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Abstract

The definition of a space-time symmetry, developed in a

previous paper in the framework of Simple (N=1)

Supergravity is extended to the N=2 theory. As an

application, the properties of the N=2 plane wave are
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1) Introduction

In a previous paper [1], henceforth referred to as

T’Part I”, we presented a definition of the notion of a

space-time symmetry in Simple Supergravity. This

definition was based upon the analogous one in Gauge

Theories [2,3]. More precisely, it was proposed that a

solution (1a tp) of N = 1 Supergravity be considered as

symmetric under the space—time motion generated by a

vector field if and only if there exist a

skew—symmetric matrix Aab and a Majorana spinor S such

that1

a a b — a
= A

b •

+ S ‘t (1.1)

= OS. (1.2)

However, it was shown that two major difficulties

arose because of the presence of the Lie derivative

acting on the spinor—valued one-form p.

Firstly, the notion of a Lie derivative seemed to

be well defined only when the differentiating vector

field was a conformal Killing vector. Therefore, we

were led to adjoining to (1.1), (1.2) the ad hoc

restriction g = • g , where g is the metric.

Secondly, it was proven that the two usual definitions

1Here and in the sequel, the notation is the same as in

Part I and will therefore not be further specified. We

simply recall that Greek indices refer to an arbitrary

frame, whereas Latin indices refer to an orthonormal one.
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ti) for the Lie derivative of a spinor, namely

c(S) —

a;b ‘abc
,ab

(1.3)

c(S) — Lab
ab5

(1.4)

a
Lab

,b
(1.5)

which are equivalent in the case of a torsion—free

Riemannian space, become distinct in the presence of

torsion. Explicitly, one finds, for an arbitrary S

— .r(2)s =
T

gab
s . (1.6)

Both difficulties will be overcome in the present

paper. We shall define a generalised Lie derivative (GLD)

and we shall show that this new definition is

compatible with ordinary tensor calculus for an arbitrary

1. Moreover, we shall discuss to what extent it is

unique. This will be done by drawing, in § 2, a parallel

with the covariant derivative of a spinor. It will then

be seen that all the results which were obtained in Part

I remain valid with the GLD.

After having shown, in §2, the mathematical

consistency of our framework, we shall in § 3 present the

generalisation to N = 2 Supergravity of the definition of

a space-time symmetry, developed in Part I for Simple

Supergravity, The comparison with the Einstein—Maxwell

theory will also be made.

Finally, in § 4, we shall apply the N = 2 definition

of a symmetry to the N = 2 plane wave of Supergravity.

The result will be that, in general, this solution does
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not admit the same group of motions as the plane wave of

the Einstein—Maxwell theory. Furthermore, we shall show

that if we restrict attention to a first-order

calculation in the gravitinos (2), i 1, 2, the

(approximate) symmetry group is precisely the one of the

Einstein-Maxwell plane wave.

Both results are exactly analogous to those obtained

in the simpler case studied in Part I. Therefore, due to

the similarity of the methods used in the proofs and due

to the length of the calculations for N = 2, we shall

only present here explicitly the first-order calculation.

The exact case will simply be sketched.
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2)

The problem of defining the notion of the Lie

derivative of a spinor received already much attention.

(See e g [4—8) ) Several of these approaches have in

common that the authors begin by deriving an expression

for under the assumption that is a Killing vector

Then, after observing that the obtained formula is

covariant, they adopt it as a definition in general, i.e.

for an arbitrary vector field . (See in particular [7).)

In the hypothesis in which is a Killing vector, it

is possible [8) to adapt to the Lie derivative, the

method used by Weyl for defining the covariant derivative

of a spinor [9) This method shows clearly the origin of

the difficulty which arises when trying to give a meaning

to the Lie derivative of a spinor in general, and

consequently, we shall begin by reviewing it here

briefly. Then, we shall discuss the compatibility of the

obtained equations with tensor calculus. This will also

give us an indication on the uniqueness of our

definition

It will be particularly convenient to consider

simultaneously the cases of the covariant derivative and

the Lie derivative. Therefore, in this section, the words

‘tderivativ&’ and “transport” will be understood as

referring to both cases: covariant and Lie derivative,

covariant and Lie transport, respectively. Only when

explicitly stated, shall we distinguish between covariant
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derivative and Lie derivative. We now describe Weyl’s

method for transporting spinors.

Consider a point P with coordinates x. At P, one has

some spinor, the components of which are lp(xM) in the

local orthonormal frame ea(P). To transport p from P to

a neighbouring point Q with coordinates x + ‘, where

is an arbitrary vector field and E is an infinitesimal

parameter, one proceeds as follows [8,9):

1) Transport ea(P) from P to Q along . This is well

defined since
eal

a = 0, 1, 2, 3 is a vector. Thus its

transport is given by the usual laws of tensor

calculus. Let e(Q) be the transported frame at Q.

2) Provided the transport respects the scalar product,

t
ea(Q) as also an orthonormal frame and consequently, at

is related to the local orthonormal frame at Q, ea(Q), by

a Lorentz transformation which can be calculated in terms

of the parameters of the transport.

3) One then gives a meaning to the notion of the

“transport of p from P to Q along “ by postulating that

the components of the transported ip at Q, expressed in

e(Q), are the same as the components of p in

namely (xM). The components of in the local frame

ea(Q) can easily be determined from the knowledge of the

Lorentz transformation obtained in 2).

4) Finally, the “derivative of ip along “ is defined as

ip lim (ip (x + E
— (x + E (2.1)

E—,O

where denotes the (covariant or Lie) derivative, and
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+
ac

c ab
(2 2)

For the Lie transport, this requirement is not

fulfilled (in general), unless the transport takes place

along a Killing vector field . (Only then does the Lie

transport respect the orthonormality of the frame.) In

this particular case, a “Weyl-like” treatment [8) gives

(1 4) Definition (1 3) as obtained from (1 4) by

expressing Lab in terms of the connection [8]. (This is

similar to rewriting, in a torsion—free Riemannian space,

the Killing equation + g + g = 0,

using the connection, as v;p = 0.1

It is now clear that the problem which arises in

Weyl’s framework when one tries to define the Lie

derivative of a spinor with respect to an arbitrary

vector field is analogous to the one of defining a

covariant derivative in a non metric—compatible theory.

7

both spinors (w and
t) are expressed in ea(x” + e

Obviously, the above procedure can be applied only if

the transport respects the scalar product. Otherwise, the

orthonormal frame e (P) fails to remain orthonormala

during the transport from P to Q.

In the case of the parallel transport, this

requirement is satisfied if the theory is

metric—compatible, i.e. if V g = 0, where V denotes the

covariant derivative. Weyl’s method then yields the

definition of the covariant derivative of a spinor used

in Part I:



Therefore, we shall treat these two problems

simultaneously.

It should be noted that the compatibility of any

such definition with the rules of tensor calculus must be

explicitly established This is a consequence of the fact

that, from two spinors p and x , one can construct a

vector as:

i — Iv =p x, (2.3)

where is the ith Dirac matrix and the bar denotes the

Dirac conjugate. If one generalises to spinors, an

operator such as the covariant derivative or the Lie

derivative, for which one assumes a Leibnitz rule, (2.3)

implies that

v1 = (6 ip) + ip (8 ) + ip (8 x). (2.4)

The left-hand side, being the action of the derivative on

a vector, is defined. On the right-hand side, the action

of the derivative on the spinors is assumed. Thus, (2.4)

determines 8, This, in turn, must be consistent with

the defining property of the Dirac matrices

i j ii
‘‘ } = 2 q , (2.5)

in such a way that the following must hold:

(6 ,i) (8 y3) + (8 y3) + cJ (8 ) = 2 6r7i1,(2.6)

where on the right-hand side, 6 r1 is again a known
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quantity since is a tensor.

If one applies this procedure to the definition (2.2)

of the covariant derivative and one assumes, for the

reasons explained above, that the theory is not

necessarily metric—compatible, (2.4) implies:

a = [ea(i ) - ‘nina
mn

+
a

-g’)

+ [ea(X) + Fmna mn

= ea(i
‘

+ a ‘mna
mn x

= ea(vi) + v + , (2.7)

V + I , (2.8)

in which use has been made of the relations [8]:

p ea(lp) - “mna
,.mn

(2.9)

[ann ,i2 in m — mm 1n
(2.10)

I,. = — I’.. — H.. , (2.11)
jik jik

and Va denotes the covariant derivative in the direction

of the base vector ea. Equation (2.11) is a consequence

of the definition (given in the appendix) of the

non-metricity Hijk . (It should be noted that,

due to the linearity of the covariant derivative, it is

sufficient to discuss V ip The covariant derivative in
a

the direction of an arbitrary vector field is obtained

as = a
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The two first terms on the right-hand side of (2 7)

are recognised as the expression assigned to vi by

the laws of tensor calculus. Thus, (2.7) implies that the

definition (2.2), (2.9) of the covariant derivative of a

spinor will be compatible with tensor calculus if and

only if ta vanishes, i.e. if, by virtue of (2.8), the

covariant derivative of a Dirac matrix is assumed to

satisfy

+ Hi = 0 (2 12)

This can be conveniently rewritten as:

÷
a g)’ T = 0. (2.13)

It must now be shown that this formula for Va

respects (2.5), i.e. that (2.6) holds for replaced by

V . After an expansion of
7a

i3
in terms of the

connection, and a substitution of V
‘‘

by its value from

(2 12), one gets

— H13 = p13 +
a a a

which is automatically satisfied, as a consequence of

(2.11).

Thus, we have proven that, to ensure compatibility of

the covariant derivative (2.2), (2.9) with tensor

calculus, the covariant derivative of the Dirac matrices

must be assumed to satisfy (2 12), which in turn is

consistent with the definition (2 5) of the Dirac

matrices These results contain as the special case HjJk

= 0, the usual equations (valid in a metric—compatible

theory [10)):
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7a
y = 0 : special case of (2.12)

rIsk + rk = 0 : special case of (2.11).

A similar calculation must be made for the Lie

derivative. To treat simultaneously (1.3) and (1.4), we

shall consider a “generalised Lie derivative” (GLO). We

shall write:

£ p p) - (Lab + Mab)
ab

(2.14)

p p) + (Lab + Mab)
ab

(2.15)

where Lab is defined by (1.5) and Mab is still arbitrary.

Obviously, Mab vanishes for £2) whereas, for £1), one

has:

Mab = - b - Lab (2.16)

Proceeding as for the covariant derivative, it follows

that

v = [(p) + (Lab + Mb) j ab 1
x + ip (.f •‘)

+ i t(X) - (Lab ÷ Mab)
ab

= x) + ij {
•Y + 4- (Lab + Mab)[CTab,

.J.]}
X

= (v1) — L’ v + ‘p x (2.17)

£ + ak
L(jk)

+
M[jk]

= j i
+

g)i —

M} , (2.18)

in which use has again been made of (2.10) and the

formula mentioned in Part I:
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g = (Lab + :t.Ib)
b

(2.19)

The two first terms on the right—hand side of (2.17)

are the expression assigned to v1 by the laws of

tensor calculus (using the notation (1 5)) and thus,

compatibility with tensor calculus as achieved if and

only if the Lie derivative of a Dirac matrix is assumed

to satisfy, by (2.17), (2.18):

+ { (L g) — ri = 0. (2.20)

For the GLD, Mab is arbitrary and therefore, so is

Mtabl However, for £2), M
ab] = 0 whereas, for

one obtains:

2M.. M..-M.[aj] aj

= . . - 1. . + (I’.. — I’.
. ) + L.. — Ljak ajk 31

= e(1) — e1() + (Fk
— 1’kij + 1’jik

—

+ — L1 . (2.21)

It is a simple matter to transform (2.21) into the

form

Mtj = (TEijik +
.

(2.22)

One uses (3.10) of Part I and the three following

identities, valid for an arbitrary (not necessarily

metric—compatible) connection:

Tkjj
—

= Tkjj + Dkij (2.23)
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11jik — T’ijk = 21’jik + Hijk (2.24)

2Fjik + Tkji + Dkij + = - Djik + Tjkj - Tjki

+
— Hkjj (2.25)

in which 0. . denotes, as in Part I, the commutation
ajk

coefficients of the basis. The position of the indices in

(2.23)-(2.25) depends on the conventions which are used

for the connection and which can be found in the

appendix.

After obtaining the formula (2.20) for £ ‘, it must

still be verified that it is consistent with (2.6). An

elementary calculation shows that this is indeed the case

for an arbitrary Mab

The conclusion is then that the GLD (2.14), (2.15) is

compatible with tensor calculus and with the defining

relation of the Dirac matrices if and only if one imposes

to the Lie derivative of the latter to be given by

(2.20). Consequently, (2. 14)—(2. 15) represent, for an

arbitrary Mab? a class of operators (acting on spinors)

which are consistent with the rules of tensor calculus.

To make a choice between all the members of this

class, and in particular between (1.3) and (1.4), one

returns to (2.20) and observes that, among all the

possible choices for Mabf the simplest expression for

is obtained for Mab = 0. Moreover, this choice leads

to an expression for which is similar to the one

for V :
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V y + (V g)
y’ = 0 (2.26)

+ ( g) = 0, (2.27)

where (2.26) is the contraction of (2.13) with

Another reason, beside simplicity, to select the

possibility Mab = 0 is that, as mentioned in Part I, the

quantity Lab appearing in (2.14), (2.15) is independent

of the connection. Thus the definition (2.14), (2.15)

does not involve the connection for M = 0. If oneab

insists in having a connection—independent definition,

one does not have at one’s disposal a natural tensor with

which one could identify Mab On the other hand, if one

accepts a connection—dependent definition, one can then

make an assumption such as (2.16) for Mab However, the

notion of a Lie derivative should be independent of the

connection and consequently, a possiblility such as

(2.16) seems artificial.

It is worth mentioning, in the spirit of Weyl’s

method, that both terms (V g) and (E g) in (2.26),

(2.27) express the variation of the scalar product of the

base vectors when they are transported along :

6 (ea eb) = 8 ((e eb))

=(8 g)(e , e)+g(6 ea , e)+(e , 6 eb)

= (

in which we assumed, for the last step, that 8 ea = 0,
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and stands for and Thus, In (2 . 26)— (2.27), the

variation or of the Dirac matrices is due to

the variation of the scalar product of the vectors of the

frame ea during the transport along I.

Accepting the above argument and taking Mab to vanish,

we have in fact made the choice to accept the definition

(1.4) as the relevant one for the Lie derivative of a

spinor. We shall continue to call It the “generalised Lie

derivative”, although we have selected the special case

Mab = O since we shall apply it without restriction on

the differentiating vector field , in contrast with what

we did in Part I, where It was assumed that was a

(conformal) Killing vector, This definition is one of the

two that we considered in Part I. As, In the latter, we

checked explicitly that the results were valid for both

definitions (1.3) and (1.4), It is clear that none of our

results must be revised.

The proper notion of the LIe derivative is now at our

disposal, and that wIll enable us to generallse, in the

following section, the definition of a space—time

symmetry, given in Part I for the N = 1 theory.

Remark

We always discussed In this section, the notion of the

Lie derivative of a spinor. The Leibnitz rule makes

straightforward the extension of this notion to a

spinor-valued one-form. (See (3.4) in Part I.)
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3)

In Part I, we based our definition of a space—time

symmetry in Supergravity upon the analogous one in Gauge

Theories [2,3), The crucial role was played by the

transformations of Supersymmetry. In the N 2 theory,

the independent fields are the electromagnetic one-form

(A), the orthonormal frame (ga)
and two spinor-valued

one-forms (the gravitinos (i),
= 1, 2). The

Supersymmetry transformation which these fields undergo

are [11):

a
= imi(m)

a (m)
(3,1)

6 (m) = 2 (m) + — (F
b

Jab)
(3.2)

n=1

2

6 A = i Emn (m) (n) (3.3)

m, n= 1

where 5(m)
, m = 1, 2, is an arbitrary Majorana spinor,

denotes and F is the modified electromagnetic

field:
2

= F - y inn j(m)
A

(n) (3,4)
2/2

in ,n= 1

For simplicity we shall not, in the sequel, indicate

explicitly the summations over the “internal indices” in

and n, nor shall we put the latter in brackets.

If one imitates, for the N = 2 theory, the definition

of a space—time symmetry which we developed in Part I for
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Simple Supergravity, one is led to consider a

configuration (,Pa,A) as being symmetric under the

space—time motion generated by a vector field if and

only if there exist a matrix Aab and two Majorana spinors

such that

= A
‘

+
m a m

Ab - Aba (3.5)

,m
= 2 7

5m
+ Emn Sn (3.6)

A = i /2
m ,n (3.7)

in which, compared to (3.2), the notation has been

simplified in an obvious way.

As in Part I, it is convenient to rewrite (3.5) in the

form:

= :m
a + b (3.8)

Given the fact that we have explicitly shown that the GLD

appearing in (3.6) is consistent in general, we do not

impose to to be a Killing vector, in such a way that

(3.8) does not put an algebraic constraint upon
5m

and

as it was the case in (3.5), (3.6) of Part I.

The set of equations (3.6)-(3.8) must, however, be

slightly modified since it does not exhibit the proper

limiting behaviour when o (which we call the

“Einstein—Maxwell” limit). In this limit, the symmetry

definition becomes:

(3.9)

A = 0 , (3.10)
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and Sn can be assumed to vanish. In the same

circumstances, the field equations of N = 2 Supergravity

[11] reduce to the Einstein-Maxwell equations. Therefore,

(3.9), (3.10) should yield expressions which are

recognisable, either from the gravitational, or from the

electromagnetic point of view

Obviously, (3.9) is the Killing equation used in

General Relativity, whereas (3.10) is almost identical

with the definition of a symmetry in Gauge Theories (in

the Abelian case). However, (3.10) is more restrictive

than the latter One should rather have [2,3)

A = d , (3.11)

which expresses the fact that A must be invariant under

Lie transport, up to a gauge transformation generated by

the function cb• The minimal modification that we must

make to (3 7) to imitate as closely as possible Gauge

Theories consists in adding a term d (as in (3.11)).

Consequently, our final symmetry criterion in N = 2

Supergravity takes the form:

uThe configuration (,a,mA) is symmetric under the

space-time motion generated by If and only if

there exist two Majorana spinors
5m

and a function

satisfying

(f ) =
m

(la t%
+

P) (3.12)

£ m
= 2 7 5m

+
(F)

mn
Sn (3.13)
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A = d + i
1flfl m n,,

(3.14)

This clearly contains (3.6)—(3.8) of Part I as a special

case (if one adds the further constraint that be a

(conformal) Killing vector).

It should be noted that, in the Einstein-Maxwell

theory, one often calls “symmetric” the solutions for

which only (3.9) holds. By using the Einstein-Maxwell

field equations, one proves [12] that (3.11) is not

necessarily verified. Explicit examples are known [13] in

which (3.11) is actually violated, exhibiting an

incompatibility between the symmetry of the metric and

the one of the electromagnetic field. Such a conflict has

been excluded, by construction, from our framework since

we constructed (3.14) by requiring (3.11) to be satisfied

in the Einstein-Maxwell limit. This is in the spirit of

our procedure, since we try to draw the closest possible

parallel with the definition of a symmetry in Gauge

Theories. Consequently, we were led to postulate the

limiting behaviour (3.11).

Moreover, to establish the possibility of violating

(3.11) whilst satisfying (3.9), the Einstein—Maxwell

equations must be used explicitly In other words, this

possibility arises from an interplay between the

!2!2 equation (3.9) and the dynamical equations

(i . e. the Einstein-Maxwell equations). Our approach,

imitating Gauge Theories, keeps the field equations

separated from the symmetry principle It as known [12]
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that if, in the Einstein-Maxwell theory, one insists in

keeping such a separation, the obtained definition of a

symmetry (3.9), (3.11) is somewhat more restrictive than

otherwise. The question of the interplay between the

geometrical— and the dynamical equations was already

encountered in Part I (Note added in Proof), and a more

detailed study is most conveniently left for a subsequent

work.

Finally, it is useful to adopt in the N = 2 theory,

the same terminology as in the N = 1 theory of Part I. We

shall refer to the first-order approximation in to

(3.12)—(3.14) as the “Rarita—Schwinger” limit. Its

explicit form is:

g = 0 (3.15)

m
2 V m + 1 (F a) Emn y Sn (3 16)

A = dc. (3.17)

We are now ready to apply our definition of a symmetry

to the problem of the plane wave of N = 2 Supergravity.

As explained in the introduction, we shall present mainly

the calculations in the Rarata—Schwinger limit The exact

case will only be sketched. The results will be the same

as for the N = 1 theory, namely that the plane wave of

Supergravity does not, in general, admit the same

symmetry as its general—relativistic counterpart,

although at does admit the same symmetry if one restricts

20



attention to the Rarita-Schwinger limit.
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g
= ab

1,a 1,b (4.1)

/2
1,0

[1-H(u,x,y)] du - dv

(1+H) du + dv

1 21, dx , 1, dy,

where the coordinates are x° u, x x, x y, x3 v and

H is, so far, an arbitrary function. The gravitinos take

the form:

,m,md÷,md (4.5)

+

+

m* m
i 1 —i 1

— 11m* 1m

lP = Gm(U) (4,6)

4)

The plane wave of N = 2 Supergravity derives from the

following line-element [11):

(4.2)

(4.3)

(4.4)

m m
G (u)

.m .m
a]. a].

m* m
il — il
1m*

-

1m*
+

an which Gm, in =

= 1, 2 is an

useful quantity,

(4.7)

.1

1, 2 is an arbitrary function and l, m

arbitrary (anticommuting) constant. A

derived from Gm and is
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K(u,x,y) k1 + k2 (4 8)

(1a 1a — 1a 1a) (Ga)2 a = 1, 2 . (4.9)

(This function is, as in Part I, related to the torsion

of space—time.)

The electromagnetic potential A is given by

A = h(u,x,y) du, (4 10)

where h is an arbitrary function to which Maxwell’s

equations impose to be harmonic:

O=thh +h . (4.11)
,xx ,yy

(Here and in the sequel, partial derivatives are

indicated by a comma ) In the basis (4 2)-(4 4), the

electromagnetic field F takes the form:

/2 F = h (A
0 +

i1A
3)

+ h (2A + 2A
3)•(4•)

The only field equation which is not automatically

satisfied is Einstein’s equation

H = K2 + h2 + h2 (4 13)

Our aim is to compare the plane wave of N = 2
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Supergravity with the plane wave of the Einstein-Maxwell

theory. Therefore, we start by assuming that the

curvature tensor depends on u only. (See Part I and ref.

£14).) The curvature is the same as for the N = 1 theory

[11), with the same consequence, namely that H must be

purely quadratic in x and y:

H = x(u) x2 + X(u) xy + i’(u) y2 , (4.14)

in which x, ).. and p are arbitrary functions.

If this expression for H is substituted into

Einstein’s equation (4.13) it follows:

h2 +h2 =2x+2p—K2. (4.15)
,x

This cannot be satisfied by an arbitrary function h since

p and K depend only on u. The additional constraint

that h must fulfill is:

(h+ h2)= (h2+ h2) = 0. (4.16)

A simple calculation using (4.11) shows then that either

h must depend on u only (which leads to the degenerate

case F = 0), or all the second derivatives of h must

vanish. This, in turn, forces h to be linear in x and y:

h(u,x,y) = P(u) x + Q(u) y + Z(u), (4 17)
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where P, Q and Z are arbitrary. By (4.10), Z can be

assumed to vanish without loss of generality since it

does not influence F. (A further consequence of (4.17) is

that F depends on u only.)

Substituting (4.17) into (4.15), one obtains:

= (K + + Q2) — x, (4 18)

which enables one to eliminate i from H in (4.14). A more

symmetric expression is, however, obtained by renaming x

and X as:

x (a + K2 +
,2

+ (4.19)

where a and 13 are arbitrary The final form for H as

4 H = a (x2 — y2) + 213 xy + (K2 + P2 + Q2) (x2 +y2),(4.20)

which is obviously a generalisation of (4.5) in Part I.

Moreover, (4.20) together with (4.1)—(4.4), has exactly

the form of the metric of the Baidwin—Jeffery [15) plane

wave of the Einstein-Maxwell theory

The conclusion of this calculation as that, with the

requirement that the curvature be dependent on u only,

the plane wave of N = 2 Supergravity is characterised by

a H function of type (4.20), an electromagnetic potential
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of type (4.17) and gravitinos of the type (4.5)-(4.9).

The electromagnetic field F is then also a function of u

only. In all these formulae, cx, f3, K, P and Q are

arbitrary functions, and the field equations are

automatically satisfied.

We are now in the position to apply the symmetry

definition of N = 2 Supergravity. We shall prove that, in

the Rarita-Schwinger limit, the generators of the

symmetry are precisely the Killing vectors of the plane

wave of the Einstein—Maxwell theory. However, beyond

this limit, the symmetry of the plane wave of N = 2

Supergravity is, in general, different from its

relativistic counterpart.

For a metric of the form (4.20), (4.1)—(4.4), it is

known that the Killing vectors are [15):

= q(u) - + r(u) — + [m—(qx + ry)) — , (4.21)

in which m is a constant and q, r are arbitrary solutions

of the system

2[1 (4 22)
rj K2+P2+Q2al rjI J

(Here and in the sequel, a prime over a function denotes

a derivative with respect to u.) It is now a well defined
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question to investigate whether the vector fields (4.21),

(4.22) satisfy the definition of a symmetry in

Supergravity (3.12)-(3.14) in the case of the plane wave

(4.1)—(4.1O), (4.20).

In the subsequent calculation, we shall prove that the

symmetry equations are satisfied in the Rarita-Schwinger

limit (3.15)—(3.17). As we shall also give, at the end of

this section, some indications on the exact treatment

(i.e. beyond the Rarita-Schwinger limit), it is

convenient not to apply immediately the approximation

(3.15)—(3.17), but to consider at first the exact

equations (3. 12)—(3.14). The limit will be taken

explicitly in (4.46) below.

As in Part I, we start by calculating successively the

following quantities, all expressed in the basis

(4.2)—(4.4):

I ‘

10 q r 0,

)/2 L = { q 0 0 q (4.23)

r 0 0 r1. 0 - —; 0

,m
= (q

+
r Wm)(O+3) + (qj +

m 2)(424)

= [E0(Sm)+
-- (H p

+
- K )Sm] ,0

-- K v Sm) 1
+ tE2(Sm)+

- K
5m 2
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[33($ffl) 4 (H ii + H u — K c)SJ •3 (4.25)

ab
a
Tab -

£ 9a S 7ab (4.26)

A — (q P + r Q) ——

(00 + 03) (4.27)

g a 0, (4.28)

in which we have put:

,i . 4— - (1 + H) 4— (4.29)

4 a 4— + (1 — H) 4— (4.30)

a , H2 a 4— (4.31)

4p a [0
,

71] [yl , 73] (4.32)

4p a [70 2] — [72 73] (4.33)

ft a [yl 72] (4.34)

HaH, HaH7

Moreover, it has been assumed (consistently with

(4.5)—(4.7)) that
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It is a simple matter to prove, using the appendix of

Part I, that ii ‘ — 1)

2 =
in such a way that (438)—(4.41) imply:

= (4.42)
av

2 S + /2 (H u + Hy v - K )Sm = 1m +

+ /2 (P .z + Q ) Sn (4.43)

2 S= K
5m

+ (P + Q I.)) mn
,,

5n
(4.44)

- 2 S = K
5m

+ (P t-’
— Q .t) £mn 5n (445)

So far, no approximation has been made. Given the

length of the calculations, we shall now restrict

attention to the Rarita-Schwinger limit. As mentioned

above, some indications on the exact treatment will be

briefly stated at the end of this section.

In the Rarita—Schwinger, one neglects the products

m
ip and m 1pfl Therefore, (4.36) is automatically

satisfied and (4.37) becomes, by virtue of (4.2), (4.3):

(q P + r Q) du = d , (4.46)

whereas, in (4.42)-(4.45), one must neglect K which is
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quadratic in ? [11). Due to the fact that the left-hand

side of (4.46) depends on u only, it is obvious that a

solution (u) can be found by integration.

To establish that (4.42)—(4.45) are compatible, it is

sufficient to find a particular solution. It will be seen

that such a solution exists for a spinor m of a form

similar to (4.35):

m
5

m
5

= (4.47)

For a spinor of this type, one has: .i
8m = m =

= v m = 0 and consequently, (4.43)-(4.45) reduce to

2 = c + + y’ (P i + Q ) E o (4.48)

=
8m

= 0. (4.49)
x y

By (4.42) and (4.49), 8m
depends on u only. Moreover,

putting

m
a

+ r

:m

(4.50)
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which is consistent with (4.35), and splitting (4.48) in

components, one obtains the following system of

equations:

2-_Vv’2MV+W, (4.51)
du

[$11 [au [0 0 —P —Q

lb1 O O—Q P

I 2 2
, M = . (4.52)

a P Q 0 0

[t2 [b2j IQ —P 0 0

Thus, finding a solution to (4.47),(4.48) is equivalent

to solving (4.51),(4.52). This is a linear system for

V, with a non—vanishing determinant and therefore it does

admit some solution. This proves that the symmetry

equations are satisfied, in the Rarita-Schwinger limit,

by the Killing vectors (4.21),(4.22) of the

Einstein—Maxwell plane wave.

If one wants to investigate the question beyond the

Rarita—Schwinger limit, one must return to the exact

equations (4.36), (4.37), (4.42)—(4.45). It is possible

but tedious to imitate the treatment of Part I. We shall

not present this calculation explicitly. The various

steps are similar to those of Part I. For instance,

(4.30), (4.31), (4.38) and (4.39) of Part I generalise

as:
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= x [IC Em + Emn (Q -

- y [K
8m + Emn (P + Q + Lm (4.53)

Qm
= x [K 8111 - Emn + Q

+ y [K + Emn (P 8’’
- Q En)] + Mm (4.54)

8m/2KEm_O (4.55)

Em + K
6m

= , (4 56)

where the notation is in close parallel with the one of

Part I.

It as clear that the N = 2 plane wave cannot satisfy

the symmetry equations in general (for the symmetry

generators used above, namely the Killing vectors of the

Einstein-Maxwell solution) since it contains the N = I

plane wave as a special case, and at has been shown an

Part I that the latter does not have the same symmetry as

the relativistic solution (in general). For this reason,

it is not justified to go into the details of the exact

derivation of the exact N = 2 case. It is, however, a

non-trivial result that the symmetry property

generalises, in the Rarita—Schwinger limit, from the

particular N = 1 case to the more general N = 2 case.

It should be noted that, as in Part I, the obstruction

to satisfying the exact symmetry equations is the

algebraic constraints (4.36). Such constraints arise, in
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our new framework, only because of the fact that we

preassigned the values of the symmetry generators , in

such a way that g is then a given quantity. They would

not be present if we used (3.12)-(3.14) to determine the

vector fields , knowing the fields (41a 1a
, A).

This as very different from the situation encountered

in Part I, where these constraints were unavoidable,

being a consequence of the restrictions put on the

differentiating vector field of the Lie derivative

when acting on spinors. This point was already mentioned

briefly in § 3
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In this paper we extended to N = 2 Supergravity, the

definition of a space—time symmetry developed, in an

earlier work, in the framework of Simple Supergravity. We

considered a configuration of fields ( , A) as

symmetric under the space-time motion generated by a

vector field if and only if there exist a scalar

function ‘1 and a Majorana spinor m
, m = 1, 2, such that

= s
a + ‘b

(5.1)

£ ,m
= 2 V m

÷
(F u) enm Sn

(5.2)

£A=d+ i/Jnnmqn

in which the metric g and the modified electromagnetic

field F are derived from
,m

and A.

The problem of defining the notion of the Lie

derivative of a spinor has also been investigated.

This was necessary in order to give a definite meaning to

(5.2). We considered the expression

‘I) - + Mab)
ab

1)

in which Lab is defined by (1.5), and Mab is

We proved that all the operators of this

compatible with the rules of tensor calculus.

we gave an argument favouring the choice Mab

(5.4).

Finally, we applied this definition to the problem of

the plane wave of N = 2 Supergravity. It was shown that

(5.3)

(5.4)

arbitrary.

class are

Moreover,

= 0 in
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this wave does not, in general, admit the same symmetry

group as the plane wave of the Einstein-Maxwell theory

but that, at the first order in the (approximate)

symmetry is the same as the one of the Einstein-Maxwell

plane wave.
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6)

In an arbitrary basis (not necessary orthonormal), the

conventions which we used in Section 2 are:

Torsion T(X,Y) Y
-

X - fX,YJ (6 1)

Non—Metricity: H(X,Y,Z) g)(X,Y) (6.2)

Components of torsion: T T 0 0 e (6.3)

Components of non—metricaty

HH (6.4)
xf3y

Components of connection:

V e I’’ e (6.5)
x cx y

Commutation coefficients: [e , e I e (6.6)cx y

From the above, it follows that

r —I’ =T +D (6.7)
a3 cz’f3 c4

+ = e,,,(g) — Ha (6 8)

Therefore, the explicit expression of the connection

components in terms of e(g) , , T , Ha13.y

is
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F = xJ + + Q —
K

2 [czfr’] ep(g) + ey() — e(g) = 2 [ag]

2C D +D —D =—2C
cxi3 ycx3 f3cxy

2Q T +T -T =-2Q
fryc ayf3 f3oc’j

2K H +H -H =2K
cx ‘cxf3 f3cxg qf3

In the special case of an orthonormal basis (indicated

by the use Latin indices), the above formulae simplify

and one proves easily the statements (2.23)-(2.25) of § 2.
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