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On the stability of monopoles
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Abstract

A monopole with non-Abelian charge Q admits 2I2(Q)I-1 negative

modes where o( is a root of the residual group. These modes can be

constructed by techniques of geometric quantization. Each topological

sector admits a unique stable monopole.
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1.

As first pointed out by Brandt and Neri [1] and by Coleman [2]

most non-Abelian monopoles are unstable under small perturbations. In

fact [3] a nionopole with non-Abelian charge Q (see Refs 2,4) is stable

if and only if, for each root Y of the residual symmetry group H,

(1) 2.(Q)I l

The clue to further investigations is the observation [2,5] that at

large distances the rnonopole problem reduces to a pure Yang-Mills (YM)
z.

theory with gauge group H. Yang-Mills over S is but a special case of

that over a Riemann surface [6], for which the index (the number of

negative modes) can be expressed in topological terms. Applied to

this becomes [7]

(2) = 2 2(Q)I-l

o(Q) 0

so that =0 implies (1).

The point is that the case of
S

is so simple that the negative

modes can be found explicitly, namely by the technique previously

introduced in geometric quantization [8]. The problem is in fact to

find the holomorphic sections of line bundles with Chern class

= 2 o((Q)I—2.

It has been claimed [2] that each topological sector contains

exactly one stable monopole. Coleman illustrates this for

H = S U( N)/ZN [2], and Goddard and Olive [3] prove for the case when H

has a 1-dimensional center. Our proof (valid for an arbitrary symmetry

breaking pattern) uses the trick of reducing the problem to AdH, the

adjoint group, which is semisimple. The statement follows then from the

structure theory of Lie algebras [9]. Remarkably, SU (N )/Z is just

the adjoint group of U(N ).



2.

Consider a pure YM theory on a principal H-bundle P over given

by

(3) E(A)= (FAF)

S2.

where H is assumed to be compact and connected, F is the field strength

tensor FDA and * is the Hodge operator on SL. The solutions of the

associated field equation D*F=O are characterized by an (up to

conjugation unique) vector Q in /‘, the Lie algebra of H. Q is

quantized, exp 47tQ=l [2,4].

The stability properties of a solution are determined by the

Hessi an

() 1 &E (7) ç
where the variation is an adP-valued 1-form on

the space of 1-forms on S2, is decomposed according to the

eigenvalues T £ of *, _Cl. = S2.UO) +
Io4)

(This decomposition is

analogous to that in 4-dimensional YM theory to self-dual and

anti-self-dual forms). The eigenvalues of *[*F,
‘ ] on

and are - and respectively, where (Q)/t. ,

being a root of I, There is no loss of generality in assuming q
o for all positive root o(, since this can always be achieved by a gauge

rotation. D*D is a positive operator on X-’, and Atiyah and Bott [6]

show that its first non-zero eigenvalue on the subspace where F=- ej is

at least 2q , so to be a negative mode must satisfy D* =0, D7 =0.

Splitting and D as = + , D=D’ + according to the

eigenvalues of , this condition reduces to

(5) 0’ =0.
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Now, according to a theorem of Koszul and Malgrange, a complex

vector bundle with connection over SZ has a unique holomorphic structure

whose holornorphic sections are exactly the solutions of (5). We

conclude that the negative modes are just the holomorphic sections of

AdP

If Q is a monopole, ) (ed) = exp 4ItQt is a homomorphism of U(l)

into H and we can form the associated bundle Yx H, where Y is the

principal U(l) bundle of Hopf over
S,

whose Chern class is one,

c(Y)=l. In fact, this is isomorphic to ,the monopole bundle.

a: (
The decomposition /‘ = ‘i +Z of the complexified Lie algebra

(where is a Cartan algebra and the ‘s are the root spaces) implies

the analogous decomposition

(6) adP =P + P

where

P0 Yx, i and P = Yx,

Both
b

and P are holomorphic line bundles, P, is trivial, c(P )=O and

has Chern class c(P ) = . By (6) the sections of adPftC0)

are obtained from those of

(t ) (11b)

(7) (P0 0cL’ ) (P

The Chern class of a tensor product is the sum of the Chern

classes, and has Chern class(-2). Hence c(PD Q S1°)=-2 has

no holomorphic sections. On the other hand, c(P Q°)) =

n =2-2. Geometric quantization [8] tells us then that for

n 0 a line bundle with Chern class n admits n ÷1 =I2cUQ)L-l
holomorphic sections.
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5.

Now any compact can be decomposed into = + , where is the

centre and —Eh,] is semisimple. Accordingly, Q=2(Q)+Q’ . ‘is

further decomposed into simple factors, %‘= L ... + , and the

result of [3] tells that to be stable Q) must be

(11) 2Q = ç )

where is either 0 or a minimal weight of the simple factor

What we want to prove now is that each topological sector contains

exactly one monopole whose semisimple part is of the form (11).

This will follow from an algebraic description of JC of a compact

group.

First, if o( is a root of a semisimple
, define i by ) - )

If the simple roots, when set

(12) / () and () C

These vectors generate the two lattices

(13) and Z.

If H is any compact group with algebra ‘, its roots are those of

The -lattice is still defined by (13), and the unit

lattice r is all & such that exp 27T =1. For example, 2Q, twice

the non-Abelian charge of a monopole, is in f . If , is the

projection : onto the center,
. (J’ ) is a lattice in , and we

define

(14) Z( ‘ { I z(P) 6

These lattices are ordered according to r C.



6.

If is compact and semisimple, Jt1(H’) is known to be /

Now we extend this description to any compact H.

Remember first that if H is compact and semisimple, then it has a
1.

simply connected covering group H with projection 6 :H — H , and

thus

]t(H’) Ker

For a general compact H denote by H the subgroup whose Lie algebra

is , and define - : x ‘iTL,H by

(15) T(I) = (exp 27T) (-&).

Then T1(H) Ker . If is a Cartan algebra of let ‘= r)

and denote T and T the generated maximal tori. The restriction of

yields : x.T and 7t(W) I4 6 is still valid. ‘ is a

simply connected covering space for both T and x T’ with covering

maps 3% — exp 21TZ e T and Z (Z ) = ( ( ) 3?j5 2rr X’ ), where

ji is the exponential in H’ and 2(X)

2]T(%))-’ (2 271%’) =

tp 27TXc 27T

shows that

///
\çiaTr.)

1

commutes
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It follows that Ker Ker exp 211 (.)/Kerr

p , Ker exp 271 (. ) = P , and thus
“1

?t, onto (1’).

But 2•(P

and ?C1(H

But Kert is

iT1 (H ) ‘ Ker ‘ is a subgroup of Z(H ), the centre of H , so two

extreme cases may arise. First, H’ may be simply connected. This

happens for example if H is the little group of a vector in the adjoint

representation.

(16) = r/r7

for any compact H.

The topological sectors

3t(H) which belong to the

&:3T(/H)— Tr1(H)

sector is represented by

Consequently

(17)

is a well-defined map from

r’/r11 JT(H)
where is the dimension of

of monopole theory are those classes in

image of the connecting homomorphism

where G is the original gauge group. A

2Q+7 , where 2Q is in P and belongs to p

([2QJ)= (2Q)

f is linear and its kernel

is a free Abelian group,

is finite. Thus

(18) it4(w) (P) 2 7c4(W’)

(direct sum). In particular, ‘, (introduced previouslly by topological

means [10]) is an isomorphism between the free part of ir(H) and

2(P). Choosing a L-basis .. for z (P ), we get ‘quantum”

numbers by ?(Z)=lj,
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The other extreme case is that of Ker 0 = (H ). Then =

the vectors in generate loops. For any compact H,AdH, the adjoint

group, does have this property. AdH H /(H ), and has for its

lie algebra. Decomposing to simple factors

(19) (Aw) + ÷ (P/r)

The crucial fact for our proof is that the points of the (discrete)

centre of 1i , (the covering group of the j factor) is uniquely

exp 21t where is either 0 or a minimal weight, see [3 1.
In other words, (AdH) is generated by those loops

(20) (exp 2 t ) (exp 2

For a monopole theory with AdH as residual group, the existence and

uniqueness of a stable monopole is hence established, since each sector

contains exactly one Q, of the form (11).

For a general compact H we can proceed as follows: a ioop in H is

also a loop in AdH, and if 2Q. 2Q generate homotopic loopsin H, then

is in and generates thus a contractible ioop also in AdH.

This yields a well-defined map

(21) : Jt4(AcLH)

If Q) is stable as in (11), & = 47UQ’ is in (r’), and thus

-L = (&) is in 2(H) = Z(H)0 H’ (the subscript o means here

connected component).



However, as proved in Ref. 10, exp 211(.) maps (P ) onto (H)0 ..-. H’

with kernel I = . Hence = exp 2T for some in .(P ),
and L is unique up to a vector in But for such a )‘ exp 2rr

is never contractible since is empty.

We get therefore the following algorithm for constructing the

unique stable monopole Q0 of a given topological sector: first, choose

the unique stable Q from in Jt1(AdH) as in (11). Second, the

equation

(22) exp 21 =exp (-4TrQ0

admits, as we have just proved, a unique solution ‘, in our sector.

(23) 2Qb = ç +2Q0 ç + I
a

is then the unique stable monopole in our sector.

Furthermore, any other monopole of the sector has charge

(24) 2Q = 2Q+’7

where is in r
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