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Abstract

\o’ theory is studied in 2 and 3 dimensions to examine the validity of the finite

temperature perturbation theory. We find that in some cases it is good even at high tern

perature in contrast to the case in 4 dimensions. We also discuss the problem of symmetry

restoration and show an example of symmetry restoration within a safe pertubation at

high temperature.
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1 Introduction

In this letter we investigate the Ao4 theory at finite temperature

( T 0) in 2 and 3 dimensions. Our primary interest is in the

nature of 2’ 0 perturbation at high temperature i.e. 3m 1.

2’ 0 perturbation involves not only the coupling constant but

also the temperature as expansion parameter. At very high tem

perature the perturbation breaks down even when the coupling

constant is small. As will be shown, T 0 perturbation for

theories in D(< 4) dimensions differ in a non-trivial way from that

in 4 dimensions. Unlike in 4 dimensions there are cases where

the one-loop correction becomes dominant even at high temper

ature. /3rn < 1. Another difference is in the infrared behaviour.

In D(< 4) dimensions the infrared behaviour is worse than in 4

dimensions. Even at the lowest order level one faces the infrared

singularity which bars one from predicting the critical tempera

ture. In the first half of the paper we shall clarify to what extent

2’ 0 perturbation is reliable. In the latter half of the paper

we shall discuss. as a related subject. the problem of symmetry

restoration which has been argued for and against by several peo

ple [l,2} in the context of the 0(N) x 0(N) model in 4 dimensions.

It will be shown that in 3 dimensions symmetry is restored at high

temperature.

2 General Character of T 0 Perturbation

We first discuss the features of ordinary T 0 perturbation and

thus the parameters \ and m are defined at zero temperature.

The temperature independent part is left out of consideration

since we are interested only in temperature effects. Further we

consider only the high temperature case ($m Z 1). At low tem

perature (,3m > 1) perturbation is always good so long as we deal

with massive theories because each loop goes with an exponential

suppression factor €m. The general tendency of T 0 perturba

tion can be read off by calculating a few typical diagrams (Fig. 1

- Fig. 6). The results are presented below.

1). 3-dimensional 4,

1



tz
I
I

;-
-

II
c
’
i

I)
II

‘I
(4

+
8

0
w

_
_
_
_

(4
(4

(4
o
q

I
I

?
I

_
(4

I
I

I
1k

_

(4
(4

’
0

I
o
q

I
-

(4
‘3

c
A

l
‘3

I
+

(4

0

I—



A2
Fig.2 (2.2)

3m

A
Fig.3 (2.3)

33 m7

A3
Fig.4 (2.4)

32m4

A
Fig.5 (2.5)

3-rn

3A2 1 (DO 1 1 - 3A2 1
Fzg.6 = i dx

2 2m 8m Ji (x2 — 1) — 1 4 3m
(2.6)

In the above (J1(i = 1 8) are numerical constants p—’ 0(1). The

result shows that the self-energy correction is dominated by the

one-loop diagram (Fig. 1) so long as < 1 in 3 dimensions

and < I in 2 dimensions. In other words there is a region of

parameters where the perturbation makes good sense even at high

temperature. This character in 2 and 3 dimensions is missing in 4

dimensions. In 4 dimensions we have

Am2 r°° (x—i)
Fzg.1=—i dx

42r3 Ji e3m
— 1.

- _+0(log/3rn)) (3.1)

A2
Fig.2 C (C : con8tant) (3.2)

(,3m)

Therefore at high temperature (3rn < 1) the higher order dia

grams such as Fig. 2 contributes more than the one-loop diagram

(Fig. 1) and thus T 0 perturbation breaks down.

Let us now leave the ordinary perturbation and turn to what

we cafl the self-consistent method which involves the summation

of sell-energy diagrams to au orders. It was introduced by Dolan
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and Jackiw 31 to discuss the restoration of symmetry due to tem

perature in 0(N) models. In the single real scalar theory the

sell-consistent equations for the effective mass. m is given dia

grammatically as in Fig. 7. Unlike in 0(N) models in the large

N limit non-planar diagrams become non-negligible. Still the self-

consistent method is useful to discuss the symmetry restoration.

To see that. we first truncate the self-consistent equation for m at

one-loop. Then the equation in 3 dimensions becomes

= —111+j-—jlog,3m (4)

where ), and are zero temperature parameters. E?. (4) gives

a solution with positive effective mass, which means symmetry

restoration. What is more, for a sufficiently small 3m 3m2 be

comes large enough that one may safely neglect the higher order

terms in the self-consistent equation. On the other hand eq. (4)

is not useful for predicting the critical temperature because at the

critical temperature m = 0 eq. (4) does not make sense . In 4

dimensions the corresponding equation is

= .—1L2 + j;; —
± in2 x O(log 3m)) (5)

It does no harm to set m=0 and one predicts the critical temper

ature, 3,

3
(242) (6)

One may compare it with a naive but physically reasonable esti

mate of One would think that the symmetry is restored at

the point where the thermal fluctuation becomes as large as the

distance between the two minima of the tree potential,

V(p) = _2 + jo4 [3]. Then the critical temperature turns

out to be identical to that in (6). As stated in the beginning the

infrared (m 0) behaviour in 3 dimensions is worse and the self

consistent equation becomes useless in the infrared region.

1To upp1ement this point we shall perform a lattice calculation in a companion paper.7
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3 Symmetry Restoration

in §2 we have investigated the svmmetr restoration in the sin

gle real scalar theory. ‘The subject becomes more subtle and inter

esting when there are two or more fields. The problem was rst

posed by Weinberg 5i in a 0(Y) x 0(Y) model in 4 dimensions

whose potential is

1I tI

- ‘12 !‘2 2 1f22
=

_>‘12,22 ± (ø)2 (7)
121 4 -

Rephrased in 3 dim. context the problem is as follows. Let us

peI’orm the ordinary perturbation and use high temperature ex

pansion. Then the effective masses. m?(i = 1. 2), at one-loop are

given by

= —p2+{(N+2)A1N12}log3p (8.1)

= 2 + {(N + 2)A Y} iog p

tfor simplicity we have set p = P2 p in 7)). If the parameters

are such that

(N + > .X12 > (N + 2)..\2 (9)

then m never becomes positive. Therefore the broken
0(N) x 0(Y) symmetry is not restored even at high temperature.

This conclusion was challenged by the authors of ref. 21 where they

found symmetry restoration by solving self-consistent equations
for the effective masses. We investigate the problem below in the

context of 3 dim. twscaiar theory and 0(N) x 0(Y) model. (We

shall not consider the 2 dimensional case since it is known that

spontaneous breaking does not occur in 2 dimensions [61). The

Lagrangian for the two-scalar theory is



1 1
Lto1 ‘) = ‘ + o, --- -

.4 ‘12 ‘2 ‘2 4
— jTl Q12 ( lu)

The oupIing on’,tants are required to satisfy

A1>A1,>A,>O. A1A3\i2>0 (11)

Let us set up self-consistent equations at one-loop.

= —j + A x F(3m1)
—

A12 x F(3m2)
\ i \ i

2 “1 Al2
—

— —-log 3m1 —-log 3m2 ( i 3m2 < 1) (12 1)

= —ji + A2 x F(3m2)— A12 x F(3m1)

., A2 1 A12 1
= — — —--iog3m, ± -—-log 3m1 12 2)

where

F(3m) log(e’’1 — 1) — 3m (12 3\

One may rewrite the equations as follows

47rx=—L23+(A1—Az2)log,3’-—A1logx+A12logy (12.1)

= (A2 — A12)log3 ‘— A2 logy tA12logx i12 2)

where r :3rn, • = ,3m. Although we omit the proof, the

above equations always yield a soiution with positive x and y for

sufficiently high temperature. d < 1. A numerical resu.tt in the



case = 0.5 .\, = 0.04Th A, = 0.0 i = 0.865 is given in Table

1. As temperature increases The effective masses m1. ‘n become

larger. as expected. So our result indicates symmetry restora

tion. However there is a problem in the one-loop approximaTion
we made , dr u,,ed in the previous section tile iluena tor a

safe T 0 oerturhation in 3 dims are 3rn 1 and 1
As Table 1 shows 3m2 1 is not satisfied. In fact one can show
that with the parameters we have chosen •3rn is always less than
1. It means higher order terms cannot be neglected. Therefore
one cannot safely conclude that symmetr is restored within This
approximation.

The situation is dfferent in 0(N) ‘c 0(N) models ith potential

IL( 22
(or. ô2) = —-—o1 + 02)

A1, ,\, ,
——ojo; ± -(o (13)

f N is sufficienth large the non-planar diagrams may oe ne
glected relative to the plaiar ones Then the seLf-consistent equa
tions become the same as (12.1), (12.2) apart from N and one finds

4x=——_+( 1—\12)iog(3Y’

V -- 2
A1logxtA12logg ij41)

4
= _

+
(N+

2A1
— 12) log(3Y)’

—A2logy+12logx (142)

where
3m 3m

£
——

y



If one sets = 0.865. = 0.5. A12 = 0.05. = 0.0475
the result of Table 1 is reproduced with the replacemtns of m —

-. 3 — LV. If V = 10. 3 = 10 then from the first row in
Table 1 one reads off n1 = 4.6 x iO. tn2 = 1 x 10 and thus
3m1 = 4 6 x 102 3m = 1 x 10 3m = 2 1 x 102 3m = 10
Therefore the truncation of elf-onsistent equations at one-loop is

safe. The higher order contribution is suppressed by both 4 and
In this case one may safely claim that symmetry is restored

at high temperature. All the preceding analysis is concerned with
the effective mass at the origin and thus there is left a possibility
that the absolute minimum lies at some point away from the origin
and the s’vmmetr remains broken We do not behee that is the
case.

4 Summary

We have investigated \ theories in 2 and 3 dimensions and
pointed out that there is a parameter region where T 0 pertur
banon is safe and reliable even at high temperature in ontrast
to the 4 dim. case. We have also shown within the safe region of
parametes that the broken 0(N) D(N) symmetry is restored at
high temperature using the self-consistent method.
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Figure Captions

Fig. 1. One-loop self-energy diagram.

Fig. 2. A two-loop self-energy diagram.

Fig. 3. A three-loop elf-energy diagram.

Fig. 4. A non-planar two-loop diagram.

Fig. 5. A three-loop diagram.

Fig. 6. One-loop vertex diagram.

Fig. 7. Self-consistent equation for the effective mass.

Lable I. Solution of ‘seil-consistent equations (12.1,(12.2)
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