvery rich rank-7 algebra possesses, in a Cartan basis, seven
mutually commuting operators which we incerpret as conserved

guantities (above the transition temperatures) which are no longer

conserved in the various phases present in the model below the



appropriate transition temperatures; and 56 other basis elements
which are putative order operators, whose expectatiﬁns are order
parameters for the corresponding phases [81.

The bulk of this paper will be devoted to exploiting the

algebraic conseqguences of this system of operators. We commence

by introducing some notation. Define the Pauli matrices

e (1 o) . (o 1} . (o —i) . (1 0}
B - 4 - 4 - 7 - 7
0 Lo 1 1 1 o/ 2 i0 3 0 -1

1 1
5, 53 T X Tir Ty = 3 T ¥ Ty
_ 1 1
Ul“ﬁszTi’wl_ﬁTBXTl’
E. = & ¢ ; (i =1,2,3)
i T2 T X Tl T Lrer2)

(2.8)

The set (2.8) provides a basis for su(4)‘[5]. The basis for

su(8) that we shall use is given by

S x T T x U % Wx T, ExT T x T} v = 0,1,2,3).
{__ TR TU’ v TU’ w ur = ul Tr, (U 7 1,2,3)

(2.9)
Here I is the 4 x 4 identity matrix. This is effectively a triple
Nambu representation. The algebra su(8)(k) is generated by

{E BT(k) Mt . B.(k)} (r=1,..., 63) where MY . is one of the 63
i i i3 3 1]



hermitian matrices defined in (2.9).

If we take the standard representation of the gl (8)

o3 -~
algebra generated by Xij(k) = Bi(k)Bj(k), Xij(k) = eij’
where
= 5 Y- —_ 1
(eij),@m 6}._2, éjm (.L,j,,g,,m i,2,.-a8)
then (2.9) is a basis for a representation of su(S)(k}; we shall
consistently denote this representation by a circumflex ~. In
this representation the number operator N = Z N{k), where
N(k) = 7§ ( ; ayy afka a_p, ta_a_ o+ a+_ a _ )
o=+, o ko ko ~-ko  =ko
is given by
N(k) = I x Tyr where I is the 4 x 4 unit matrix.
(2.10)
The spin operator ) o (k), where
k
T _aR o af
ok) = | (a o a , +a, o a_,,+a o a
= o B ka— kR ko kB " a
+ a+* Q?Sa _ )
-ko. -kg
is given by (Gl(k), cz(k), 03(k)) = (El X Tay E2 X Tay E3 x TO).
- (2.11)
: . . ~ 1
(The spin matrices GU are defined as usual by Gm = 5 TU.)



£ _ 1 7 + + _
Introduce the operator S(k) = 5 L {%kuaka + a~kaa—ka)
+ + OC"’?‘,*@
(a_ a_+a _a ) ‘
ko ko ~ka -ko
represented by
s(k) = 8, X 1, - (2.12)

3 3

We may now rewrite the Hamiltonian (2.6) as

H{k) :‘%.(a 4+ ') N(k) + (¢ - ') S(k})

= ADL(R) = A Dé (k) + h.c.

(2.13)

In (2.13) we have introduced a scalar, complex superconducting

order operator

(k)1

Il
o

+ + + + [c(k), D
~k+ -kt Tk -

(2.14)
with a similar expression for Dé(k) in which k is replaced by k.

We have also introduced a complex charge-spin density wave order

operator Tu(k), defined by
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K3
P =ap o a +al_ o™ a (2.15)
A Y ~ka *
The y = 0 scalar component is the. charge density part,
while the 1 = 1,2,3 vector components refer to the spin density

wave, The real and imaginary parts of Fu(k) are two of a guartet

(o)

of density wave order operators I“L2 , fully defined in Chapter 3,

which satisfy

o)y oAl () _ (a)
E_‘S_IiO ] = 0; [USL'Fm I = leimn I‘n (2-16)
where €0 mn is the permutation symbol on &,m,n = 1,2,3; o = 1,2,3,4.

In the representation with basis (2.9) and number and spin
operators represented by (2.10) and (2.11) respectively, these

order operators are given by

~ 1 . :
DO = (E3 + W3) X 5 (Tl + 1T2) (2.17)
B’S(E —W)X—]l("r + it.)
3 3 2 ‘T 7 2
and
T LT T, T} = (R (s.o4is. ) wmt., L o(r.4iT.) x T
ttort1rtarta 7 ‘P17 te) 32 7 ‘it 37
L . +iv) x « —1~(w+iw)XT}
2 1 2 37 2 1 2 0 -

(2.19)
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We may now rewrite our starting Hamiltonian (2.6) in the represen-

tation with basis (2.9) as

H = Hyp * Hge * Hgpy * Hopy (2.20)
B o= (ete’) (31 x 1) + (e=e') S, x 1 (2.21)
‘KE 2 3 3 3 ¢
- 8 i 0t
HSC {oto )(E3XT1) + (o a)(WBXTl) + (B+B1Y) (E3x12) +
ni
(B-B") (W3XT2)
(2.22)
Hopw = RlYl (Tlxrg) + Rly, (UIXYB) + R1Y3 (WlXTO)
- Imyl (TZXTB) - Imyz (UZXTz) - Imy, (WZXTO)
(2,23)
HCDW = Rlyo (Slxr3) - Imyo (S2x13) (2.24)
In (2.22) AO = o+iB, A6==a‘+i8'. The expressions (2.23) and

(2.24) give the spin density wave and charge density wave terms

respectively.

a full system of order operators for this model.

examine the f

The operators in (2.21) (2,24) are only part of
We define and

ull system of order operators in the next section.

In the meanwhile we write down for reference the matrix for the

(

Hamiltonian

2.20) in the basis (2.9)
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3, The Order Operators

We now analyze the Lie algebra su(8) with basis (2.9).
This rank-7 algebra has 7 Cartan (diagonal) elements, and 56 off-
diagonal elements. If h is a Cartan, and e a typical non-diagonal

element satisfying the canonical

[h,e] = Xe (A#0)

we see that in an eigenstate |> of h, <le|> = 0. The root vectors
e, and linear combinations of such root vectors, are order operators
for eigenstates of h. Their expectationé are the order parameters
which vanish in states for which h is a conserved operator. The
eight Cartan elements for the u(8) algebra generated by the

;Bi’ (i=1,...,8); or more

Bsz of (2.7) may simply be written B
physically an,the number operator for K,o (K = £ k, * E; c = +,¥).

In terms of the basis (2.9), the Cartan elements are

203)

0

(3.1)

We have already introduced the number operator N, the difference

of k, k number S E'%—(NKJN_) and the third component of spin 05
_ k
in Section 2, (This last plays the role of a ferromagnetic order

parameter F.) The matrix P represents the momentum operator.
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-

(In the case of u(8) we would have additionally the unit matrix
Ix TOQ)

We now illustrate a useful algebraic method for obtaining
the order operators Qi Corresponding to a given guantum observable
h. The operator h is assumed to be one of the operators conservea
in the lower symmetry phase; we take it to be one of the elements
of the Cartan subalgebra, and therefore diagonal in our represent-

: Fal
ation, TFrom the above remarks, the 0. are the elements of the

Cartan basis which do not commute with h. Defining the centralizer

~

(h) = {x €su(8):[x,h] = 0}

we see that the set of order operators we seek is precisely the

complement in su(8) of this centralizer, Cé (h). In addition,

u(8)

one may readily obtain such centralizers by the following method

[9]: Let the matrix M in the defining representation of the group

U(n) be diagonal, with eigenvalue multiplicities My, Myyee Mg
where ml+m2+...+ms = n. The little group of M is
U(mll & U(mz) R ...8 U(ms). Translating this result to the present

Lie algebra context, if the diagonal matrix h has eigenvalues with

multiplicities Myy Myyoon,m where m +m‘+..,+mS = 8, then

S 172

~

c (h)= u(ml) ® u(mz) D...08 u?m

S

For the case of su(8) the corresponding result is
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Csu(S)C%l = s(u(ml) @...@u(ms))

~ oul(l) & su(ml) ®...0 su(ms).

As an example, take for our quantum observable h the number

~

operator N. This is represented by the matrix N = I x Tj
(equation (2.10)); we have m = m, = 4, and so
= 1 )
Csu(B)(N) u(l) ® su(4) ® su{4).

Taking the complement, we find by this means 32 N-non-conserving
operators C'(&), which split into 16 superconducting D operators
C'(&)IWC(E), and 16 anomalous A operators c'(N) N C'(ﬁ). There
are 16 density-wave I operators C(&)«ﬂ C'(E), and finally 8 ferro-
magnetic F operators C(&) ﬂ\C(g) N C'(g). The first three sets
of operators divide naturally into scalar plus vector quartets

as follows:

superconducting Order Operators

NES I _ 1

D# (E3xtl, szrl, Elxrl, 2Ixtz)

n(2) . - _ 1

D# (E3xtz, szrz, Elxtz, > xrl)

8(3) = (- _XT U_xt ~P_XT.,, -S.xT,_) ‘

i 3717 IR 3771 372

5(4) = ( —W_XT U._xt - XT 3 XT_) (3.2)
0 3"z’ 3727 3727 3771



-]6=-

Charge—Spin Denesity Wave Operators

a1y o,

?ﬂ { Szxrs, T1XT31 Uixr3, wixro)

§€2} = (8_xt T, xTt., U xT W_oxT 3

“ 17737 T27737 273t Tt

543} = (8 XT T %t , U_xut WoHtT_ Y

“ 17707 "270° Y2707 T27 2

;(é) = (-8_xt_., T xt., U xt_, W xt_) (3.3}
u“ 270" "1770 Y170’ 173

Anomalous Order Operators

§;1) ¢ S_xT

= (Wt 10 51%T,)

202y _ _‘ _
5# (Wixr . Uéxrz, szrz, Szxrl)

2(3) _ ,_ - N
A# { wéxrl, Uixrz, Tlxrz, Slxrl)

Aié) s T ut_., S_xT

1" 7271 T2 2) (3.9)

= (~wlxrz, —t&xr

Ferromagnetic Order Operators

The eight ferromagnetic order parameters

T U3} x {1

2! 3! T3} (3-5)

OI
are simply the off-diagonal elements of the ferromagnetic sub-

algebra which is their closure, namely

W,l x {TO,T3} . (3.6)
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This algebra is the su(2) ® su(2) ® su(2) & su(2) generated by

5

o oa_, a"*k_ ca _},

kK k -k 7 -k

four independent spin algebras. Corresponding to four linearly

independent combinations of these spins, we may define the

operators gﬁ(Z.ll) and E(l), 5(2), 2‘3) (5.10).
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4. Discrete Symmetries

(i) Parity-Inversion

..}.

This is definedby ma, 7' = a , where 71 is a unitary,

ko ~ko

linear operator. Acting on the B-basis (2.7) we have

SR N SN S
B, m™ = (Bg,B /B ,Bo) .

{
T (B.,B 5 7

1785780

We may represent this action as an 8x8 matrix

where

The action on a bilinear in B, ) m; 5 Bz Bj (with tr m = 0)
1j

is easily calculated to be

+ -
i (BJr m B)n = - B+ AmA B

where m is the transpose of the 8x8 matrix m. Thus, in the 8x8
representation of Section 2 (2:8 et seq.) parity inversion
corresponds to -
m ~+ AmA .
(ii) Time Inversion T

e e e t_ v, .
This is QeflnedleTakgT "éﬁx2)00' a_pgt v where T is a

unitary, anti-linear operator. Acting on the B-basis of (2.7)

we have
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. +
T (BerZIB3IB4' B51B6!B7’BB) T

t_ gt

- oot ot

K
3; —Bél BSI_BBI'B—?) ®

We may represent this action as an 8x8 matrix,

T8, T =Y., B
i R Ny B
3 ]
where
T = i
Ty X Ty X T,

The action on a bilinear |m. . 5ip, (with tr m = 0 ) is
713 TiT]

readily evaluated to give

7@me) 7= 8frnt r 8

In our 8x8 representation, time reversal corresponds to
+
m > Tm T.

(iii) Charge Conjugation C

From the action @G(X) + C wc(x) CN‘L = w;(x), we define

charge conjugation to act on the electron destruction operator

by C ch = af
o Y g, = % kg

. : +
operator, On the B-basis, we have C (Bl,BZ,B3,B4) C =(B6’B5’B8’B7)

where C is a unitary, linear

whence

T
C B, C = ) Ay s

B.
]
where A is the same matrix as in part (i). The action on a

bilinear in Bi is therefore given by
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t t

K3
C (B mB) C =B (AmA) B;

in our representation the effective action of charge conjugation
corresponds to -
m > AmA
We append a table of the discrete transformation properties

of the 15 scalars and 48 vectors of this model (Table 1).



S

Table 1: ° Parity,” Time ReVér‘sa‘l\ and Ch_a‘rg’e‘.Co‘n‘jug?ation Prope‘r‘t‘i‘es

Scalars
(1) ~(2)
Do Py
m + +
T + -
C - +
Vectors
9(l) _‘(‘2)
i —_ —

(4)
Dy

+ +

(3)
P

-+ -

B

e

E13

0

P (20 0G0 L)) @) L) )
- + - + 3 - + - +
+ + - - ;- + + ~
- - + + o 4 - - +
P L (2) (3 (4, A (D) 5 (2) 5 (3) é(ﬁ4)
+ - + - - + - +
- - + + ;- + + -

,;g

oy

o (zé (30

jQ
la
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5. Commutators

In (3.2), (3.3) and (3.4), writing x = p@) afe) . (a)
! I T A ¥ o

the zero-component operators are the scalar guantities satisfying

[0, X41 = 0. (5.1)

(o)
0

order operators occurring in the (2.22), while the T

Thus D (= 1,2,3,4) are the ordinary superconducting singlet

(a) are the
0
charge-density order operators, of which the two even-time-

reversal scalars appear in (2.24). The triplet operators satisfy

Eoi, Xj} = i eijkxk (5.2)
[Xi, Xj] = i eijkgk (5.3)
(o)

so that, for example, Fj are spin-density order operators, of

which the two odd-time-reversal triplets appear in (2.23). The

operators in (3.2), (3.3) and (3.4) satisfy

= i Aé“) (5.4)

and

ot =g e, 2 (5.5)

with two similar sets of commutators obtained by cyclic permutation.
The N, P-and S operators (3.1) move one quartet of order

operators to the next, for example:
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1 (2

by, 013 = 5 p ()

s, p{2) 1 =5 p3
H H

The analogous commutators for Fp

1, (1), _ . - (2)
5P, T ] Fu

N M
1 (Ly, . . (3)
1 (3, _ 5 A(2)
{“Z—”P, Au j[ = 1 AU

Tl (3), _ . (4
{ZN’,Du B 1 DH
(4) _ (1)
[s, Du I =1 DM
(5.6)
(a) and A<a) are
» ]
1 v(4) y F(3)
EQ'P; Lu 1 = 1 *U
s, %7 =3 0@
Y u
5.7)
1 (4), _ . ,(2)
{iN’ Ap ] = i AU
1 (1) .o (4)
[fP, AU ] i Au
(5.8)

The singlet and triplet components of the order operators are

related as follows:

{D(u)

o D 1 =1¢
{Féa), z(a)] _ i’g(2)
{Aé&)'\é(@)l _ i\“(B)

(no sum over o)

(5.9])
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These !'pseudo-spin' triplets are represented by

(1) _ s
o = (blxro, szro, E3xr3)
A(z) B
g = (TBXTO, U3XT@, W3XT3)
“3) _
977 = (STt SUgXTys SWiT,).

These triplets have the following commutation relations:

(o) (o) _
[Gi , oj ] i eijk Oy
(o) _ (o)
[Gi, qj 1 = i eijk Oy
(o) (B) _ aBy (y)
iGi ’ O'j ] i ik e Ty

(irjrkf o,Bsy

.-
The cga)
J

[G(l), Dé@)] = 1 9(0'4)

.{g(l)’ é(u)] - Déa)

(o)

(o) and A .
U

with similar relations for Fﬁ

(5.10)

=1,2,3)

(5

connect triplet components with singlet, for example:

.11)

(5.12)
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6. The Spectrum Generating Algebra

We may write our starting Hamiltonian (2.20) in terms of

the order operators (3.2), (3.3) as:
a1 o "o oa (a) 1 (o) (Lyz (1) (2)7(2)
1= 5 {(e+e?) N + (e-e') & + AO DO +Jyu TU + yu Tu

(6.1)
(with summation over p and o)
where
(1) (2)  ,(3)  (4)y = fomin ann .
{AO , AO , AO , AO } = 4 Re(AO+AO), Im(AO+AO),
-Al L
Re(AO AO), Im(AO AO)}
and
(1) _ (2) _ -
Y, T {Im vy, Re v} , Y, o< {Re v, I y}
(6.2)

From the form of the Hamiltonian given in (6.1), using the commu-
tation relations of the previous section, it is a straightforward
matter to determine the spectrum generating algebra g for this
system; that is, the algebra generated by the elements of (6.1).
Since these are all elements of su(8), the SGA must be a subalgebra
of su(8). 1In fact, we now demonstrate that the algebraic closure g

of the operators occurring in (6.1) is all of su(8). This has the
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conseqguence that all of the 63 operators of the theory will
appear in the time evolution of the order operators already
present in the Hamiltonian (6.1). Whether they give rise to
physical phases will depend on an evaluation of their expectatioqs
in the eigenstates of (6,1) or on a self-consistent analysis.

The generation of all su(8) from (6.1) may be seen in the

following stages:

(i) Since F;l>, Fiz) e H and S ¢ H, using (5.7) we have that all
Féa} €qg..
(i) atso [rM, rj@z)} = ie,, 0, %0 geo
(iii) Evaluating {F(i), F§4)] = i eijk oél) gives g(l) £ g.
(iv) From Déo‘), o ¢ g, using (5.12) gives all DSO’“) e g.
(v) Using (5.4), (5.5) we see that Déa), Téu) generate Aéa).
(vi) As in (iii) [Di”), Djﬁf”} = ieyyy cy]i3)and [Aél), Aéz)]
i eijk géz) imply that all g(a) eg . The 60 operators
éa)’ ?éa), Aéa), g(a), o together with the three remaining
Cartan operators S, Nand P = %-{Fsl), Fé2)} exhaust su(8).

We may note at this point that the commutation relation

[DéB)f 2(2)J - - i é(B)
generates an odd-parity odd-time inversicn anomalous triplet term
from singlet superconductivity (T = - 1) and a spin-density term
(T = - 1). The production of such an anomalous term has been

previously noted in the literature [10].

However, evenmore striking is the generation of conventional
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(0=0) triplet superconductivity from the interaction of singlet
superconductivity and density waves. A simplified model [ 3]

exhibiting this phenomenon may be obtained from (6,1) by choosing

(2

3
A.=A' (real) and YU ’=0 in (6.2). It is also sufficient to

0 0

choose axes so that only 1‘2)+ YéZ)' It may be shown that the

SGA of this submodel is so(4) ® so(4). The even-time-reversal

triplet superconductivity order operator D§3)

"is generated as a
second-order effect of the interaction between the singlet super-
conductivity, and the charge and spin density waves; it has non-

zero expectation in the ground state of the Hamiltonian and may

therefore be considered as an observable phase [3].
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7. Subalgebras and Submodels

It is a faifly straightforward matter to obtain the
spectrum generating algebras corresponding to submodels of the
Hamiltonian (6.1). These algebras are generated by subsets of
the 63 su(8) operators, (3.1), (3,2), (3.3), (3.4) and (3.5).
The components of the algebras generated by the érder operator
terms may most easily be calculated by taking céntralizers; to
these one must add the other terms of the Hamiltonian (such as
kinetic energy N,S). We illustrate this method by obtaining the

spectrum generafing élgebras of some previously noted submodels.

(1) Superconducting Models

The order operators for superconducting systems are defined

as those which conserve momentum, but do not conserve number.

As in Section 3, we obtain the set {DJQ)}, represented by the
matrices (3.2). These may be succinctly written as
1 1
{E, T 3/U5,WyS,, 11 x {Tl’Tz’ (7.1)

and in this form we see that they generate the subalgebra

. 7} { .2
{g,T3,U3,M3 % TM(} {SB’I} X T (7.2)

which is isomorphic to su(4) & su(4). (This algebra is the semi-

simple component of the centralizer of momentum P in su(8):

C (P) ~ u(l) @ su(4) & sul(4d).)
su(8)
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As this su(&} ® su(4) algebra also contains the appropriate
kinetic energy terms N and S, this is the spectrum generating
algebra corresponding to a two-component (k,i) superconducting
fermion system.. Each su(4) corresponds to a mixed triplet-—
singlet superconductor as previously obtained [11] - one for k

and the other for k. This may be made explicit as follows; define

T, = 1/2 (7

N +13) T, = 1/2 (=

=T

0 0 3)'

Then the two commuting su(4) algebras are

k - component: su(4) ~ {EXT¢>(THIT0XT¢XE}

k - component: su(4) ~ {EXT+X T, ToXT x1}

0" 4

(7.3)
Conventional singlet superconductivity may be obtained as the

centralizer of the spin operator in either of the above su(4)

models, thus

Cou(ay (@) = TrgxmyxTy, ToxT, %1y, To%T, %74}
v oso(3)

(7.4)

which is the spectrum-generating algebra of the singlet super-
conductor. In the notation of the previous section, the

so(3) & so(3)

(k) (k) singlet subalgebra has basis {N,S,Déa)}.

The spin-one, pure triplet case corresponds to the so(5) ® co(5)

(k)
subalgebra with basis {N,S,Q(u),g,g{3)}, in the notation

(k)
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of the previous section. Each so(5) algebra is also the SGA
for superfluid Helium three [12,13], or a spin-1 superconductor,

(ii) Dbensity Wave Models

The order operators for density wave systems are defined
as those which conserve number, but do not conserve momentum. As

in Section 3, we obtain the set {T represented by the matrices

(o) } ,
U

(3.3). We may rewrite this set as

T, X {Tl,TZ} X {TO,TB} (7.5)

As in (i) above, under commutation these generate
. [ i’
T X ru><{TO,T3}{) T ¥IX LTO,T3} (7.6)

which is again isomorphic to an su{4) @& su(4) algebra. To obtain
the SGA (spectrum generatihg algebra) of the density wave Hamil-

(o)

tonian containing the T order operators we must adjoin the
number operator N, which is not present in (7.6). Thus the SGA
for a mixed spin and charge density wave model is u(l) ® su(4) ®
su(4), as previously obtained [7]. This algebra may be most

simply obtained as the centralizer of the number operator N in

su (8) v

Csu(8)(N) v ou(l) & su(4) & su(4) (7.7

The centralizer of spin g in (7.7) gives the CDW algebra generated

(o)
0

this directly from a model charge-density wave Hamiltonian [14].

by {P,s,N, T }which is u(l) ® so(4); we have previously obtained
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The spin-1 part of (7,7), the pure spin density wave algebra,
is generated by the non-spin conserving elements of £7.5},Aand
has for bagis {p,s,n, . This is the algebra
u(l) ® so(5) ® S0(5), as calculated previously from a specific
density wave Hamiltonian [7].

If we consiéer only the parity-invariant. elements of the

above subalgebras, where the parity operafor?n is as defined in

Section 4 (i), then we obtain subalgebras as follows:

4
CDW in,s, Ty s I‘é )y voou(2)
SDW {N,s, y_(l), I‘(B), o} v u(l) ® so(5)

(7.8)

These are the spectrum generating algebraslfor the model Hamil~
tonian (6;11 in the absence of supercondﬁctivity taking the
coupling constants (6.2) real, and considering pure scalar and
pure vectof respectively.

(iii) Singlet Model

We obtain a spin-zero model by taking the centralizer of

the spin operator-c in our su(8) algebra; thus

Csu(s) (&) v sul)

with basis

{Ixr3, gxro, SXT,, WxT,, WXT,, E X1y, EBXTZ} (7.9)
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This suf{4) is isomorphic to that obtained previously for the
spectrum generating algebra of a model Hamiltonian exhibiting
the coexistence of superconductivity and charge density waves

[4]1. To see this isomorphism more readily, write the set (7.9)

in the form

{r 3ot
T xruxkAO,T3} U+

0 3 17 12} (7.10)

x71 x{7
H

(where in (7.10) we have actually considered C, (¢) ~ u(4) for

(8)
simplicity; we can always discard the central element ToXToXT,
later). The set (7.10) is clearly isomorphic to
{TOXTO, ToXTqr T4XTqs 13X12} X T

which in turn is isomorphic to TUXTU. This is the set of 15

TOXTO) of reference [47,

(iv) Spin Models

The eight spin order operators (3.5) generate the algebra

with basis {E(al} (a0 = 1,2,3,4;\0(4)5 ¢g); as remarked in Section 3

this is equivalent to four independent su(2) algebras. We may
obtain the spectrum generating algebras for spin model Hamiltonians
by adjoining the kinetic energy terms N and S. For example, the
even parity spins give an algebra {N,S;~Q; 2(3)}. This splits up

lntOA{TOXTTXT3f TIXT XTyr TXT XTg, T3XT¢XTO} ~voul(2),

and {7_.%xT, 6 XT

OXT XT 50 XT , XT TAXT , XTay T

TpXT ETyr THXT XT3

3XT¢XTO} nou(2);
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two independent u(2) spin models, for the k and k systems
respectively.
We show the descent from SU(8) to the subgroups corres-

ponding to models (i) to (iii) in Table 2.
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TABLE 2: Subgreup Descent from SU(8)

SU(8)
c(p) - N\
Center C(N)
SU(4) x sSU(4) C(o) U(1l) x SU(4) x SU(4)
(Superfluid) T (Density Waves)
. v / Co) C(O/
- SU(4)
CDWwSC)
Center %iil\///
SO(5) x S0(5) S0(3) x SO( X S0 (4) U(l) x .S0(5) x SO(5)
(2 x SSC) (Complex CDW) (Comglex SDW)
T T
SO (5) SO (3) U(2) U(l) x SO(5)

(TsC) ‘ (ssC) (CDW) (SDW)

Notation: SSC Singlet Superconductor

- TSC = Triplet Superconductor
. - CDW = Charge Density Waves
SDW = Spin Density Waves
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8. General Hamiltonian and Self-Consistency

We may now write down the most general Hamiltonian for
the coexistence of superconductivity (singlet and triplet) and
density waves (charge and spin) within the context of our su(8)

algebra. This will generalize the expression (6.1), thus:

H =, H(k)
k

Hik) = 1/2 (e + ') N+ (e-¢') S+ pP +

+ Agp) Dép) (superconducting terms)

+ ng} Fép) (density waves)

+ a&p) Aép) (anomalous terms)

(p)y _(p) (magnetic field terms)
+ B ' .o
—ext =
(8.1)

We sum over repeated indices in (8.1);u= 0,1,2,3 and o = 1,2,3,4.
We have written g(4) = ¢ for conciseness; and have included a
momentum term p P, where P = 2 S3XTO, in order to attain the full

)complement of 63 operators. The magnetic field terms in (8.1)
enable calculation of susceptibilities, as has been carried out
for the SDW sub-algebra of su(8) [i]. |

The expression (8.1) has the virtue of explicitness;

however,; a more concise, if less transparent, form of the mean-

field Hamiltonian H is given by

= T B
H ﬁ mij (k) xij (k) (8.2)

(summation over repeated indices i,j) in terms of the operators
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Xij(kl = Bz(kl Bj(k) introduced in Section 2, These satisfy the

commutation relations

ixij(k)f X kI = &0, (Sjr X, (k) = 6. er(k)) (8.3)

We may consider the mean-field Hamiltonian (8.2) to

have arisen from a pairing Hamiltonian Hred in the following way.

. .red ’ .
We reguire that H conserve number N, momentum P.,., in fact,

all seven Cartan operators which are broken in the passage to
the lower symmetry, mean—-field system, These operators have the
form ) ri ) Xg (k) (4= 1,2...., 8) (adding in the identity)

k
and it is straightforward to verify that the Hamiltonian

Hred - 1/2 E
L,

..f.
L (k,k') X.. (k) X..(k' .4
L Sag O Xy 00 gy O (8.4)

conserves these quantities. Thus (8.4) is a suitable choice of

pailring Hamiltonian. If we choose
gij(k,k) = 2%}k)§ij
(8.5)
and note that {Xii(k)lz = Xii(k), then the kinetic energy terms

are also included in (8,4). With this choice the coupling

constants satisfy

¢ . §
95 (kKD = gy (kK. (8.6)
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In addition, from the hermiticity of Hred we have

*
954 k) = g kK (8.7)

Now define

. + ¢ o (i#3) (8.8)
gij(k’k ) Xij(k ) o>

¥

, _ T
mij(k) << i

(no summation over ij), where << >> refers to a thermal average
with respect to the pairing Hamiltonian (8.4),

<< Q »>> I trace {exp(—BHred) 0} /trace exp(—SHred). (8.9)

We now apply a Hartree-Fock linearisation to Hred, and obtain as

an approximation the mean-field form (8.2), using relations (8.6)
and (8,7). We now introduce the thermal Green's functions [15],

and for simplicity take << >> & < > below:

_ ' + |
Gij(k,T) = - < TT(Bi(k,T) Bj(k,O)} > {(8.10)

where, at the level of mean-field theory, the thermal average
< > is with respect to the mean-field Hamiltonian H of (8.2),

as is the Heisenberg t-evolution
B; (k,7) = exp(Ht) B, (k) exp(-Hr),

Here TT is the T-ordering operator, so that

- +
- <x 8.11
Gy (k,07) = <Xi (k) >. ( )
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Writing the conventional- w -~ transform of the Green's function,
and replacing ; in (8.8) by the integral, we obtain the self-

k?
consistent equation

n

e

;q.‘

|
TO pt
[ ]

3 95 (k") G‘ij k', w_) . (8.12)

In mean-field approximation the Green's function is explicitly

known [16]: in matrix form

-1

G(k,a&ﬁ = (i @, I - g(k)) (8.13)

where H(k) is the 8x8 representation of (8.2), H(k&jzs mij(k).

Thus equation (8.12) becomes

3

=

o

i
™|

[ 3~k
)

: g,.(k,kY9%rie.. G(k,n )] (8.14)
(2W)3 J1 n

ij” ij

n
where eij is the same matrix as was introduced in Section 2. A

slightly more conventional form of (8,14) is obtained by using

the Hamiltonian (8.1) in the triple-Nambu representation (2.9),

thus - for simplicity - taking gij(k,k') = -g, (i#7) independent
of k,k?
g d3k
:.,_“\*J 8.15)
m ) tri(t_ x 7. x 1) G(k,0_)] (8.
abc B 4 (2w)3 a b C n
where we have written H = Z mabc Ta X Tb bl TC. Thus, for example,
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using (2,8) and (3.2) to determine the coefficient A ) of Dél)

-0
in (8,1), and taking A = AO = Aé real in (6.2) we have
ey e, f
Mag1 = = E; ) trifry x Tg X ) G (k0 07,
n (21.?)

a self-consistent equation for the singlet superconducting gap

in this formalism.



-40~

9. Conclusions

Starting with the simple model Hamiltonian (2.1) of
Section 2, we are led by algebraic closure of the operators
therein, to the generél Hamiltonian of (8.1), This new system
includes many new phénomena not present in the original system, .
involving as it does 63 parameters against the originai 14,
Two questions concerning the algebraically generated operators
arise naturally:
(i) Is it really necessary to include them in the theory?
(ii) Do they give rise to physically observable phenomena?
The answer to (i) is that even if the new operators are not
present in the original Hamiltonian, they will be generated by
the time evolution of the dynamics acting on the operators already
present; and so they must be inclﬁded for completeness, The
physical detection of the corresponding order parameters will
depend on their not vanishing in the ground state of the system;
this requires diagonalization of the Hamiltonian, This calculation
has been carried out for a simplified so(4) @ so(4) version [3] of the
complete su(8) model . where it was found that a new operator
(triplet Q=0 superconductor) not present in the original Hamiltonian
had non-zero expectation in theground state of the*priginél
Hamiltonian. These questions may also be tackled by conventional
self-consistent methods; and we sketched this approach in

Section 8.
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