
D IAS—STP-86-32

The U(1)-Anomaly, Phase shifts and the q-invariant

Andreas W. Wipf

Dublin Infititute for Advaneed Studies
10 Burlington Road, Dublin 4, Ireland

The violation of classical conservation laws, so-called anomalies, arise from the
interaction of spinor fields with external fields. Their true significance was first ap
preciated in the work of Adler and of Bell and Jackiw [1]. Although the anomalies
have already been studied since then from several different perspectives (e.g. simple
models, lattice formulations and index theorems) there are still questions in need of
answers, e.g. why is the anomaly reflected both as a high energy and as a low energy
phenomena, what is the role of regulators and what is the physical interpretation of
index theorems and the fractional part of certain anomalies?

In this talk I want to report on some recent results [2,3] concerning the low
energy aspects of the U(1)-anomaly on open spaces. They provide an extension of
Levinson’s theorem and link the fractional part of the anomaly with the (measurable)
low energy phase shifts of _2 and thus clearly emphasize the long distance aspects
of the problem. In addition they generalize the index theorem to open spaces and
allow a physical interpretation of both, the index of the Dirac operator

) (1)

on an even-dimensional space and the fractional part of the U(1)-anomaly. and thus
clarify the last of the above mentioned problems.

In studying anomalies one conveniently starts from the effective fermion action
in the presence of an external gauge field

F = log det i. = tr log iD (2)

which on open spaces is both IR and UV divergent. The lR divergence comes from
the fact that the operator logi. does not exist when the spectrum of i. is not
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bounded away from zero (as it typically happens on open spaces) whereas the UV

divergence comes from the fact that the trace of logi. does not exist. To cure the

IR divergence one adds a small imaginary mass term to i. However, a mass is not

chirally invariant (in — in exp(2ia’-y5))and it is actually more convenient to replace m

by a small chiral doublett M = m+in75 which rotates under chiral transformations.

The UV divergence is removed by using one of the conventional UV regularization

schemes. Having removed the divergences in this way one may write

1’ = tr1 log i(. + M), (3)

where u denotes the UV-regularization. and it makes sense to talk of chiral variations

of F. ft is then easy to see that the chira( variation of I’ naturally splits into two

parts corresponding to the variation of and M

6F=SFD+6FM (4)

where
61’ —itr’ 5u

is IR-convegent even for M = 0. only mildly UV-divergent and proportional to

and

= 2ip2 tr ( +H÷ — +H ) a, p2 = in2 + n2, H = QQ± (6)

is UV-convergent and proportional to a. From now on we shall consider only the

global part t5FM of the anomaly which contains all the lR information.

On compact spaces the spectrum of i is discrete and one sees at once from

(6) that for a constant a

lim = 2z(n — n_), (7)

where ± are the multiplicities of the the right and left handed zero modes of _2 or

equivalently the number of zero modes of Q±. Note that the index formula (7) also

holds in the more general case where the zero eigenvalues of i. are isolated from the

rest of the (possibly continuous) spectrum.

On open spaces. however, the continuous part of the spectrum of _42 generally

stretches down to zero and in this more general case

= 2i j 2
[00 dö(E) = ! (4(o) — & (0)). (8)

p—O ôa p—’O J0 E+p2 ir

Here 6(E)/ir denotes the trace of the difference P(E) = P(E) — P_(E) of the

spectral measures of H and H_. i.e. tr f f(E)dP(E) = 1/ir f f(E)dö(E) for
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sufficiently fast decaying functions f. and 6(0) means the limit of 6(E) as E tends to
zero from the + direction. The notation in (8) in by no means accidential. In fact.

what I now wish to sketch, and this is our main result, is that 6±(E) are just the
phase shifts of H±. Indeed, with the representation of the spectral measures

1 E—H±--ic
P(E)=—1im1og

21ncNo E—H±+z

and the identity

1

_

= ,, . E (c, E) (E + — if),

Li — t ± + if Li + L. + if

where E±(c,E) becomes the S-matrix S±(E) = exp(2i6±(E)) corresponding to ±
after the limit c \ 0 has been taken, one obains [21

lim = 2i(n+ - n) + (6(o) - 6L(o)). (9)

In deriving (9) we used the fact that the integer part of 6(0)/ir counts the number
of normalizable right- resp. left-handed zero modes and therefore 6(0) E (0,7r]. The
eq. (9) is the desired generalization of (7) to the non-compact case. One sees that
the low energy scattering states (actually the zero energy resonance states) produce
the fractional part of the anomaly.

It is generally accepted that in d = 2n dimensions the U(1) chiral variation ÔT
is given by the formula

6r=2iifa(x)(x)&x,
1

(10)

where (x) is a pseudo-scalar which is a divergence of a local function of the gauge
potential. i.e.

(x)
.fa1...a2tp “Fa2ic2= ôp’p(x) (11)

For a constant a we can eliminate the anomaly from (10) and (9) and obtain a
generalization to non-compact spaces of the Atiyah-Singer index theorem, namely

(12)

This formula is independent of the anomaly. and we will sketch how one derives it
directly, i.e. by using only ordinary quantum mechanical scattering theory, for the
simplest case of a two-dimen8ionol spaee (d=2). In this case the phase shifts 6(0)
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reduce to the (supersymmetric) Bohm-Aharanov phase shifts. Let us chose the gauge

A6 = —f6axa(x)/r2and the representation 7o = o2, 71 = cr1, such that

( 0 Q — ( 0 (13
+ } — e(-ar-(L+)/r) )

where the orbital angular momentum L = -9 has the eigenvalues 1 E {O, ±1, ±2, ...}.
Zero modes: It is well known that the zero modes of the supersymmetric hamiitonian
2 fulfil the first order differential equation

and é_=0 or
(14)

and à+=O,

where g denotes the = ±1 component of the Dirac spinor. We assume = (r)

for simplicity, in which case L commutes with __.?2. By integrating the equations

(14) over a circle of radius r one finds the following flux-equations (e = ±)

f 8oc I ôc€
22r(r)=— dO — rdO

j (15)

=_21_J rdO.

From this equation one can already find the number of bound states, since they must

be smaller than i/r both as r — 0 and as r —+ oo. Hence they are just those for

which
1 < 1 and ( + 1)c> 1, (16)

where = (oo) is the total flux and we have used the fact that (0) = 0. It follows

from (16) that
> 0 and 0 Ill — 1. (17)

For example, for positive there are only right handed (e = +) bound states with

angular momenta I = 0,—i, .., [1— ]. in any case, one sees at once that the integer

part of the flux is equals to the index,

[]=n+—n-, (18)

which proves part of (12).

Scattering states: For finding the scattering states we, contrary to the zero modes,

must solve the second order differential equations

= EØ (—D2 + B)ib = E> 0, e = ±. (19)

In the outside region r a. where B=O, we can solve these second order equations

explicitly, whereas in the interior region we can approximate them by the zero-energy
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solutions and have good control on the error because the relevant perturbation pa

rameter a k tends to zero.
outside: Here B vanishes and in a fixed angular momentum sector the equation (19)

reduces to the Bessel equation and with W = I + 1J and E = k2 one obtains

= cvfw(kr) + ,8J_w(kr), (20)

which yields (we supress E and I for the moment)

___

2rW
tan6= tan—. (21)

2

in particular tan 6 = ± tan rW/2 for a = 0 and i3 = 0 respectively.
inside: We only need the logarithmic radial derivatives for matching the inside to the

outside solutions. With ØE = ç& + 6bE, where çf: is the zero-energy solution, one

easily finds from (19) and (15)

tr=a — + 1) — (ka)22, (22)

with a strictly positive and k-independent 2•

matching: To match the logarithmic derivatives of the outside and inside solutions

at r = a we use the fact that the Bessel functions in (20) may be approximated for

ka — 0 by their values in the neighbourhood of the origin. In this way one ends up
with

— nst ‘k 2W w + + I) + (kazSj2
23

a0 a1

as the equation to determine ,@/a. From (23) one sees that 3/a —k 0 in the low energy

limit and hence tan 6 = —tan rW/2 in all cases except when c( + I) = W < 1, in
which case a//3 — 0 as k —+ 0 and tan 6 = tan 2rW/2. Since furthermore le < 1
from eq. (16) there is only one special angular momentum 19 and only one chirality
for which the sign of the phase shift is the reverse of the normal phase shift ir()/2.
Here () denotes the fractional part of the flux, i.e. 4 = [J + (). We conclude that

61(0) = 64..(0) — 6L(0) = (24)

which, together with (18). establishes the generalized index theorem (12) for the
two-dimensional case.

The reason for the fractional anomaly is the long range gauge field which forbids

a compactification of the underlying space. Another way to deal with such a situation
is the introduction of a (spherical) boundary. The fractional part is then recovered
as the remaining boundary term after the limit r(boundary) — co has been taken.

In dealing with manifolds with boundaries one may employ the Atiyah-Patodi-Singer
(APS) index theorem. Let us briefly recall this theorem in order to prepare the
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ground for what follows. The Dirac operator on an d = 2n-dimensional space X with

boundary 9X can be brought into the standart form (1). Near 9X we assume that

(25)

where B is a selfadjoint operator on the boundary. We parametrize X near 8X by

(u,y) such that (u = O,y) are the coordinates on the boundary. Then, by using the

eigenfunctions ej of B, Bq = wiet, we may expand any function near oX as

Ø(tt,y)= (:)el(Y) (26)

in terms of which the boundary conditions (BC) for the Dirac operator read

f(O) = 0 for wj 0
27

gj(0) = 0 for WI <0.

With these domains for Q+ and Q it is possible to demonstrate that Q± and Q
are adjoints of each other. The u-function (for simplicity we assume that B has no

zero modes)
= sgn(wj)jwj9 (28)

can be continued to s = 0 and uj(0) is the celebrated ,j — invariant. With these

definitions the APS index theorem reads

= - - u(°). (29)

In comparing (29) with (12) one expects that if the boundary conditions (27) sim

ulate those on L2, u(0) ought to be proportional to the difference 6+(0) —

To compare the iinvariant with the phase shifts one conveniently uses a different

characterization of the first one [4]. For that purpose one takes the high temperature

expansion of the ‘difference’ of the partition functions of ÷ and H_ on the out5ide

region, namely

K(3) = tr(e’’ — e”) as /3 —* 0 (30)

and observes that
q(O) = —2a0. (31)

Note, that the domains (27) for Q± imply the following domains for H± =

fj(0) = 0 Qg(0) = 0 for wj 0
32

g(O) = 0 Qf(O) =0 for wi < 0.
(
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The Laplace transform of K(/3),

G(p2)
= j eP2K()d = tr( —

+H_

we have already encountered in the anomaly (6) (now for the Dirac operator on the
outside region with boundary conditions (27)) and therefore

M =2ip2G(p2). (33)

As an example, assume 2iG(p2)= 1/p2 limp.—.o ÔFM/ôcx. Then

1. 8F 1
K(9) = -hrn = ao = —q(O) (34)

is temperature independent and the is-invariant is equals (up to a factor I) to the
global part of the anomaly. However, to deal with more general cases one may
employ a more direct relation between the phase shifts and the li-invariant. namly the
characterization

K($) = K1(/3) = Je dk (35)

of the partition function, which can be proven by using similar arguments than those
given in the derivation of eq.(9).

As a first example let us consider the simple case when the Dirac operator is
defined on the cylinder {u,O} E R+ x S’ with A = 0 and A8 = is constant.
Then the operators Q± are of the form (25), wherein

(36)

has eigenvalues w = —(1 + ). The scattering solutions of H = — + u? which
fulfil the BC (32) are

fj = sin ku ii = Qtf = sin(ku + L) for w 0
1; (37)

= sinku fj = = sin(ku + 6!.) for w <0,

where the phase shifts solve the equations tan6 = Fk/wt = /Z.. w?/wt. By
applying (35) we finally end up with

K1(9) _-wf f _j9k2IW1I
= —sgn(wj) erfc(J), (38)
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which yields the correct APS 17-invariant ? = () — 1/2. !t may be worth mentioning,

that the anomaly vanishes in this case since the continuum of the Dirac operator Is

separated from zero. Indeed, by using the identity (8) or by applying Green-functions

techniques, one easily can show that

8M —sg()) (39)

which, by the way, exactly reproduces the L2 result obtained in [3,5], and as expected

tends to zero (like p2) for small p. However, for large values of p2 the -derivative

of (39),
8 8FM — — i (1+ )2

-3/2

p2

approaches the integral
— f dx(1 +x2)3/2= —2. and since ÔPM/ôa is periodic in

with period 1 and furthermore vanishes at ‘ = 1/2 one sees at once that

aT
i(2() — 1) = :17(0) as p — 00. (40)

Thus we find that on the cylinder, where the threshold energy of _2 is strictly

positive, the 17-invariant coincides with the high energy limit of ÔFM/ôa which in

turn can be identified as the Pauli-Villars regulator.

As second example we reconsider the supersymmetrie Bohm-Aharonov effect.

In this case the operators Q in (13) are not of the stand art APS-form (25) and it is

not clear a priori which part of Q± should be identified with the boundary operator

13. To proceed we observe that on the outside region the total angular momentum

f = L
—

‘y/2 commutes with 4D and on a fixed J-sector (j e {±1/2, ±3/2,
..

0 ôr+1/2r—cij/r .

— 1/2r—w/r 0 )‘
+

Since 8r+1/2r is the adjoint of —8,— 1/2r onL2(R+,rdr) one is tempted to take

B3 = (J + )/a with eigenvalues w1/a as boundary operator. However, with this

choice of B and the appropriate BC (32). the right and left handed scattering states

(we take w1 > 0 and suppress the index j)

f = aJ÷i12(kr) + /3J(+i/2)(kr)

1 (41)
g = Qf = aJ_i12(kr) — f3J(i/2)(kr),

have, after properly normalized with the free solutions, exactly the same phase shifts.

From (8) and (35) we immediately find the discouraging result that 8F/8 and

K,(/3) both are 4ir (the free part) for c > 0 and —4ir for w < 0. Thus the sum

EK1(13) is ill-defined.
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On the other hand, when one considers the second order operator

2_ (—d—1/ri9r+(L+)2/r2 0
42—

0 —ö—1/r8r+(L+)2/r2)’

one sees that one is forced to take BL = as boundary operator in order to obtain
a convergent sum in (35). However, with this choice and the accompanying boundary
conditions (27) Q+ is not anymore the adjoint of Q. due to the factors exp(±iO)
in (13). Adjointness demands that the BC (27) go with the eigenvalues of B., and
not with those of BL. ft turns out that when one takes c5(k) = —

where are the phase shifts in the same BL -8ector, but computed with the BC
(27) wherein one takes the eigenvalues of Bj, then

M =2i() (43)

is p-independent and, according to (34). equals to i(0). In addition, both the low and
high energy limit (Pauli-VilJars regulator) of the quantity ÔFM/ôa coincide and re
produce the correctL2-result. In the low energy region the anomaly lim_.o8FM/8c
comes, as we have seen, from the zero energy phase shifts. What happens is that
the resonance state in the special angular momentum sector i causes a jump at zero
energy of the corresponding phase shift.

We conclude by remarking that the methods presented in the first part of this talk
are not restricted to a particular dimension and that our 2-dimensional computations,
which have been presented in the second part, can be done in higher dimensions as
well which in turn may help to expose the different high- and low-energy aspects of
anomalies.
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