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1. INTROPIICT101

The main object of this paper is to construct second quantized fields

that transform according to representations of the proper ortbocbronous

Lorentz group and which form supermultiplets, starting from the

representation theory of the Lie superalgebra of the proper ortbochronous

Foincaré group. The analysis is given for the case of massive particles

with N=1. Since this is a ‘systematic’ method it has advantages over the

‘ad hoc’ arguments that have been used previously.

In section II the theory of the irreducible representations of the

Poincaré Lie superalgebra that was first given by Salam and Strathdee’

(and which is described in most review articles on supersymmetry

Keg. Fayet and Ferrara2)) is developed further.

In section III we review the procedure for constructing second quantized

fields transforming as some representation of the Lorentz group from some

unitary representation of the Poincaré group, as detailed by Weinberg3.

This approach has never previously been taken for supersymmetry theories.

In section IV we construct the left handed supermultiplets using the

theory developed in sections III and IV. In section V we construct the

right handed supermultiplets from the left handed set of section IV. In

section VI we show how the phase factors of the fields can be altered so

that the equations giving the action of the supersyminetry operators are

symmetric under the interchange of L and R.

In section VII we examine methods o± constructing combinations of these

chiral supermultiplets in such a way that the ffelds obey equatfons other

than the Klein-Gordon equation.
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Appendix A gives our conventions for the Pauli and Dirac natrioes and

contains some identities used in the text. Appendix B is a short review

of the super Poincaré algebra as used in this paper.

II.THE LITTLE ALGEBRA

The particle content of the supersynunetry multiplets is well known and

was first given by Salam and Strathdee1, A supermultiplet consists of

four particles of spins j, j+, j-, and j, except in the case when J0,

in which case the j- particle does not exist and we have just three

particles in the supermultiplet. In this section we will establish the

precise relationship between the rest states of these particles in the

massive case. We do this using Clebsch-Gordan coefficients of SU(2).

The results given by Theorem ILl have never previously been presented

in the literature.

First we observe that the operator = PF’ ccmmutes with every

generator of the superalgebra so that its eigenvalues serve as one label

for the irreducible representations that we use As usual we denote this

eigenvalue by f(’c’, where c is the velocity of light and H is interpreted

as the rest mass of the particle. Here we consider only the possibility

)f)O.

A second label comes from considering the superspin operators K defined

by

K= (S P -S P ) (F’S1’P)
op pU

and which also conunutes with every generator of the Poincaré

superalgebra. Here

= E’ KP + (C1



4

442
The operator K has eigenvalues of the form — Xc J(J+1), where

J = 0, L 1, , so that j’ provides a convenient second label for these

irreducible representation. It has previously been noted by Sokatchev4,

who gave a version valid only in the Majorana representation of the

Dirac matrices.

Now denote the particle states in the representation labeled by 1( and j

by p, k, zn for kj, j+, j—J and jv=k, k-i, , . . , -k+i, —k, and by ip, j, iii for

the second state of spin j with m J,j-1,...,—j+1,-j, with

p=(pl,p2,p31p4)
in each case, Then consider a particular set of states

within this representation, which we take to be the rest states with

p=(0,0,0,Nc)=. This set of states is left invariant by the generators

(K. ., 1, j=1,2, 3;Q) so that we are looking for the representations of the

‘little superalgebra’ generated by {X11,Q) on these rest states. Let

tp,k,m > for kj,j+J,J-i be an eigenvector of f3, F and J’ such that

> = k(k+1)tp,k,m >

> = rni,k,in >

F,Ik,k, > = 0 for 1=12,3

and F4I,k,> XcI,k,iv>

with similar expressions for ib,j,m . The main result of this section

is then given by the following theorem,

THEOREW 11.1

Suppose the rest states of the particles in a representation are denoted

by ,J,m >, I,,j+J,.m’>, ,j-,jn”> and I,j,m )), with spin values

j,j+i,j— and j’ respectively, and with rnj,j-1,. .

m’J+I, j—J,. .., —j+,
-
(j+) and .m”j-, j-3/2, . . * , —J+3/2, — (j—). Then

(with an appropriate choice of the relative phases):

(} QI,J,m > [ i,j+,m+n >+
(la)
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with aeSU(2) and ?(a) the irreducible representation of SU(2) in

(2k+1)-(2k-f-1) matrix form. Then equations (2), (3), (4) and 5 can be

combined to give

(,j+,a’ >, I,j-,a’ >)= C1
ILfl

p,j,m .

Inverting this we obtain

() Q l,j,m > C (I,j+9,a >, I,j-,a’

which is the first of our required results.

t t
(ii)

We define

= QQ () ,j,m>,

and noting that the Clebsch—Gordan coefficients must satisfy

2 2

1 J + 1 = 1 (8)
mm+) U inm+9J

t
we obtain the action of on 1p,j+,m > and p,j—,m >

Lastly we note that QIk,J,m > = 0.

(iii) The action of the operators

We note that

[j ] -

Ln’Ln’ - nn’

when acting on the rest states, so that

t t
-

nn’ n1n

The proof proceeds as before, making use of equation (8).

This completes the proof of the theorem. It is convenient in the next

section to have, in additiDn, same of these formulae expressed in terms

of the operators Q as follows:

> = I,J,m , (Qa)
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r 7j— . -

LJ QIpIJIrn+n > p,j,m )), (Yb)

and = p,j

+ [ m+n (9c)

We note that each of the vectors ,j,m >, .j+i,m’ >, Lp,j+,m” > and

u is needed in the representation derived above and no other

vector is needed.

III TIlE CONSTRUCT 10! OF SECOWI) QUANTIZED FIELDS

In this section we give a review of the construction of operator-valued

fields that are Lorentz invariant starting from the irreducible

representations of the Poincaré group. The method we use is that

3
developed by Weinberg

The unitary irreducible representation of the proper orthochronous

Poincaré group corresponding to a particle of mass and spin I with

p(O,O,O,Nc) is given by:

= exp( Apm’°

for =—j,-j+1, .. . ,f—1,j, Here are the vectors of the carrier space

of the representation, ‘(tAtt]) are the operators, for a given ,I,

corresponding to an element [Alt] of the covering group of the proper

orthochonous Poincaré group, D3 is the (2j+1)x(2j+1) dimensional

representation of the rotation group and Bp,) is the Lorentz boost from

a ‘rest state’ labeled by to a general state labeled by p, the

the combination BMp, o) 1AB(p,) being then a pure rotation known as the
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Wigner Rotation’ (For more details of this formula and its derivation

see Cornwell ).

Now we identify the one particle state p,j,in >, as used in the previous

section with [iI and by comparison with equation (10) we define

Xci ‘

the unitary operator U(tillt] ) by:

UdAlt] )lp,j,m >
= (11)

((AP)4}
ep((Ap)t B(Ap,p) 1ABp,p)l 0] >

Here and in the subsequent equations the repeated index m’ is summed over

all the values j, j—1,

Next we introduce the single particle creation operators a and the
p, j,m

and the vacuum state 0 > by:

t
lp,j,m> = a 0>

pjm

and suppose that

U(tJlit])l0 > 0 > for all [Alt].

Equation (11) can now be written

U(tAlt])at UtAlt])1
(12)

(CAP)4) 0] apjmI

In particular we note that

at = } U([Bp,)l0])a * UBp,)l0]) (13)
Pijilil P4 p,j,Ill

Now we define the corresponding annihilation operators a1 by

t
* (a )

pijim p,j,m

and take the adjoint of equation (12) to obtain:

U(tAIt])a U(tjllt])’ =

P, 111

((AP)4) a4
jm’
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Since the matrices are unitary we can rewrite this expression as:

UAIt])a . U(tAIt1) =

p, j, in

( ), a1 .

It is convenient to rewrite equation (12) so that the indices are in the

same order as those of equation (14). To do this we recall that since

the representations D3 of SU(2) are real or pseudo real (cf. Cornwell5

Chapter 5) there exists a (2j+1)x2J+1) matrix such that:

= Z.1 (tRIO] )Z. (15)
3 3

Here [RIO] denotes an element of SU(2), the covering group of SQ(3,R),

that maps onto the pure rotation R in the 2:1 homeomorphic mapping of

SU(2) onto SO(3,).

We note that the matrix Z, can be chosen to satisfy
3

= (16)
3

and zz, (1)2J, (i7
33

For J=i we put Z = Equation (12) can now be written

U(tAIt])at
. U(tAIt])1 =

p,j,i:n (18)

exp(Ap)t(Zj1(tBP,P)lAiB(AP,P)IO])Zj)in&aA,j,in,

Next we assume that 1f the particle has a corresponding antiparticle its

creation and annihilation operators bt
. and b . have the same

p,j,m

transformation properties as at
. and a . respectively.

p,3)rJ2 p,J,In

We can now construct Lorentz invariant fields defined on space—time using

these equations but it is advantageous to insert an intermediate step

into the construction. To this end we let [AIO]) be a (2j+1)x(2j+1)

dimensional representation of the orthocbronous Lorentz group that

coincides with when A is a rotation. Thus can be either

the ‘right handed’ representation, or P’ , the ‘left handed’
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representation. We note that is not a unitary representation. Then

we define the ancilliary ooerators a and $ by
p,J,In p,J,fll

12 H ()
a = r d B p, p.) I 0)) a (10)
p,j,m

I ‘46
2 (‘) t

and = 4 r ‘ (tB(p,p)IOJZ.) b . . (20)
pj,m ui -

The transformation properties of these operators are

UAIt])a U(tAIt))1

exp(-(Ap) tirA1It]) a (21)
- V nun Ap,j,in

and

UAIt]) UdAIt])’ =
P13,111

exp( (Ap) tV)r dA’It)),A., . (22)

We note that if the particle under consideration is its own antiparticle

then at = b but B unless i0
p,j,.m p,j,.m p,j,m ‘p1j,m

Finally to obtain the field for a particle of spin I transforming as the

(2j+1) dimensional representation of the crthochronous Lcrentz group

we define

x. (x)
(3[

dp3 ‘ pa + p’B e 3 (23)
2w-

j
2p4 p,j,m p,J,rn

with p, p’ complex numbers such that lpI=Ip’ 1, This field then has the

transformation property

UAIt)). (x)UAIt])1 = rA 1(Q]) , (Ax+t) (24)
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IV. THE LEFT HADED SUPER!ULTIPLETS

We assume that Q I O>=Q so that we can express the action of Q on our
a a

rest state creation operators as

p. t t
[Q, a] = K(Q, aiIm, (25)

where [ , ] is a commutator if k is an integer but an anti-commutator if

k is a half integer, that is, the parity of the creation and annihilation

operators is defined by

a a = (—1)
p,k,rn p,k,m

Here M(Q ) is a matrix whose coefficients can be determined
a mk,mk

from Theorem 11.1. If we order the operators so that

at = (at ,at jat at ) k = j,j+j—,j
p,k,m p,j,m p,j+,m p,j—,m -p,j,m

with at
k

0> = Ip,k,m > for k
P1 ,1fl

and at I0 = p j,m
p, j, in

then the itrices X(Q ) can he written

t
‘m’k’,mk

o 0 0 0

fl IV 111+ (26)

[‘Vin in

o r i —L

+i m++n m+J

in’ A’ , mli

and

N(QLn ‘k’,

o
[n m+-n’ [n m+-n

2n [ jJ+h9 o o o
22 111 in+fl (27)

2n o 0 0
n n in-I-

o o 0 0
227’ k’, ink
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Now combining equation (25) with equation (13) we obtain

1_ -

i Q ,a —

-JICJ 211 (28)

- -1 t -1

To proceed we need the aotion of the operator correseponding to a boost

on the supersymmetry generators Q Since we also need to work in two

component form we make this conversion at the same time. Equations (B3a)

and (B3b) of the Appendix B imply that

U([Alt] )‘Q UAIt] ) =r0’(tAIo)) Q (29a)
Lu nn’ Ln’

—1
and U(CA t] ) Q UdAft]) T’ (tAIOi) Q (29b)

nn Rn’

Here and in the subsequent equations the repeated index n’ is summed over

+ and -.

Then combining equations (28) and (29) we find that

(Kc)Ln
,a

k r°’dB(pp)IO]),K(QL,),,, a, (30a)

t t
and

Rn
= r B(r 0 (3Ob

Similarly if we put

()cQ akm] = NCQ),k, ak,m, . (31)

we find that

(Kc)Ln apkm] = r°’ B(PP)lO])ugN(QLfl)mIks apkm. (32a)

and ()E a
k,

= r B(p,) )
‘k’ ak , (32b)

The transformation properties of the antiparticle creation and

annihilation operators b and bt are obtained simply by
p,k,zn pk,m

replacing a with b in equations (30) and (32)

To determine the coefficients of the matrices and we take

the adjoint of equation (25) as follows.
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then [a
Kc p,k,m

at ]N(Q) ,

p,k,in ank,mic p,,m

and so
(1)2J [Q 7aPk ] K(Qa)mJkI apkm

Thus

Lnm’k’,mk =
(335)

=

Next we define the ancilliary operators, following equations (19) and

(20). We choose these to be all left handed, Thus:

12o
L J £4l QJ

and a . j r (tB(p,p)I0] ) , a
‘p,j,m Xc mm p,j,m

To proceed we rewrite equations (30) and (32) in terms of the ancilliary

operators and reduce the resulting equations. The analysis is very

similar in each case and relies on the following Lemma, and the

identities given in Appendix A

LEIL4 IV.1

0 —l
(C

r’ , n’ m’
ix (R) rr”

Since

,Q] .117k

and (33b

2

r°’ B(p,.)0]), ak,

f or kj.J+,j— and

Similarly

k,
{4}

r B p,p.) 0] Zk)mml b
k, m’

for k=j.j+),j- and

r°’(CB(pp)o]zi)mm, im’

(34a)

(34b)

(34c)

K34d)

The Clebsch—Gordan matrix C

C
nmr

nm, r
defined by

= D(R) x
nn’

and the matrIces Z, Z., Z. and specifIed by equations

and (17) are related by

(C’) (Z ) x (Z,) C (Z,1 + Z.’ )
r,nm k nn’ j mm’ n’rn ,r’ j+ j—i

(R) . (35)

(15), (16)

=1
r’r” rr”
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PROOF

Taking the compex conjugate of equation (35) and noting that C

by convention real (cf. Cornwell5 ) we deduce that

I i+ *

c (R) 0
(C1) = D(R)* x (R) *

flm.TL Q DJJ{(R)* r’,n m fin mm’

Then using equation (15) we obtain

F Z.1 J*(R)Z. 0
I j+j (C’)

fllVrj D(R)Z
r’,n’m’

L

= (Z’D(R)Z ) x (Z1 (R)Z )
nfl j j mm’

= ((Z’x Z1)(D(R) x (R))(Z x Z. ))
k S j nrn,n’m

-i -1 (R) 0 -1
= ((Z x Z. ) C (C (Z x Z ))

J 3 0 (R) ‘

Thus the matrix

(C ) (Z ) (Z ) C (Z + Z )
r,njv nn j mm’ n’m’,r’ j+9 j-J r’r”

r
LY’ R) 0

commutes with for all ,

0 D R)

Hence Schur’s Lemma implies that it must be of the form

F 0 1
I o’I

with o, oe C.

L 2jJ

Then since the multiolicative constants in Z Z. and Z. may be chosen
3

such that o = = 1 the result follows.

Using this Lemma we obtain for the creation operators:

NcJ p,j,m (36a)

[ j J+.2
‘

L + J J—
‘

L

- I(c nn’ n’ m m+n’J p,j+,m+n’ n’ m m+n’J p,J—,m+n’

-

1( ) j j+ ,L (36b)

U(cJ p,j+,m+ - p°2’p nn’ n’ m+3-n’ m+JJ p,j,m+f—n’

L
- ( ) 1 J j-i L (36c)

iYci ‘p,j-,m— - Xc nn’ n’ m—?-n’ m—iJ !p,j,rn-f_n1

f} Rn j, m
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Then

Ud Al t]
)L

, Cx) U Al t]

=
T’ t A1 0]) r°’ A1 0]) ,

(Ax+t)
nn’ mm’ J,n’;j,m

The final result of this section can now be given as a theorem.

TllOREJ IV.2

Let the fields (x), . x) and Cx) be as defined by equations
‘j,m ),n;j,m

(38) and (40). Then the action of the supersymmetry generators
L’R

on these fields is given by:

=

L 12 L L
Q , . (x)] =

— j’ (o ) y . (x)
Ln 1 I,r;j,m i 2 nr “j,m

L
EQ ,y, (x)] = 0

Ln ‘j,m

L
EQ ,.y. Cx)] = 0

Rn j,.m

L I.i-l LL L
EQ

,
. (x)] —j (oo’) 8 A’ (x)

Rn I,r;j,m p 2 nr p j,m

and C Q (x)] =
- () (L) L

,

Rn j,m Nc p nr p

With nr-; m=j,j—1,..,—j+1—j and j taking any integer or half

integer value. We call these the left handed chiral supermultiplets.

PROOF

This is by straightforward algebra, so we give no details,
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V. CONSTRUCTION OF RIGHT HAWDET) STWERJ4IJLTIPLETS FRON LEFT HANI)ED

SIJPERXU1TIPLETS

We could repeat the andiysis of Section VI and thus construct a st of

right handed fields, It is much simpler to construct one from the other.

We first observe that if 1 1,2,3) are the generators of

r0’Alo]) with the antihermitian and generating rotations, and

(1) . (j) . (1)
iA1 generating boosts, then (A. ,—iA. } are the corresponding

generators of T’0dAlO] )

Consider the action of the matrix as specified in equations (15),

(16) and (17) on a Lorentz boost, one obtains

d B (p, ) 0] ) Z, r’ d B (p, ) I Q] )
*

so that

= TiPOAI0])*
, (41)

for all [iHO].

L
Now let (x) be any second quantlzed lield that transforms as

L —1 0i —i r
UdAI t] ) (x)UdAI t] ) - = P ‘ (tA HO)) (Ax+t)

a

and consider the field

(Z.)
(L (x))* = (x) (42)

jaa a a

This then transforms as

R —i 10 —1 R
U(tAIt]),b (x)UdAIt]) = P’ dA 10]) , (Ax+t)

a

We note that (x) is constructed from the adjoints of the operators used

for b”(x) so that it can be considered as the antiparticle field of

fr (x). Also
a

(R ())*
(Z.Z ) =(1)2JL()

, (43)
jaa’ a’ jj aa a a

so that applying the transformation twice does not return us to the

starting point, but produces an overall phase factor.
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l’Tow using equation (42) we can construct a set of right handed fields

from the left handed fields defined in equations (38). We obtain

—I

dp3 Q f_f
(_f)2JpR

.

- (1)2JR
e

j,m 2ff J p’ (44a)

T

=

dp3 ( Ci
)2JR

+, mC ::
Cx.) = F 3 ,

2j R
. + e

j—Jm i (44c)

and C) dp a + i l)? e i
j,m .ir p,j,m F”’ (44d)

R 12P4
with a = 1—f i’ b (45a)

p,k,m i(c ‘ pk,m’

and rklOcIBp,pIo]z,) at (45b)
p,k,in ftuc i j mm’ p,k,m’

for k=j,j+,j- and, of course, similar definitions for and
p,j,m

It is convenient to work with a slightly different set of fields. We

define

R . 2jR..
x. (x) = (—i) x’. x (46)

j,m

R 71 R
and Cx) = C—1) Cx) . (417)

1j,m

The action of the supersyminetry generators on a right handed field is

given by

R L *
Q x cx)] = CZ.) (iü’ ) (_f)J ( Q , . Cx)] ) (48a)

Ln ,m j mm’ 2 nn Rn ‘j.in’

and EQ Cx] CZ.) Ci ) C-l)’(tQ ,x
Cx)])*,(48b)

Rn j,rn j mm’ 2 nn’ LiDs j,m’

R
Thus for the field Cx) as defined above

j, m

R
- 1i R f1 J j+ R

Ln ‘Xi, iv brci
Co8 )

nn ‘ n’ in m+n J Xj +, m+nf

+ 1
‘

R
. (49a)

in .m+n’J j—J,m+n’ i

Similarly
(49b)

R ,rci RR 1I j j+ R

Ln ‘‘j+, m+J
= 1 (0p029p ann’ m+i—n’ jn+n ‘J X1 ++‘‘
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VLSUPERJ(ULTIPLETS THAT ARE SYJOETRIC UEDER THE INTERCHANGE OF L MID R.

While the fields used in the previous two sections are perfectly adequate

as they stand, it is more convenient, and more pleasing, to redefine them

so that the commutators or anticommutators of Theorems IV. and V.

become symmetric under the interchange of L and R. We achieve this by

altering the phase factors of the fields. This leaves an overall phase

factor undetermined. To reduce the choice we demand that the

differential operator linking the fields is also symmetric in the

interchange of L and R. This still does not give a unique choice. Cur

choice is such that the Dirac equation takes its standard form, We define:

-ibir F
e v (51a)

j,m

L ibirL
x. = e . (51b)

-icir 1?
= e v, (51c)

icirL
y. = e y. , (51d)
J,1)2

F -IajrR
x .

= e ,y . (5le)

L lawL
and . e x (51f)

,n;j,m

with a,b,c 6 R. Then using the results of Theorems (IV.2) and

(V.1) we find that c = a+1/4 and b = a-3,4. Thus we can choose (say)

aeEO,2ir) and the parameters b,c are then fixed,

To restrict this choice we reoure that if . Cx) and
R

, Cx) are
,fl;J,in

self conjugate for j=O, that is, in terms of the creation and

annihilation operators we put a . b . , then the differential

operators linking the fields are also symmetric in the interchange of L

and F. Since for jO the differential operator acting on the index in can

be constructed from the j= operator by a sequence of tensor products

this will be true for all j, We find that

(VL9
, x) =

F
x) (52a)

p p nn , n ; 0, u J, n; 0, u
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and x = Cx) (52b)
jijinnVa,n;O,O -S ‘Ya,n;OO

The restriction then becomes an/2 nO±1,±2,., Our choice is a—1/2

so that b=—5/4 and c-1/4,

THJiVREX VI. 1

‘ith the above choices the action of the supersyinmetry generators on the

R R R, L L L
fields f’. Cx), ‘‘ Cx), y’. x)) and Cy. Cx,, ‘‘ Cx), y’ (xl)

J,zn 3,n;j,m j,m ‘j,m

of the chiral supermultiplets can be written:

R i3ir/4 riYc R
= e tj ‘,n;jJ

(53a

(Q ,R
Cx)] e134 iK (R

y Cx) , (53b)
Rn / ),r;J,E .J 2 nr ‘3j,m

Rn’j,rn
= 0 (53c)

Ln1Xj,m Cx)] = 0 (53d)

R i3n74 r R R R
Cx)] = e ? (o o 8 Cx) (53e)

Ln ,r;j,m tJ(cj i 2 i nr “j,m

and [Q ,y Cx)]
i3/4 R ,R

Cx) (53f)
Ln j,m i’fc p i nr r:j,m

(Q Ct)] = e13’4 rx L (54a)
Rn ‘j,.m i-,n;j, m

(Q ]
-i3,’4 Cx) , (54b)

Rn S,r;j,ni I 2 nr

[Q , Cx)] = 0 , (54c)
Rn j,jv

EQL,x Cx)] = 0 , (54d)

L i3ir/4 1i LL L
EQ . Cx)] = e Cii o,8 ) y . Cx) , (54e)

Ln I,r;j,m Nci p p nr j,rn

and EQ , Cx)]
i3ir/4 (L9

) Cx) (54f)
Ln j,m Nc p p nr ,r;j,m

These sets of equations are then symmetric in the interchange of L and R.

Also the differential operators relating the fields are symmetric in the

interchange of L and R if the fields are self conjugate.

This is the form we will use for these expressions from now on.
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VII. SUPERKULTIPLETS OF FIELDS TRAT SATISFY WAVE EQUATIOJS.

In sections IV, V and VI we detailed the construction of chiral

supermultiplets for both left handed and right handed fields. By choice

we constructed the right handed fields as the antiparticle fields of the

left handed fields, but we could have chosen to construct them from the

sane set of creation and annihilation operators. In all of these chiral

supermultiplets the number of independent field components is the sane as

the number of independent creation (or annihilation) operators. That is,

each field has (2k+1) components, with k=f,f+M and f-Id as appropriate.

Such fields describe particles of a single spin value and obey only the

Klein—Gordon equation.

In this section we want to examine supermultiplets of fields that do obey

field equations other than the Klein-Gordon equation. This implies that

not all the field components are linearly independent. In this

discussion we will assume that kO, since the case k0 is different and

essentially trivial. The reason for introducing additional field

components, according to Weinberg”, is that requiring a field to

transform in a simple way under P (parity), and C (charge conjugation)

cannot be achieved with a (21i*l) component field. These fields transform

in a simple way under T and CP but not under C or P. To obtain field

that does transform simply under C and P it is convenient to use 2(2k+1)

component fields that transform as rOsk(tAIO]) + rkaAIOI). In the

case of a field corresponding to a particle that is its own antiparticle,

this would be constructed from C2k+1) creation operators for each

4-momentum and (2k+1) annihilation operators for each 4-momentum. For

the distinct antiparticle case the number of operators is doubled.



25

We note that fields constructed in this way consist of particles of a

single spin value, Many other field types are considered in the physics

literature (eg. the vector field A transforming as A S

for some similarity transformation These consist of several spin

values constrained in some way to remove unwanted components.

Given the left handed field 4 we now demonstrate how Weinberg’ s

analysis3 can be extended to construct a right handed field so that

the field (55)

in

satisfies a differential equation in addition to the Klein—Gordon

equation. To do this we construct the differential operators relating

the left and right handed parts of the field.

We have already given the result for k in equation (52), which can be

rewritten as the single equation

R
j 0 (o’8)
No (L8

)
,Li p

For all k)0 the differential equation will take this form and can be

recognised as the Dirac equation. We define the

operators 1T(9) and Tt(8) to be such that the field satisfies

0 11(9) -

L “

TT(&) 0
k o’o

The following proposition then enables us to evaluate these operators

successively for each k1,3/2,....

PROPOSITIO! VII. 1

Suppose , ,band are a set of fields related by

A A A A
C (. , , ) = x . (58)
nrn,r j+,o”’ j—,o” r i,n j,m
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for A=L or A=R and C as defined by equation (6) Further suppose we
nm,r

know the differential operators (8) for AL or AR and kj. The

differentIal operators relating the left and right J+ and J-i fields are

then given by

[A
(8)] = [ I+

(ffA(9))
(fl.8))

, [
jij+

j+i op (.n in o J nn ,j mm n in p i

and

[1 1 = [ (A(9))
x (U.8)) [ ‘‘-

j- op n zn 0’ , nfl’ j mm’ n’112 p

PROOF

Consider equation (56) for A=L to obtain

( )
J+,U” j—J,cr’ r

c R(8))
x m(e)) C ( I

r,njn I nfl’ j nun’ n’in ,r’ j+,p”’ j—,p TI

But C is the Clebsch-Gordan matrix, The results follow for AL. By
nnl, r

symmetry they are also true for A=R.

We observe that the degree of the differential operator
1Tk8

is given by

2k so that we only get a first order equation if k.

Now consider the simplest supersymmetric model as originally given by

Wess and Zumino6 . This is obtained by putting j=O in equations (53) and

(54), noting that the j—) field does not exist. (The models with jO are

a straightforward generalization of this case, as we will show below.)

Let

L
— Xfl;QQ

n;a - R
j

i;
,

and recall the definition of from Appendix B, then equations (53b),
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(53e), (54b) and (54e) can be combined to give

r L 1

(o’ “

C -I3jr/4 2 nnsAO, 0
[() ‘ ] =e
‘a U i

0 (
F R

nn 1O, 0 J
RR R 1

0 (oo8) k’
+ i3’4 fi p p nn 0,0

UkJ LL L(o!o8) k’ 0
p2jJnn”Q,O

Now define the scalar fields A, B, F and C by

L I
A0,0

— 2
(F + iC)

R I
0 — 2

(F — iG)

L 1
= (A + iB)

and x, 0 =
(A - IF)

Then, noting the definitions of the chiral Dirac matrices in Appendix A

we obtain

[Q = (1 (CC)F + (C°)IG)

(59a)

- (YCc) 8 A - (CCPCc)
8 IF)

2 )fc c43p 5 Bp

[Q , A I e4 () x , (59b)

EQ° ,Im = I
, (59c)

,F I = -

e134 (c)8
, (59d)

c 1 j3,r/4Id cc
and [Q , IC]

2
e (y5y P)8

xfi , (59e)

These expressions were obtained using the chiral representation of the

Dirac matrices, Since we can transform to any representation with a

similarity transformation we can delete the superscript c.

Now we want to examine the consequences of requiring that the spinor xa

satisfies the Dirac equation, which, rewriting equation (56), is

Fu -

(18 ) v --1 xpajJ3 a
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Then acting on equation (59a) with this operator we obtain

[Q * ((1PC)8F — r1y5C )9)

3/2
+ { (yyC) 8 8 A - (PP C) 8 8 IB)

2 Mc 5 aypp

Now (yyP9 8 ) = d 8 , and since all the fields must satisfy the
lup 6

Klein—Gordon equation 8A = - and 8B =

-

(I2 B , it follows

that

e1 ((C) - (y5C) B)

+ () ((C) 9 F + (y C) 8 IG)
Mc 5 aJ3p

Comparing this with equation (59a) we see that if satisfies the Dirac

equation then A = -F and B = 0. Similar arguments using equations (59b),

(59c), (59d) and (59e) demonstrate that given the three constraints

(Y)a$=’Xa A-F and B=G

any one implies the other two. These considerations clarify the nature

of the ‘auxiliary fields’ F and 0,

To generalize to the case of jO we observe that The spin index in is left

unchanged by the action of the supersymanetry generators in equations (53)

and (54). Hence using the differential operators U(8) we can

construct supermultiplets obeying the commutators of these equations that

are either left handed or right handed with respect to the spin index I

It follows that we can construct sets of fields generalising

equations (59) that are either left handed or right handed. That is, we

can obtain the following set of commutators.

sX;j, e’34 (f)((C)am+ (5C)afiIGm)

(6Oa

- e34 (} ((yC) 8 A - ( C) 9 )
2 Mc afipj,m 5 afip j,zn

A j iir/4 A
[Q ,A. ) — , e

‘ x (SOb)
a j,rn 2 i a;j,m



± irr/4 1Kc’l A
Q , 11c , I = e 0’ .

coQo;
a j,in 2 ii 5a)6’;J,Jv

[Q — e134 (yP) A
(60d)

a j,m 2 Nc 5apfl;j,m

and 1Gm i = X;j,m (60e)

for A = L or A = P. Then, as with the j=O model, we obtain the three

constraints, any one of which implies the other two ie.

p A .Hc A A ,.A A
x *

, A, -J4, and .L, =G,
p aJ3 fi;j,m i aJ,m j,m j,m j,.m jm

Now suppose we require a combination of supermultiplets, given by

equation (60), such that each field obeys some field equation other than

the Klein—Gordon equation The obvious choice is to combine a left

handed and right handed supermultiplet and require that the fields are

related as in Proposition Viii, We then have the fields

FA
— 3,111

-

L j,zn fi

B -

j,j3

j,m J3

- 3,111

j’,j3 FR
.J,m )8

G -

G”’
3,111 $

L
-

and y -

cz;j,6 R
Xa;j,m j

with J3- = 1,2,.. .,2(2j+1). Then, as before, we obtain the three

constraints, any one of which implies the other two, ie.

(P8
a$ Xfi,j, y —1 Xa,J, A —F3 and B3 G3

By construction these fields obey the equations

0 TT(9)
j A. , A. cöla)

Tt(8) 0 ‘°‘

3
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F a
f B 1=B (ölb)

L 11L9)
0 J

RF o 1T(9) (iJ8 (61c)

L j
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APPENDIX A

Our metric is = diag(—i, —1, -1, 1). We use the standard definition

for the Fauli matrices;

ro ii ro —11 ri 01 z
i Li oJ ‘ . j 3=[ —ii andalso

A greek subscript on a Pauli matrix is assumed to take the values 1, 2,

3, 4 and a latin subscript the values 1, 2, 3. Repeated subscripts are

assumed to be summed.

We define the left and right handed Pauli matrices by:

= for p = 1, 2, 3, 4 , (Al)

R r o for p = 1, 2, 3

and o’ (A2)
p forp4

L2 R2 L R
Then (o’ ) (o ) = 1 and o’ g =

,LIpA A

For the Dirac matrices we use the conventions of our previous paper7

The chiral Dirac matrices can be written in terms of the left and right

handed Pauli matrices as:

L LR
0 —o’ o’o 0

R
p C =

RL
p —o 0 Ap 0

L L
(A3)

c
O4 0

C
0

1? , C = R
p 0 0’4 0 02

In section IV we make use of the following identities:

(A4)

and with pP A(0, 0, 0,

r0’cA) T’0(A1)
= (A5)

nr’ r’r Xc p nr

and ‘°A r°’A’
= (A6)

nr’ i-’r Xc p in-
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APPflDII B

We consider the 4-dimensional real super Poincaré algebra written in

terme of the 6 Hermitian generators of the Lorentz algebra NAP.

= .2, 2, 3, 4 and
= 1pA

the 4 Hermitian translation generators

F0, , r = 1, 2, 3, 4 and the supersymmetry generators Q , a = 1, 2, 3, 4.

The algebra is then:

EXAp = %o’1tpp -
- SPrNAp • , (B2a)

Uç P, I = KliCe,OPM - , (B2b)

Pp 3 = 0 , (B2c)

L%qj =
CB2d)

cc
‘

I = 0 (B2e)

and cQ, Q5,] = i/Jc(y’C)13P . (B2f)

C C C C
In our chiral representation we put

4’L( cL_I= 21 cRI= cR_1 c4.
Here the superscript C indicates the chiral representation of the Dirac

matrices as given in equations (A3). These generators satisfy:

t L
‘Ln =‘12’nn’4Rui’

(B2a)

1’ 1?
=

(B2b)

In tens of these chiral generators and the left and right handed Pauli

matrices equations (Bid) and (Bif) become:

El , 1 4’i(re ) a , (B3a)
AM L.fl xMnn Ln’

E%qj Sn3 =‘1’°’x°’)nn’Si’
(B3b)

EcLE. ‘Lr3 = 0 , (B3c)

EQ, Q,,] = 0 • (B3d)

and EcLfl QfrI = i/1f(o’4)1,,P11, , (B3e)

= i/K(i’i’) P
a’ 2 rn o’

Note that equations (B2) and (B3) are symmetric in the interchange of L

and R.



In section II we find it convenient to use the standard operators f, J

and J3 defined by:

H23 + 1)!3l

K23 iN31

and

also in that section we work in terms of the operators and

Equations (33a) and (E3b) then become:

=
(34a)

= 0 (B4b)

= 0 (B4c)

= (B4d)

=
(B4e)

and.
L—i = ; (B4f)

and

[f Q] = 0 (B5a)

[J Q} = (B5b)

[J ] = (B5c)

Cf Q] 0 (B5d)

Cf3 Q ] = (35e)

and -/2Q (E5f)
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