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ABSTRACT
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I.INTRODUCTIOR

)

The main object of this paper is toc construct second quantized fields

{

that transform according to representations of the proper orthachronous
Lorentz group and which form supermultiplets, starting from the
representation theory of the Lie superalgebra of the proper orthochronous
Poincaré group. The analysis is given for the case of massive particles
with N=1. Since this is a 'systematic' method it has advantages over the

'ad hoc' arguments that have been used previously.

In section II the theory of the irreducible representations of the
Poincaré Lie superalgebra that was first given by Salam and Strathdee1
(and which 1s described in most review articles on supersymmetry

(eg. Fayet and Ferrarag)) is developed further.

In section III we review the procedure for constructing second gquantized
fields transforming as some representation of the Lorentz group from some
; . . . : . 3
unitary representation of the Poincaré group, as detailed by Weinberg .

This approach has never previously been taken for supersymmetry theories.

In section IV we construct the left handed supermultiplets using the
theory developed in sections III and IV. In section V we construct the
right handed supermultiplets from the left handed set of section IV. In
section VI we show how the phase factors of the fields can be altered so
that the equations giving the action of the supersymmetry operators are

symmetric under the interchange of L and k.

In section VII we examine methods of constructing combinations of these

chiral supermultiplets in such a way that the fields obey equations other

*

than the Klein-Gordon equation.



Appendix A gives our conventions for the Pauli and Dirac matrices and

contains some identities used in the fext. Avpendix B is a short revisw

fagis

1]

of the super Poincaré algebra as used in this paper.

II.THE LITTLE ALGEBRA

The particle content of the supersymmetry multiplets is well known and

was first given by Salam and Strathdeel. A supermultiplet consists of
four particles of spins j, j+%, j-%, and j, except in the case when j=0,
in which case the j-% particle does not exist and we have just three
particles in the supermultiplet. In this section we will establish the
precise relationship between the rest states of these particles in the
massive case,. Ve do this using Clebsch-Gordan coefficients of SU@)
The results given by Theorem II.1 have never previously been presented

in the literature.

First we aobserve that the operatcer F = F F  commutas with every
generator of the superalgebra so that its eigenvalues serve as one label
for the irreducible representations that we use. As usual we denote this
eigenvalue by chg, where ¢ is the velocity of light and ¥ is interpreted
as the rest mass of the particle. Here we consider only the possibility

¥ > 0.

A second label comes from considering the 'superspin operator' X defined
by
k=S5 P -§ P )& PP-sP")
0 p pr
and which also commutes with every generator of the Poincare
superalgebra. Here
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The operator K has eigenvalues of the form - M404£2j(j+1), where
j =0,%1,... , soc that j provides a convenient second 1label Zfor these
irreducible representation. It has previously been noted by Sokatchev4,
who gave a version valid only 1in the Majorana representation of the

Dirac matrices.

Now denote the particle states in the representation labeled by ¥ and j
by | p, k, m for k=j, j+%, j-%¥ and m=k,k-1,...,~k+1,-k, and by i{p,j,m» for
the second state of spin J with m=j,Jj-1,...,-j+1,-7, with
p:(pl,pg,pg,p4} in each case. Then consider a particular set of states
within this representation, which we take to be the rest states with
p=¢0,0,0,Mc)=p. This set of states is left invariant by the generators
{H}j,i,j=1,2,3;Qa} so that we are looking for the representations of the
'little superalgebra’ generated by {ﬂ}j'Qa} on these rest states. Let
iﬁ,k,m > for k=j,j+¥,J-# be an eigenvector of J3, F} and JQ such that

2 . -
Jp km> = ﬁgk(k+1)! J ik, m o> s
P P

ngﬁ,k,m> = Kml p, k,m > ,
Pl.ljb,k,m > = 0 for i=1,2,3 ,
and P4lﬁ,k,m > = Mclp, k,m >
with similar expressions for |p,j,m». The main result of this section

is then given by the following theorem.

THEOREN II.1

Suppose the rest states of the particles in a representation are denoted
by lp,J,m>, |p,jt¥,m'>, Ip j-%m"> and |p,j,m», with spin values
j,j+%,j~5 and J respectively, and with m=j, j-1,...,~J+1,-J;
m'=f+, -8, ..., ~jt¥é,-(j+¥) and m"=j-%,7-3/2,...,-J+3/2,-(F-%). Then

{(with an appropriate choice of the relative phases):

%

v Gabmo= (3 J0) 1k (s 2l 1ho-
{Mb QLn!p,j,m > n ol mtn | p, J+#, m+n >+ n ol mt lp,J %,mfﬁai
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iL} s ok - 5 ( 4% J j+i} e
{Hb QLn(p‘J+“’M+% 7= en -n  mt+4%+n! mt \p, J, mthtn » b
# :
(A P : [ % J j—i] A,
- — = -0 —
b{c} Qi >= 2o | o | py) (B d R (1c)
#
A P B
{M,} QppJimr =0 (1d)
#
£ s
el @alpim> =0 (1e)
{iL}% Q, \p, j+#, mts >= (% ] j+%] I D, J, m+#-n > (1)
M Ln *’ ' n mté-nlm+k e d
{ﬁ-}% o, 1hmw>= (2 I T p g meen > (1g)
He Ln &7 ! n  mth-nl mtk T
B
£17 f _ s 7 j+ﬂ . ( % ‘qj—ﬂ N }
{Mc} QLnlp’J’m e Zn{{_n mim— AL P 'p. ] %’m(?hi

Here n = #,-% and [ﬁ i{;:i} are Clebsch-Gordan coefficients of SU(2) for
which the phase conventions of Condon and Shortley have been employed
(ct. CDrnwe115 ,chapter 12). If j=0 then the j-# representation does not
exist and the representation just has  the rest state vectors

Ip,j,m> 'p,j+%,m' > and /p, j,m».

PROOF

We choose the particle states Ip,j,m > to be such that QLH|§,j,m »=0 for
el % t
n=#, ~#, and then consider the set of states {iﬁ,j,m >, {EE} Qin!p,j,m 7,
(ﬁ'} Qr Qf ID,7,m>} The proof is then in several stages
o) Ly Yp-p P05 TC pr ges.
%
. iL} t o, .
(i {Mb QLn lp,Jj,m>:
1% ¢
Since {Mb} QLﬁlﬁ,j,j> is an eigenvector of JQ with eigenvalue #(j+%) and
2
of J  with eigenvalue 52((j+ﬁ)+1)(j+ﬁ), we can choose the relative phase

of !p,j+%,7+% > to be such that

N 3 toa .
|y g+, 5+ = (ﬁ;}u R



and let the phases of |p,Jj+#,m >, for m = j+#-1,...,-(j+#), be determined
by repeated application of J_. With the convention that
. L
J 1P, jth,m> = nyi B b, i+, m-1 >
g . )
and o fofc i +m (G -mt13 "

(cf. Cornwell5'ohapter 12), then

fooa S ] A
J_QL%!p,J,m > = %QL_%!p,J,m >+ ﬁp; QL%xp,J,m~1 >

t . JAt A,
> o= -1 >
and J_QL_%!p,j,m ; ﬁmeL_%lp,J,m 1 >. Hence
# pj
o . - iL} A | EREPEVEN A - tos oL
lp, Jt#, J=%# > {HG e QP It Ty Qulpidd=12
itk Hivy

This can be written in terms of the Clebsch-Gordan coefficients of SU2)
as:
\p, jth,J=% > =
TR N AR 6 7 |jea[E "
ol 3 s o - » n_ 5
{—,‘é b j—g}{}fc} U-y'prdrd >t {% j-1 j-ﬂ{ﬂc} Qg 'PJj=1> (2
Repeating this analysis we obtain

Ip, jt¥,m > =
%

71
# j|j+%}{ﬁ_‘“r A N (B 7 |j+8 (a7 2 L
{—,‘é ntél m J'!c} Rpoy!Prdemth 2 % 4yl p J{Mc} Qpy ‘P ok >'®

- 2
Now Q{n!p,j,m > 1is not an eigenvector of J = with eigenvalue
¥?(%j—%)+1)(j—%) for any n or m but we can write

# #
ks = ﬁ;} toe . {ﬁ) P

with «, @ chosen such that
J+|jo,j-;é,j—;é > =0,

Then by an analysis similar to the above we find that
Ip,j-#,m> =
%

y
% jj-%}{ﬁ_} o s {% J j—,ﬁf}{:ﬁ_} toa _
(b w20 Gogbames + (V0 et @ B o .

Let Cn be the 2(2j+1)x2(2j+1) matrix of Clebsch-Gordan coefficients

’

SU¢2) defined by

. Dk PSR -1
nm,

Dj_% } (C )r’ n'm = D%(a)nﬂ,x Dj(a)mm, (6)
0 alrr' !
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with aeSU(2) and Dp%(a) the irreducible representation of SU2) in

(Bk+1)x (2k+1) matrix form. Then equations (2), 8), (4) and (3) can be
combined to give
%
N ~ -1 At -
Ty N f— f = - f >
(Up j+¥é,a’ >, Ip,j-%a >>r Cr, om {Mb} QLn Ip,J,m>.
Inverting this we obtain
A # 7
== D, i = N, 7 > o, j- ’
{Mb} QLn lp,J.m> Cnm’r(ip,J+%,a >, tp,Jj-%, a >>r ,
which is the first of our required results.
1) @ @ . ips.m>
TS g P
We define
A _ Al A4t iL} A
Ip,j,m» QL%QL—% {Mb ip,Jj,m>.
and noting that the Clebsch-Gordan coefficients must satisfy
2 2
% jj-f@ {&é jj—zj i} ,
[% mlmts) T s ml mes =1 8

we obtain the action of an on |p, j+#,m> and |p,j-%,m>.

Lastly we note that anlﬁ,j,m > = 0.

{i1i) The action of the operators QLH

We note that

.

f _ M
(R 9nd = % Snn’
when acting on the rest states, so that

t M . t
Qa7 % Snne T Yoo

The proof proceeds as before, making use of equation (8).

This completes the proof of the theorem. It is convenient in the next
section to have, in addition, some of these formulae expressed in terms
of the operatars QRn as follows:

#

:ﬁ_} ~ » _ {‘é j j"'ﬂ - B
(Hb QRn‘p’J+%’m+n ? = n mmt ‘P, ., (9a)



%
ﬁ_} _— - [fé UERITS, .
{Mb QRn!p’] %, mtn n  ml mtnl Pd,m (9b)
d {ﬁ‘}}é Ip, J - [ jlj%} I p, j+%, mtn »
an ue) Cga'PIm S Ln ol men) (PP TRETR
£ j—i} AL N
+ {n ol ot Ap,J-#%, mtn >. (Sc)
Ve note that each of the vectors tﬁ,j,m 7, !@,j+%,m' >, Eﬁ,j+%,m" > and
I@,j,m » is needed in the representation derived above and no other

vector is needed.

III. THE CONSTRUCTION OF SECOND QUANTIZED FIELDS

In this section we give a review of the construction of operator-valued
fields that are Lorentz invariant starting from the irreducible
representations of the Polncaré group. The method we use 1is that

developed by Weinbergs,

The unitary dirreducible representation of the proper orthochronous
Poincaré group corresponding to a particle of mass X and spin j with

p=¢0,0,0,Mc) is given by:

exp (i‘jlp)o,ttr}D](IB(Ap,l'b)_lB(p,j))IO} ) o b L (10

*'j :
9 a1t L. 2 *ap,m

for m=~j,-j+1,...,7-1,7J. Here ¢ . m are the vectors of the carrier space
of the representation, §ﬁ'j<IAlt]) are the operators, for a given D, J
corresponding to an element [Alt] of the covering group of the proper
orthochronous Poincaré group, LJ is the (2j+1)x(2j+1) dimensional
representation of the rotation group and B(p,p’> is the Lorentz boost from

a 'rest state' labeled by p to a general state labeled by p, the

the combination B(Ap,ﬁ)_lAB(p,ﬁ) being then a pure rotation known as  the



'Vigner Rotation'. (For more details of this formula and its derivation

see Cornwe115)4

Now we identify the one particle state Ip,j,m >, as used in the previous

section with [Eﬁf ] n and by comparison with equation (10> we define
Me !
the unitary operator Ud Altl) by:

UaAtl)ip, j,m> = 1L
% .
{'p-imp) } expthcap) t"30) aBap, p) T AB R, 101D, 1 AP, 1" >
y A P m'm

Here and in the subsequent equations the repeated index m' is summed over

all the values J, Jj-1, ... ,-J.

+
Next we introduce the single particle creation operators ap , _and the

and the vacuum state [0 > by:

f

a 10 >
pJ.n

I'p,J,m> =
and suppose that

pastix>io» = 10> for all [AIt].
Equation (11) can now be written

UaAtlral . vamtol =

p,J, (12>

Jé » —
L{APT} } exp{fg(/ip)[,t"}p] CBap, p) TAB(p, pr1 0} n'm a;p, Jom'

In particular we note that
%

t {J_LQ} X ' ol |
a_ ., = U BC(p,p)101)a, . UM B, p)lI01). 13
pJim P, PP prJ,m PP
Now we define the corresponding annihilation operators ap i,m by
a_ . =(a! )7
psJ, p.J,m
and take the adjoint of equation (12) to obtain:

U Alt]a ,mmmtﬁl =

LA

#
(Ap) } 1L r a1 2 * '
{ 44 exp{ %(Ap)yt }Dj({B(Ap,p) AB(p,p)lO])m,m aAp,j,m‘
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Since the matrices D’ are unitary we can rewrite this expression as:

UAAIt])a . mmmufl =
P J, (14)

#
(Ap) } L v, J A -1 SN
{ 4g exp (= (Ap) t")D T BeAp, p) TAB(p, P10V, 2,
i1t is convenient to rewrite equation (12) so that the indices are in the
same order as those of equation (14). To do this we recall that since

the representations D’ of SUc2) are real or pseuda real (cf. Cornwell5

Chapter 5) there exists a (2j+1)x(2j+1) matrix Z} such that:

' arion® =Z;1DJ({R!O])ZJ 15
Here [RI0] denotes an element of SU(2), the covering group of SOG,RY,
that maps onto the pure rotation K in the 2:1 homeomorphic mapping of

SU2) onto SO, RY.

We note that the matrix Z& can be chosen to satisfy

-1 t

z+' =2z (16)
j J
o
and ¥z, = 0% (17
i%
For j=# we put Z% =0, Equation (12) can now be written
vamtiral . vaat Tt =
prd, (18)
!é
(Ap) i v, -1 ~1,-1 t
{ p44} exp (L (1p) t }(ZJDJdB(p,p) NTBUp, PO A

Next we assume that if the particle has a corresponding antiparticle its

creation and annihilation operators b’ . _and b_ . have the same
P:J;m an:m
transformation properties as af , and a_ . respectively.
p,J,n p,J,

We can now construct Lorentz invariant fields defined on space-time using

these equations but it is advantageous to insert an intermediate step

into the construction. To this end we let F(J)EA|OI) be a (2]+1)x(2j+1)

dimensional representation of the orthochronous Lorentz group .that

coincides with LJ when A is a rotation. Thus F(j) can be either FG’J,

the 'right handed' representation, or FJ’O R the ‘left handed'
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representation.

1 ‘
¥e note that I ) is not a unitary representation
we define the ancilliary operators «

Then
and , b
o Jy ﬁpjj,m Y
22" 1 cmep, o1 (19
a_ . = ‘ - S 197
p.J.m e PP mn'"p, f,m
2p | % i) t
and , ={%Fyt Y aBp, Az, b . _, (200
ﬁp'u]lm MCJ p'p J mm P,J/Iﬂ
The transformation properties of these cperators are
UANIE) e vane =
l]?
1 o, (J) -1
exp{ ﬁ(Ap)gt Mr aa !t})mm'aAp,j,m' 21
and
vanitlog ,  vaniel =
»J,
b v, () -1 s
expf{ K(Ap)yt r €A tt])mm'ﬁAp,j,m’ (22
Ve note that if the particle under consideration is its own antiparticle
then ar , = . but o . z B
p,J,m p,J. p.J, o

, unless j=0.
p.J,

inally to obtain the field for a particle of spin 7 transforming as

the
. : . 1)
(2j+1) dimensional representation r'/’ of the orthochronous Lorentz graoup
we define

-1 i
Xj ™7 {:2—71‘[_ 3{ dPS %4 { pap,j,meﬁ P; P'ﬁp,j’me% 7 } 23
with p, p' complex numbers such that Ipi=ip'1=1. This field then has the
transformation property
UaAIt] )Xj,m(x)mmufi =rPqa

101D, x. ., (Ax+t) . (245
mm J,
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1V. THE LEFT HANDED SUPERMULTIPLETS

Ve assume that Q&IO>=O so that we can express the action of Qﬂ oD our

rest state creation coperators as

%
£ t i} ) t .
{M“. L9y “@,k,& M(Qx"m'k‘,mk aﬁ,k',m‘ ' (25
where [ , 1 is a commutator if k is an integer but an anti-commutator if

k is a half integer, that is, the parity of the creation and annihilation

operators is defined by

. _ .\ 2k
[ap,k,m‘ 'ap,k,mf (=177,
Here M@ J_,. ., is a matrix whose coefficients can be determined
o m'k',mk

from Theorem 1I.1. If we order the operators so that

t t t t t
= : k= J,j+6, 18,7
“p i m (ap;j,m 'Zp,j+8,m " “p,j-#,m 'Zp, i, m b I I TR IR
t
_ N = f 1B -
with ap,k,m{0> lp,k,m for k JsJ+%, ]
f
and a . 1oy =1p. Jj,m»,
° *p,J,m p-J

then the matrices MTQQ) can be written

+

M@ ikt me
0 0 0 0
49109 ; o
ma (26)
[z’ J J-ﬂ 0 0 0
n m mt
S Ea I I 194
ol >
0 “n{—n m+%+nl m+#% “D(—n mtktn | m+#% 0
- m' k', mk
and
M@ mk, ok T
- 3
n m+%-nimth n m+s-nl m+
2n [‘é 3}3:‘;3] 0 0 0
o mm Q27
2n {V“ J J"ﬂ 0 0 0
n ntmt
0 0 0 0

- m'k', mk
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Now combining equation (25) with equation (13) we obtain

%

e 9%tk
C 24 p,Aa, 0 (28)
%

3 - - -
(ﬁ‘jU([B(p,pNO] )L U@L (p, p)10] )lQaU([ Bep, p2101),a.

- <1
10 B(p, p)101 ),
-Py p. k.o PP

To proceed we need the action of the operator correseponding to a boost
on the supersymmetry generators Q& . Since we also need to work in two
component form we make this conversion at the same time. Equations (B3a)
and (B3b> of the Appendix B imply that

vame ) o vame = r%%ano L@ (29a)
Ln on

Ln'

L

1.
QRHUT[A/t])

%
0% o T (29b)

and UaC Al 9,
n' "Rn

Here and in the subsequent equations the repeated index n' is summed over

+% and %

Then combining equations (28) and (29) we find that

%

fL} t _ 0B AN - t

{Hc EQLH ’ap,k, m] r  B(p, p)10] )nn'M({"Ln')m’k‘,mk ap,k,m' (30a)

(A # t %,0 f
= S = 3 . 1
and {Hc} CQpy 12 g = T ABERIOD) QD e ap g (30D)
Similarly if we put

#
£ - weo
{Mb gQa’ aﬁ,k,m] N(Qa'm'k‘,mk aﬁ,k',m' (3D

we find that

£)" 0,4

= ' 0 ) ; ) :
{Mt} [QLn ’ap,k,m) r ([B(p,p,iO],nn,N(QLD,,m,k,!mk ap,k,m' (32a7
AN 4,0
= 4 T )]
and {ﬁk} £QRH 'ap,k,m} r ([B(p,p)tO].HH,NYQRD‘)m,k,'mk ap,k,m' (32b)
The transformation  properties of the antiparticle creation and
. 1 ;

annihilation operators bp,k,m and bp,k,m are obtained simply by

replacing a with b in equations (30) and (32).

To determine the coefficients of the matrices N(QLH) and N(QRn) we take

the adjoint of equation (25) as fallows.
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A # t t
Since {Mb} [Qa ’ap,k,m] - H(Qa)m’k',mk ap,lf’,m’
RN -
(£) 'y - ,
then LMc [ap,k,m 'Qa ] ap,k,m M(Qa m'k', mk
5

and so  (-1)%7 {ﬁ?} (o' ,a 1= Q) a
- Mc a ' pkm o m'k', mk “p,k,m’

Thus

27
N N = (=124 ¢q M (333)
(QLn'm'k',mk -1 (102)nn’ (QRn')m’k',mk (33a)

(33b)

. Sj‘ N
= —_ - )}
and N¢ -1 ( 10"9‘ ,M(Q

QRn)m'k',mk Ln')m'k',mk

Next we define the ancilliary operators, following equations <(19) and

(20)., We choose these to be all left handed. Thus:
s

P
L {“pg} 0,k .
ap,k,ﬁ o r (IB(p,p)IO])mm, ap,k,m‘ (34a)
for k=j.j+%,j-% and
2p " .
Lo {__4} 0, .
and %p,j,i Mo r T B(p,p)101)> | ép,j,m’ (341
Similarly
2p N\ °
L { 4} 0k, . t
= { ) =
ﬁp,k,m e r (L B<p, p210] k) , bp,k,m' (34¢c)
for k=j.j+%, j-% and
#
2p ,
L { 4} 0, J t
= (p, n) z .
gp,j,m e r (L B(p, p210] j)mm' stj’m, (34d>

To proceed we rewrite equations (30) and (32) in terms of the ancilliary
operators and reduce the resulting equations. The analysis is very
similar in each case and relies on the following Lemma, and the

identities given in Appendix A.

LEMMA IV.1

The Clebsch-Gordan matrix Cnm r defined by

]

j+5% ;
c e N YT S B M€ =3
nmr 0 Lg_%(R) rrt r',n'n nn mm
and the matrices Z , Z,, Z, and Z specified by equations (15), (18
w Ci i j-% P 7 e
and (17) are related by
b R =

A ’ A I
r,nm( %)nn'x (Zj)mm' Cn’m',r'(zj+ﬁ+ j-% r'r" rr”
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PROOF
Taking the compex conjugate of equation (35) and noting that Cnm r is
<4ty
by convention real (cf. Cornwe115 ) we deduce that
A #
« ,
c .. w0 (c 1)r, e T D"""(R)nn, <t
Lo rEw* ’ ! u
Then using equation (15) we obtailn
- t
7l Pz, 0
C J+% J '415 ({_.'—1
- ~ ' [
nm,r 0 1 Lﬁ t Rz r',n'm
L J—#
=zt mz, ), « (Z_.lD] Rz, )
5 # " nn J J mm
st rhofw « Do, oz, 0
2 J # J nm,n'm
; _ | +4 _
= ((Z%lx Z.I)C[ "R ._g } (C 1(3% x ?j))nm '
J 0 ey
Thus the matrix
-1 -1 -1
z ¥ (2 Z
« )r,nm( %)nn$ ¢ j)mm' Cn'm',r'( j+% J % r'r"
Tt
commutes with { R :_%O } for all R.
0 R

Hence Schur's Lemma implies that it must be of the form

I 0
{ ! 2yt2 ] with o, o'e C.

n '

L ¢ "oy ]

Then, since the multiplicative constants in Z%, Z} and Z}+% may be chosen
such that ¢ = ¢’ = 1, the result follaws.

Using this Lemma we obtain for the creation operators:

#
ﬁi} [Qﬁm ’BL (m
' pJ, (36a)
_ = !éjoé} L {}é jj—}é}
Mb(wypy)nn'{ [n' ml mtn’ Bp,j+ﬁ,m+n' " \n' mlmme B;,J ~$, mtn'" "’
%
L} . _ -1 (!é @ (36D)
Mc [QRn ’ﬁé,j+%,m+%] Mb(apWQPy)nn‘ n m+% n' p,J, mt#é-n'
¥#
iL} L _ =1 {% Z] (36c)
(o) 9%, 5 0, b, m-% = Mo T u 2Py’ nn m—;é n' D, 7, m-k-n'
(364>

{ﬁé} [QRH ’gp J,m =0 ’



and
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%
ﬁ_} L .
= { )
) to A a) , (3643
£)" L b5 |t L
{Mb} EQLn ’Bp,j+%,m+%] - (ya)nn' (n‘ m+%—n'rm+z} p,J,mth-n' ' (361
{ﬁ—}%' L 1= () [” J j"ﬂ L (362
Mc LQLD ’ﬁp,j~§,m~5 S Yolnnt \nt m%-n'lm-% p,J, m-%-n" '’ TTo
%
"fL}* )
{Mb [@Ln ’gé,j,m !
_ % jj»f] L (!é jj—ﬂ L
1 {n ml m+ s , J+#%, m+n *l n mlmt p, J—#, mtn (360
Similarly for the annihilation operators we obtain:
{iﬁ—}%m o
-~ & ;
Mc Fn D, J, 1 (37a>
_ =1 3 [% JlJ+% } L {% JlJ-#% } L
= +
c(wypp)nn'{ n' ml mtn’ ap,j+%,m+n' n' m m+n’ gp,j—%,m+n'} ’
{5—}%[@ ot ]
Mc Rn ' “p, j+#4, m+k (37D
2j+1 1. [&é J I+ L
= (-
-1 Mb(ayngw)nn’ n' m+#-n'lmth ap,j,m+%-n’
{ﬁ*}%[Q o 1
Me Rn '“p,j-% m¥% (37¢)
- e_qg,edtl L [% J j“ﬂ L
-1 Mb(”yygpy)ﬁn' n' m-%-n'lm# ap,j,m—%~n’
%
£ L
4. = 37
(&) re,, a1 =0 , (37)
%
ﬁ_} L _ ,
{Hb [QLn ’gp,j,m 1 =20 , (37e)
%
ﬁ_} L
et ter, LIS Er— (37%)
RIS R (ié J Jt L
- (I?B)nn' n' m+¥-n'lmth gp,j,m+%—n' !
%
ﬁ_} L
{ﬂb [QLn ’ap,j—;é,m—!éJ (37g)
_ 211, (;é b J- L
-1 (102)nn' n' m-%-n'lm- sp,j,M“%—n' !
£* L
L, o .
He Ln p.J,m
2] {(% jlj+~ L (% JJi- L }
«b n m ot ap,j+%,m+n * n mmt ap,j—%,m+n ¢37)
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Ve can now construct the fields that form the left handed supermultiplet
(the phase factors of equation (23) have been chosen with some

foreknowledge). We define:

1% s ke o1 B PE p-X
X ,m(X): {Znﬁf dp 2p4 (e Upap,j,m © - lép,j,me }(38a>
Loy = {,413?' gl e L E; X o2 ER
Xivs i or Pozp, D, e, m p, jtk, m 138b)
-1 L
3( p.x . p. X
L {_133 3 Mc L ¥ L %
) = +
B " \entl | P o2p, U % y-u1° Fp, 3-8, 1 ! (380
-1 i
3 . DX DX
L _ {_;;§ 3K ,,. . .2j L ¥ L K
and &j,m(X) o J dp 2p4 {1(-1) ap,j,me + ﬁp,j,me )(38d>

The action of the supersymmetry generators on these fields can now be

evaluated to abtain:

#

L _ {fL} e {{% Jl i+ } L
[QRn ’&j,m ! Mc prap “nn'\\ln' mlmtn’ Aj+%§,m+n'
BoJ1J-# } L }
(n’ ml m+n' Xj—%,m+n' ! (392
(20p:
[Q L ] = {iL}ﬁ(a o8 ) [% J 1j+ﬁ } L 2
Kn ’Xj+%,m+% Mc M 2y “nn'\n' mth-n'lmtn’ kj,m+%+n' !
i (36
(Q L 1 = {ﬁ-}%«r r.8 ) Vs Joo RN R =S
Rn 'Y j-%, m-t M. 24 "nn'ln' mf#-n' m+n‘J Xji, mttn' '
(0. % 1 =0 (30d)
Rn 'Aj,m
L w\ Fres g1 L 5 jij-# L
[QLn ’Xj,m 1= {% } {[n ml m+ Xj+%,m+n * (n m m+i} Xj~ﬁ,m+n} (39e)
. %
L _ L&? 8 g lj+% } L
EQLn 'Aj+%,m+§] 1{5 (32) nn' (n' m+%-n' |l mén') Xj, mstn’ (391)
5
L _ _.{ﬂﬁ} (% J J=# } L
L _
and Q) ,y; ;1 =0 . (39h)

This is not the most convenient way of expressing these relationships for

the sequel. Ve define the field XZ n by
)

7 J.m
L L L

Xe,n;j,m " Cnm r Xjtm,a *Xj-8,b ’r
with a=1,2,...,2j+2 and b=2j+3,...,r.

4o
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Then

U Al t) )Xi g m TR )~
falf b 4 s

L
mm'X%,D‘;j,m

f

0% a0 )Dn,ro“ aa tion)

=r , (Ax+t)

The final result of this section can now be given as a theorem.

THEORENM 1IV.2

Let the fields L (x) L {x) and ,L (x) be as defined by equatio
Xjvm ™" X, n; 5, m"™ Xim" ¥y eq ns

(38) and (40). Then the action of the supersymmetry generators QEB’ka

on these fields is given by:
%

p - {ﬁﬁ} L )
COrn X5, ™ = Uk ) Xy 0y, 55
%
ﬂk% L L
/ X = - ¢
[QLH’A%,r;j,éX)] {5 (WZ)nr Xj,m x)
L _
[QLn,xj’m(X)} = 0
L
o / =
{@Rﬂ,kj,m(}{)] 0
L A # L L L
gQRn'X%,r;j,éX)] = - {Hb} (0yy2)nr3p Xj,m(X)
L £\° L L
and [QRn'Xj,m(X)] = - {Mb} (yp)nray Xﬁ,r;j,éX)
With n,r=,-%; m=j,j-1,...,-j+1,-j and j taking any integer or half

integer value. We call these the left handed chiral supermultiplets.

PROOF

This is by straightforward algebra, so we give no details.
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V. CONSTRUCTION OF RIGHT HANDED SUPERMULTIPLETS FROM LEFT HANDED

SUPERMULTIPLETS
We could repeat the analysis of Section VI and thus construct a set of

right handed fields. It is much simpler to construct one from the other.

i .
Ve first observe that if {A;J', iA;J), i1 =1,2,53}) are the generators of

, 2y
FO’%{AQO}) with the A;J' antihermitian and generating rotations, and

G

p ,~iA;J) } are the corresponding

iAi(J‘) generating boosts, then {4

generators of FJ’O([AIO]).

Consider the action of the matrix Zj as specified 1in equations (195,
(16> and (17> on a Lorentz boost, one obtains
Z;lfo’j([B(p,jp)f 01z, = P laBop prot
so that
Z}iro’jamol)zj =l %ot U
for all [Al1O].

Now let ¢§(X) be any second quantized field that transforms as

L . -1 0,7 -1 L
) = ) +t)
U(IAltj)(pa(x)U(Emt], r aTA iO]fqﬁg,bﬁ(A‘.
and consider the field
L # R )
(Zj)aa,(¢a,(x)) = ¢a(x) . (42>
This then transforms as
. A .
"U([Att])¢R(X)UT{A|t}) - FJ’L<IA ltO]) ¢R(Ax+t)
o a3’

We note that ¢§(x) is constructed from the adjoints of the operators used
for ¢i(x) so that it can be considered as the antiparticle field of

¢L(x). Also
o

iz L wE =z uEmw o= 0k, 43>
J aa [*4 JJ ax'T«x a

so that applying the transformation twice does not return us to the

starting point, but produces an overall phase factor.
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Now using equation (42) we can construct a set of right handed fields

from the left handed fields defined in equations (38). We obtain

-1 i
P o . p.x oy px
2
o E o= (;i— J ap® B i)k BT eI A
g, =T ~P4 P;J;m P, J,n (A43)
3f “i'p X < p. X
R 1) 3 Mc 2j R A R R
Y. (X)) = {? dp (-(-1)""a_ ., Gl + 8. a >
JtE, m uﬂﬁf ) 2p4 p.JHE, m p,Jt#, m (44b)
-1 i
3 ~ p.xX p.x
XR_%(;%) = {ALQM} ap® B )BT E - LI s me;; )
TR Sl “Py PrJ=% prJ (440)
-1 i
3 X . X
E - Q‘ Lo
and X;Rm(x): {;ﬁf { dp” gg {(~1)“Jg , me% + 1(—1)“JER j meﬁp ),
7, z Py P g P Jy (44d)>
2p }
. R {__4_ 0 )
with ap,k,i e Fk \LB(p,p)io})mm, ép,k,m' (45a)
2p %
R {6 4} k, 0 t
= ( z
and ﬁp,k,m o r (T B(p, p)10] j)mm’ ap,k,m' (45Db)
for k=j,j+#%,j-# and, of course, similar definitions for aR , and 8 . .
~p,J,1 ~P,J,
It is convenient to work with a slightly different set of fields. Ve
define
Xk ... _ .27 ,F ~
Xj,m(X) = (=1) Xj,m(X) (46)
o1
and &= e E 47)
J, J,

The action of the supersymmetry generators on a right handed field is

given by
R e . 2T L i ¥
[Q,, ,Xj'm(x)] = cz,j)m,(wg)m,( 1 (IQRH,,XJ-’M, (x)1) (48a)
R ) _ , L ,aej-1 L i *
and [Qﬁh 'Xj,m(X)] = (Zj)mm'(ly2)nn'( 1) ([QLn"Xj,m'(X)l) . (481
Thus for the field Xf m(x) as defined above
R i # R B Jli+E R
{QLn 'Xj,m 1= {M?} (fpap )nn'{(n' m m+n'} Xj+%,m+n'
B oJlJ-% } R }
+ (
(n' ml mtn’ Xj—%,m+n' 49a)
Similarly :
# (49>

R _ ﬁ_} R R (lé j lj-!-}é} R
[QLn ‘Xj+%,m+%] ! {MC (WyGSQy )nn' n' mt#-n'lmtn') Xj, m+s+n’’
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(o R 1= g f;f {% J | J-4%
Ln 'Xj—#, mti H 2 p nn’ n' m-#%-n'!mtn
R _
LRrn 1 Xg b =90
R o # ¥ jljis) R
[QRn ’Xj,m b= {ﬁ } u72)1111' {[n' ﬁ m+n‘} Xj+£,m+n’
kgl i-% } R }
+
{ ml m+n'’ Xj—%,m+n'
% . ,
(o R ] = { c} [ﬁ J Jt#5 ] R
Rn ’Xj+%,m+% A n' m+é-n'imtn’ Xj,m+%+n'
ot - (9 0
[QRn ’Xj—%,m—%l K n' m-%-n'lmtn’ Xj,m~%+n'

and [QRn

] R
U /Yj,m_fé'f'ﬂ"

(49c)

, (494>

, (49e)

(4919

~

, (49g)

(49h)

As with the left handed fields it is convenient to construct a single

field from the (Jj+#) and (j-%) fields ie.

R o R )
Xg nrj.m Xivss,a "Xj=t6,b 'r

nm,r

(B50)

It is then a matter of straightforward algebra to prove the following

theorem.

handed Pauli matrices as defined in Appendix A.

THEOREK V.1
- R ) K L ko
Let the fields Xj,m(x), X%,n;j,mLX) and Xj}m(ﬁ) be
equations (44), 467, (47 and (50, Then the
‘supersymmetry generators on these fields is given by:
R e ® R
tQRn’Xj,m(X)] = {ﬁ'} X%,n;j,£X)
3 2% RR
{QRH'X% r,j,(X)] = ~1 {%.} (wg)nr Xj,m(X)
R -
[QRD'Xj,m(X)] =0
R -
tQLn’Xj,m(X)] =0
kK _ {iL} K R R
£QRD X% x)1 =1\ (fuw? nraﬁ XJ, (x)
R A # R
and [QLn’Xj,m(X)} = 1 {M'} # - ﬂ Xy r; j,(X

Note that we have written this theorem in terms of the right

as defined

action of the
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¥1.SUPERMULTIPLETS THAT ARE SYMMETRIC UNDER THE INTERCHANGE OF L AWD R.

Vhile the fields used in the previous two sections are perfectly adequate
as they stand, it is more convenient, and more pleasing, toc redefine them
s0 that the commutators or anticommutators of Theorems IV. and V.
become symmetric under the interchange of L and K. Ve achleve this by
altering the phase factors of the fields. This leaves an overall phase
factor undetermined. To reduce the choice we demand that the
differential operator linking the fields 1is also symmetric in the
interchange of L and R. This still does not give a unique choice. Our

choice is such that the Dirac equation takes its standard form.Ve define:

R -ibr K
f = (
Xj,m e Xj,m , 51a)
L ibr L
i = e . , Bib
Xi, m Xi,m
R -icm R
4 =
Xj,m e Xj,m s Bilc
Lo g tem (51d)
J, ~J,n
R _ -iamr K
Yg,n;j,m ° 0 Yeénii,m (le)
L iamr L
and ¢ L, = e . (511>
X,n;7,m X, n; 7. m
with a,b,c € R, Then using the results of Thecrems (IV.2) and

(V.1) we find that ¢ = a+1/4 and b = a-3/4. Thus we can choose (say)

ael 0,2m and the parameters b,c are then fixed.

To restrict this choice we require that if yL . (x) and X? . _(x) are
+ Adon; i, m #,0;7,m
self conjugate for j=0, that 1is, 1in ‘terms of the creation and

annihilation operators we put a = , then the differential

. b_ .
psJ, p,J,m

operators linking the fields are also symmetric in the interchange of L
and R. Since for j#0 the differential operator acting on the index m can
be constructed from the ;=% operator by a sequence of tensor products

this will be true for all j. We find that

L L iMc R (52a)

@9 )nn'X%,n’;O,6X) N A X%,H;O,6X)
H M
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R R iMc L

g ) (x) = (x) . (52D
and (gpap nn'X%,n';O,O{) % X%, n;0,0
The restriction then becomes a=n/2, n=0,%1,#2,.... Our choice is a=-1/2

so that b=-5/4 and c=-1/4.

THEOREK VI. 1

Vith the above choices the action of the supersymmetry generators on the

fields {xf,m(x), Xéfn;j,éX)' X},i(X)} and {Xﬁ,m(X)’ Xé,n;j,éX)’ Kjfm(x)}

of the chiral supermultiplets can be written:

[QRD,X}fr;j’éxn = o 1374 {%ﬁ%wij} . ,?m(x) , (53b)
[QRB,X?m(xn =0 , (530)
{QLD,Xfm x)1 =0 , (53d)
{QLD,Xéf?r;j,m(X)] = 1974 {i}%wﬁyg’aﬂ)nr ,\/fmcx) , (53e)
and [QLD,,X?]D(X)} = 1574 @;c}%mi%}m ‘\‘Jilz?:ler;j,zgx’} ; (531)
[Qpyi Xy p G001 = o194 (%j Xlnm” 3 (54a)
[QRD'XI'é{;r; ;g = o1 {%}““f)nr ¥ , (541)
[QED,Xim(xn =0 , (54¢)
[QLn'«\’},Lm (x)] = 0 , (54d)
IQLE,X;;-"‘r;j/ch)] = 1974 {g;}ﬁ(o‘ﬁ”g%)nr X}?m(x) , (54e)
and [QLH,X;JH(X)] = 1974 {fé}%(vﬁaﬁ)m Xé{“r;j’éx) . (54%)

These sets of equations are then symmetric in the interchange of L and R.
Also the differential operators relating the fields are symmetric in the

interchange of L and R if the fields are self conjugate.

This is the form we will use for these expressions from now on.



24

VII. SUPERMULTIPLETS OF FIELDS THAT SATISFY VAVE EQUATIONS.

In sections IV, V and VI we detailed the construction of chiral

1]

supermultiplets for both left handed and right handed fields. By choice
we constructed the right handed fields as the antiparticle fields of the
left handed fields, but we could have chosen to construct them from the
same set of creation and annihilation operators. In all of these chiral
supermultiplets the number of independent field components is the same as
the number of independent creation (or annihilation) operators. That is,
each field has (2k+1) components, with k=j,j+% and Jj-% as appropriate.

Such fields describe particles of a single spin value and obey only the

Klein-Gordon equation.

In this section we want to examine supermultiplets of fields that do obey
field equations other than the Klein-Gordon equation. This implies that
not all the field components are linearly independent. In ‘this
discussion we will assume that k#0, since the case k=0 is different and
essentially trivial. The reason for introducing additional field
components, according to Weiﬁbergg, iz that requiring a field to
transform in a simple way under P (parity>, and C (charge conjugation)
cannot be achieved with a (2k+1) component field. These fields transform
in a simple way under T and CP but not under C or P. To obtain field
that does transform simply under C and P it is convenient to use 2(2k+1)
component fields that transform as FO'EQIAiOJ) + fk’o([AlO]), In the
case of a field corresponding to a particle that is its own antiparticle,
this would be conséructed from (2k+1) creation operators for each
4-m0mentﬁm and (2k+1) annihilation operators for each 4-momentum. For

the distinct antiparticle case the number of operators is doubled.
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We note that fields constructed in this way consist of particles of a
single spin value. Many other field types are considered in the physics
literature (eg. the vector field Aﬂ transforming as A = § F%’%(A)Srl

for some similarity transformation 9. These consist of several spin

values constrained in some way to remove unwanted components.

Given the left handed field ¢§ o e Dow demonstrate how Weinberg's

analysis3 can be extended to construct a right handed field ¢i n S° that

L 1
¢k,m

the field ¢, (55)

<0

) K
¢k,m
satisfies a differential equation in addition to the Klein-Gordon

equation. To do this we construct the differential operators relating

the left and right handed parts of the field.

We have already given the result for k=§ in equation (52), which can be
rewritten as the single equation

. R
0 @8 = , (56)

o | Ly, ML Ceer T Tae
M oo’

For all k>0 the differential equation will take this form and can be
recognised as the Dirac equation. We define the

operators WL(S) and ﬂi(a) to be such that the field Vi o satisfies
$4 ]

k
R
g HE(S) ¢k v = ¢k v (57)
m (3 0 A !
k 0o

The following proposition then enables us to evaluate these operators

successively for each k=1,3/2,..

PROPOSITION VII.1

A
Jj-%, v

Y| A = A A
‘l’ié,n X ""j,m

A A A
Suppose ¢%’0, & . ¢j’w"and ¢J+%,v"' are a set of fields related by

C (58>

nm,r{¢j+%,w"' ' ¢j—§,0’ )r



for A=L or A=R and Cnm F as defined by equation (6). Further suppose we

H

know the differential operators Hi(@) for 4=L or A=R and k=%, 7. The

differential operators relating the left and right j+# and j-# fields are

then given by

i - o
{n% (a@ - [# Jijfﬂ atar o ar e t%,J,;JTé
Jt# ep (n m ¢ #% an' mzn' wn' m't op
and
{H% <8@ = (% Jlj"ﬂ ad e o ey, {%,J,lj_ﬂ
J-# op n m v % nn J mm n' m e
PROOF

Consider equation (56) for A=L to obtain

L L
Yits om0 Vi ot r
-1 R R R R
= C X ( »
Lo Mg @0 e L@ W e i

But Cn is the Clebsch-Gordan matrix. The results follow for A=L. By

]

symmetry they are also true for A4=FK.

W¥e observe that the degree of the differential operator Uk(a) is given by

2k so that we only get a first order esquation if k=%

Now consider the simplest supersymmetric model as originally given by
Vess and Zumino6 . This is obtained by putting j=0 in equations (53) and
(54), noting that the j-# field does not exist. (The models with jf#0 are
a straightforward generalization of this case, as we will show below.?

Let
L
X, n;0,0
Xﬁ,n;a R
X%,n';O,O

and recall the definition of Qz from Appendix B, then equations (53bJ,



(53e), (54b) and (54e) can be combined to give

. )
4 ;
(€ g1 = iom {L} * ngm'*o,o 0

a X # 0 R R

2 nn'XO,O Jap
R R R
[é n
1an/4 &) “ 0 @729 an X0, 0
+ e
Mﬂj (O'L(rLé’ ) L 0

L M2 U nn'XO,O lag

Now define the scalar fields 4, B, F and G by
L

Xp,0 = é% (F + 1G) )
X§,0 = é% (F - i®) .
Xé,o = é% (4 + 1B)

and Xg,o = é% (4 - 1B)

Then, noting the definitions of the chiral Dirac matrices in Appendix A

we obtain

rQ” Xg = é g 1574 {%Q}}é{(c%aﬂp + cygc‘:)aﬂio}
p (59a)
é 374 {f};} ((yc/"cc)aﬁa/ua - <'ygxcf“c:°)aﬂay13} ;
(95,41 =2 "4 {‘MQ}% (59b)
o’ 2 ¥ Xa ‘
(o am =t (B e 580
(¢ ,F1 = -4 1974 {ﬁ“}% aF) 8y (59d)
o’ 2 M B u B
(o) _ 1 i3m/4 (4 # c Cu
and 165,161 = L e (Zh oy ) s Xp (59e)

These expressions were obtained using the chiral representation of the
Dirac matrices. Since we can transform to any representation with a

similarity transformation we can delete the superscript c.

Now we want to examine the consequences of requiring that the spinor Xy

satisfies the Dirac equation, which, rewriting equation (56), is

H _ _; M
(Y 8/.[ )Q’BX,B 1% Xg



Then acting on equation (59a) with this operator we obtain

o
_ 1 13n/4 {ﬂﬁ} M M > g g
[Qa ’Xy3 5 € ¥ (Y C)ayayF y X5C ayéﬂlG)
1l /4 (& 572 Mop Hop
+ 2 e {Hb} {yy C)aX?pSPA - Y X5 C)axgﬂész}
Now *¥*8 8 ) . =6 3 8", and since all the fields must satisfy the
uop aB af u
ot 2 2
Klein-Gordon equation Q#E#A = - {ﬁq} A and aﬂaﬂB = - {ﬁ?} B, it follows
that
1l in/4 (Mc #
[Qa Xﬁ} =o€ {ﬁ } {(C) BA 1 C) B}
1l 3n/4 (4 # yr ye
+ + i
5 € {Mb} { (Y C)aBSpF (Xsr C)aﬁaﬂlG}

Comparing this with equation (59a) we see that if Xg satisfies the Dirac
equation then 4 = -Fand B = ¢. Similar arguments using equations (59b),
(59¢), (59d) and (59e) demonstrate that given the three constraints

Yo

,IJ = -7 = - =
(y ?ﬂ ) 15 X, 4 F and B

aB B

any one implies the other two. These considerations clarify the nature

of the 'auxiliary fields' F and G

To generalize to the case of j#0 we observe that the spin index mis left
unchanged by the action of the supersymmetry generators in equations (53)
and (54). Hence using the differential operators ﬂj(é), we can
construct supermultiplets obeying the commutators of these equations that
are either left handed or right handed with respect to the spin index J.
It follows that we can construct sets of fields generalising
equations (59) that are either left handed or right handed. That is, we

can obtain the following set of commutators.

R
4 _ 1 -i3m/4 {ﬁ@} o
EQa 'Xﬁ;j.m] e ¥ {(C)a | o cx5c:) 10’4
s (60a)
1 3ns4 {ﬁ} A 4 .
e (VOB (r5rﬂ6)aﬁaﬂisﬁ'm b,
%
A _ 1 in/4 {@} A
EQa ’Aj,m 1 = 5 e ¥ Xa: i, m s (60D



3%}
X2

%
, 1 ins4 {ﬂﬁ} - A
[Qa ’lBﬁ,m 1 = P e ¥ (XS B yﬁ i m s <6ch
%

A __ 41 _15n/4 {iL} My N
[Qa ’F},m ] 5 € We (15 aﬁ i Xﬁ j,m (60d)

#

_ 1 _i3n/4 {iL} M A "

and [Q j, 1 P e e (y Yy ﬂ # XB,J o (60e)

for 4 = L or A = R. Then, as with the j=0 model, we obtain the three

constraints, any one of which implies the other two ie.
4 . M A A A
ta . = -1 P AT B o
YO ap Xpi g, m £ ai5,0 “jm Ti,m j,m im
Now suppose we require a combination of supermultiplets, given by
equation (60), such that each field obeys some field equation other than
the Klein-Gordon equation. The obvious choice 1is to combine a left
handed and right handed supermultiplet and require that the fields are

related as in Proposition VII.1. We then have the fields

i
A, . = ’ ,
J}B AR
L J,m IR
o
B, .= ,
J. B g
L J,m IR
J,m
F = )
I8 R
L Sym B
r 1
| *
G - J
BT R
L J,m 1B
XL
- a; J,m
TR 0 T
a;J,mif
with g- = 1,2,...,20€@/+1). Then, as before, we obtain the three
constraints, any one of which implies the other two, 1ie.
. (e}
s ) = -1 . 4, =-F, d B, =G, .
Y Cap Xpig, v F Xargov ' Cr0T T TN Ty iy
By construction these fields obey the equations
R .
g TN A =4 , (61a)
@ 0 ! I
J oo



30

7 4
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I{i«‘ s},(&) B. . = B. , , (61b
Tl 0 7 7

J 400

P -
) i M~

g Wj (3. (y,ua )aa”\,a' . 01,: P :‘a' . (61cy
wt s 0 , M i J s

Lo
e
=
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APPERDIX A
Our metric is gpA = diag(-1, -1, -1, 1). We use the standard definition
for the Pauli matrices:

R S 2 O PR P PR
A greek subscript on a Pauli matrix is assumed to take the values 1, 2,
3, 4 and a latin subscript the values I, 2, 3. Repeated subscripts are

assumed to be summed.

We define the left and right handed Pauli matrices by:
L

vﬂ = ¢ for w =1, 2, 3, 4 , (A
o for u =1, 2, 3
and VR = H _ (A2)
M 4 for u = 4
Then (UL)Q = (WR)Z =1 and ng = vR
H M HE A A

For the Dirac matrices we use the conventions of our previous paper7
The chiral Dirac matrices can be written in terms of the left and right
handed Pauli matrices as:

[ L] L R ]

0 ~-0 v 0
yC - —wR 0 ' Vf - s vRvL
H L u J M 3 MoA
- VL . - - yL . - (A3)
Sl R ¢t =] 7 R
M 0 - ' 0 v,
L 4 ] L Z2 ]
In section IV we make use of the following identities:
a0 I = P , (AL
and with p* = 4 <0, 0, 0, K"
% B lath = gt (45)
nr r'r Mc Monr
and 0% 02 ah = ) (46)
or r'r Ko Moar
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APPENDIX B

Ve consider the 4-dimensional real super Polncaré algebra written in
terms of +the 6- Hermitian generators of the Lorentz algebra H}y’
=1, 2, 3, 4 and Mﬁy = —gﬁA ; the 4 Hermitian tramnslation generators

P , ¢ =1, 2, 3, 4 and the supersymmetry generators Qa , =1, 2, 3, 4.

The algebra is then:

£ﬁ%p, M}p] = 67118A¢Hﬁp - gApMﬁv - gpw”kp + gppﬂkw} ) (B2a»
= i - (
(M&p' F} ] 67113&0FL SQVF&} ) (B2b>
[P , P 1 =20 ) (B2¢c)
v 14
= { )]
[H;p, QJ 1 ﬁVl(yxXp,aBQh , (B2d>
[p , Qﬂ 1 =0 ; (B2e)
_ r
and [Qa , Qﬁ 1 = 1/7K(y C)aﬁpa . (B2£f)
In our chiral representation we put &, = QC Q. .= “ Q.= OC Q. .= QC
i L% 1" YLk 2! “R¥ 3 TR-% 4’

Here the superscript C indicates the chiral representation of the Dirac

matrices as given in equations (A3). These generators satisfy:

t _ . L
Q, = oy @p . (B2a)
f R

= i Yy
Qpy = (00 @, (B2b:

ht handed Pauli

o

In terms of these chiral generators and the left and ri:

matrices equations (Bld) and (Blf) become:

[H;p, Qin] = 571(yxmp)nn'QLn‘ , (B3a)
[Mw, Q) = 1 (V)\O’p,)nn. Q. , (B3b)
[Q 9, =0 , (B3c)
[Qpy Qpd = 0 , (B3d)
and (0., @1 = i/kee® P (B3e)
Ln' “Rr v 2 nr e !
= i/ﬁ(meL) P
v 2 ron ¢

Note that equations (B2) and (B3) are symmetric in the interchange of L

and R.



In section II we find it convenient to use the standard operators J+

and JS defined by:
.I+ = ME’S f iﬁfsl s
T = Moy = My '
and JS = Mﬁg

also in that section we work in terms of the operators Qin and an .

Equations (B3a) and (B3b)> then become:

CTp0 @t = 1, '
[T, 9y = 0 '
g, QL% 1 = 0 ,
v, QL-%] = K@ I ,
= - 2
[JS ! QL% ! ﬁyuQL% !
= 2 .
and [J+ s QL—%} 5YHQL~ﬁ ;
and
1 _
[J+ , QL% 1 = 0 s
(7,0 1= k!
+ 7 YL-B L !
f _ f
s, QL% 1 = ﬁQL—% ,
f -
(J_, @ _J = 0 :

(7., Qz;é} = K2

and tJ, , QL—%} = —ﬁ?ZQL_%

T

(Bda>

(B4

(B4c)

(B4

(B4e)

(B4f)

(Bha)

(B5D

(B5¢?

(BSd»

(BSe»

(B51)
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