INTEGRABLE SOLUTIONS OF THE HIERARCHY OF THE BBGKY-TYPE FOR BROWNIAN PARTICLES IN THE MEAN-FIELD LIMIT

W.I. Skrypnik

Dublin Institute for Advanced Studies 10 Burlington Road, Dublin 4, Ireland

Introduction

Let us consider the gradient hierarchy of the BBGKY-type for correlation functions $\rho_{t}\left(X_{m}\right)$, $X_{m}=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{d m}, x_{j} \in \mathbb{R}^{d}$, of a nonequilibrium system of diffusing particles, interacting via a pair, integrable smooth potential $\varepsilon \Phi(x)$. Let us assume also that the following asymptotic relation holds

$$
\rho_{t}\left(X_{m}\right)=\varepsilon^{-m} \rho_{t}^{\varepsilon}\left(X_{m}\right), \varepsilon \geq 0
$$

where the functions $\rho_{t}^{\epsilon}\left(X_{m}\right)$ have a limit when $\varepsilon \geqslant 0$. Then
${ }^{1}$ On leave of absence from the Institute of mathematics of the Ukrainian Academy of Sciences, 252004, Kiev 4, Repin Street 3, USSR
(1)
$\frac{\partial}{\partial t} \rho_{t}^{\varepsilon}\left(X_{m}\right)=\sum_{j=1}^{m} \frac{\partial}{\partial} X_{j}\left\{\beta^{-1} \frac{\partial}{\partial X_{j}} \rho_{t}^{\varepsilon}\left(X_{m}\right)+\varepsilon \rho_{t}^{\varepsilon}\left(X_{m}\right) \frac{\partial}{\partial X_{j}} U\left(X_{m}\right)\right.$

$$
\left.+\int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial x_{j}}\right)\left(x_{j}-x_{m+1}\right) \rho_{t}^{\varepsilon}\left(X_{m+1}\right) d x_{m+1}\right\}
$$

where β is the inverse temperature and $\varepsilon U\left(X_{m}\right)$ is the potential energy

$$
\begin{aligned}
& U\left(X_{m}\right)=\sum_{1 \leq i<j \leq m} \phi\left(x_{i}-x_{j}\right), \\
& \frac{\partial}{\partial x_{j}}\left(f \frac{\partial h}{\partial x_{j}}\right)=\sum_{\nu=1}^{d}\left\{\frac{\partial f}{\partial x_{j}^{\nu}} \frac{\partial h}{\partial x_{j}^{\nu}}+f \frac{\partial^{2} h}{\partial\left(x_{j}^{\nu}\right)^{2}}\right\}
\end{aligned}
$$

In the mean-field limit ($\varepsilon^{\Downarrow} \circ$) the considered hierarchy is transformed into a hierarchy of the Vlasov type
(2)

$$
\begin{aligned}
& \frac{\partial}{\partial} t_{t} \rho_{t}^{0}\left(X_{m}\right)=\sum_{j=1}^{m} \frac{\partial}{\partial x_{j}}\left\{\beta^{-1} \frac{\partial}{\partial x_{j}} \rho_{t}^{\circ}\left(X_{m}\right)+\right. \\
& \left.+\int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial x_{j}}\right)\left(x_{j}-x_{m+1}\right) \rho_{t}^{o}\left(X_{m+1}\right) d x_{m+1}\right\}
\end{aligned}
$$

In this paper we propose a justification of the mean-field limit in a class of integrable correlation
functions satisfying eq.(1) in a weak sense. We introduce a semigroup π_{ε}^{t} in a Banach space \mathbb{L}_{ξ}^{1} of sequences of symmetric itegrable functions and prove that the sequense

$$
\rho_{\varepsilon}^{t}\left(X_{m}\right)=\left(\pi_{\varepsilon}^{t} \rho^{\varepsilon}\right)\left(X_{m}\right), \quad \rho^{\varepsilon} \in \mathbb{L}_{\xi}^{1}
$$

satisfies eq.(1) in a weak sense. We show that, if the sequence $\exp \left(\frac{1}{\tau} \in U\left(X_{m}\right)\right) \rho_{t}^{\varepsilon}\left(X_{m}\right), m \geq 1$, belongs to \mathbb{L}_{ξ}^{1}, then $\rho_{t}^{\varepsilon}\left(X_{m}\right)$ converges weakly to

$$
\rho_{t}^{0}\left(X_{m}\right)=\left(\pi_{0}^{t} \rho^{0}\right)\left(X_{m}\right), \quad m \geq 1,
$$

where π_{0}^{t} is defined as a map

$$
\mathbb{L}_{\xi}^{1} \Rightarrow \mathbb{L}_{\xi(t)}^{1}, \quad \text { if } \xi(t)=\sqrt{2} \exp \{\dot{\nu}(t)\} \xi<1 .
$$

We also prove that the sequence ρ_{t}° is a weak solution of eq. (2)

The norm in the Banach space \mathbb{L}_{ξ}^{1} is defined as follows

$$
\|\Psi\|_{\mathbb{L}} 1=\max _{n \geq 1} \xi^{-n}\left\|\Psi{ }_{n}\right\|_{L^{1}}\left(\mathbb{R}^{d n}\right)
$$

The mean-field limit in a mechanical and a special random mechanical systems was studied earlier, respectively in $[2,3]($ see also $[4,5])$. The mean-field limit for eq.(1) in a class of bounded correlation functions is investigated in [6]. It is found in [7] that there is a space in which a solution of eq.(2) exists and is unique.

> I. Main theorem.

Let $P_{\varepsilon}^{t}\left(X_{n} ; Y_{n}\right)$ be a fundamental solution of the n-particle smoluchowski equation (eq.(1) without the integral term in the r.s.). The operators $P_{\varepsilon, n^{\prime}}^{t} t \geq 0$,

$$
\left(P_{\varepsilon, n}^{t} \psi\right)\left(X_{n}\right)=\int_{\mathbb{R}} d n P_{\varepsilon}^{t}\left(X_{n} ; Y_{n}\right) \psi\left(Y_{n}\right) d Y_{n}
$$

defines a contraction strongly continuous semigroup in $L^{1}\left(\mathbb{R}^{d n}\right)$. Let P_{ε}^{t} be a diogonal operator in \mathbb{L}_{ξ}^{1}, given by

$$
\left(P_{\varepsilon}^{t} \psi\right)\left(X_{n}\right)=\left(P_{\varepsilon, n}^{t} \psi\right)\left(X_{n}\right)
$$

It is evident that P_{E}^{t} is a contraction strongly continuous semigroup in \mathbb{L}_{ξ}^{1}. Let us define an operator $\int d_{x}$ which is bounded in \mathbb{L}_{ξ}^{1}

$$
\left(\int d_{x} \psi\right)\left(X_{n}\right)=\int_{\mathbb{R}} \psi\left(x, X_{n}\right) d x
$$

Then π_{ε}^{t}

$$
\begin{equation*}
\pi_{\varepsilon}^{t}=\exp \left\{\varepsilon^{-1} \int d_{x}\right\} P_{\varepsilon}^{t} \exp \left\{-\varepsilon^{-1} \int d_{x}\right\} \tag{1.1}
\end{equation*}
$$

is a strongly continuous semigroup in \mathbb{L}_{ξ}^{1}. Its structure coincide with a structure of an evolution operator of the BBGKY-hierarchy [8].

Lemma 1.1

The sequence $\rho_{t}^{\varepsilon}=\pi_{\varepsilon}^{t} \rho^{\varepsilon}, \quad \rho^{\varepsilon} \in \mathbb{L}_{\xi}^{1}$, is a weak solution of eq. (1), that is
(1.2)

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{d m} \rho_{t}^{\varepsilon}\left(X_{m}\right) h\left(X_{m}\right) d X_{m}= \\
&= \sum_{j=1}^{m} \int_{R} \int_{m}\left\{\beta^{-1} \rho_{t}^{\varepsilon}\left(X_{m}\right)^{2} \frac{\partial}{\partial x_{j}^{2}} h_{j}\left(X_{m}\right)-\right. \\
&-\left(\frac{\partial}{\partial x_{j}} h\left(X_{m}\right)\right) \quad \rho_{j}^{\varepsilon \rho_{t}^{\varepsilon}\left(X_{m}\right) \frac{\partial}{\partial x_{j}} U\left(X_{m}\right)+} \\
&\left.\left.+\int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial x_{j}}\right)\left(x_{j}-x_{m+1}\right) \rho_{t}^{\varepsilon}\left(X_{m+1}\right) d x_{m+1}\right]\right\} d X_{m}
\end{aligned}
$$

Lemma 1.2

Let $P_{x}(\underset{m}{\tilde{x}})$ be the Wiener measure on $\Omega_{d}=\left(\dot{\mathbb{R}}^{d}\right)^{\mathbb{R}^{+}}$and $P_{X_{m}}\left(d \tilde{X}_{m}\right)=\prod_{j=1}^{m} P_{x_{j}}(d \tilde{x})$. Let $*$ be an operation of multiplication, defined on sequences

$$
\left\{\psi\left(X_{n}, \tilde{X}_{n}\right), X_{n} \in \mathbb{R}^{d n}, \tilde{X}_{n} \in \Omega_{d}^{n}\right\}_{n \geq 0}, \psi(\varnothing, \varnothing)=1
$$

by

$$
\begin{gathered}
\left(\psi_{1} * \psi_{2}\right)\left(X_{n}, \tilde{X}_{n}\right)=\sum_{\{s\} \in(1, \ldots n)} \psi_{1}\left(X_{\{s\}} \tilde{X}_{\{s\}}\right) \psi_{2}\left(X_{\{n \backslash s\}}, \tilde{X}_{\{n \backslash s\}}\right) \\
\\
\{n \backslash s\}=(1, \ldots, n) \backslash\{s\} .
\end{gathered}
$$

Let $(\psi)^{-1}$ be the inverse element to ψ with respect to * and

$$
\left(D_{\left.\left(X_{m} ; \tilde{X}_{m}\right)^{\psi}\right)\left(X_{n}^{\prime} ; \tilde{X}_{n}^{\prime}\right)=\psi\left(X_{m}, X_{n}^{\prime} ; \tilde{X}_{m} \tilde{X}_{n}^{\prime}\right)}\right.
$$

There exists a measurable function $\hat{U}_{t}^{\varepsilon}\left(X_{n}, \tilde{X}_{n}\right)$ such that, if

$$
n_{\varepsilon}\left(x_{m}, \tilde{x}_{m} \mid x_{n}^{\prime}, \tilde{x}_{n}^{\prime}\right)=
$$

$=\varepsilon^{-n}\left(\left(\exp \left\{-\beta \tilde{U}_{t}^{\varepsilon}\right\}\right)^{-1 *} D_{\left(X_{m} ; \tilde{X}_{m}\right)} \exp \left\{-\beta \tilde{U}_{t}^{\varepsilon}\right\}\right)\left(X_{n}^{\prime} ; \tilde{X}_{n}^{\prime}\right)$,
where the n-th component of the sequence $\exp \left\{-\beta \hat{U}_{t}^{\varepsilon}\right\}$ equals $\exp \left\{-\beta \hat{U}_{t}^{\epsilon}\left(X_{n} ; \tilde{X}_{n}\right)\right.$, then the cluster expansion for π_{ε}^{t} holds
(1.3)

$$
\begin{gathered}
\left(\pi_{\varepsilon}^{t} \rho_{t}^{\varepsilon}\right)\left(X_{m}\right)=\sum_{n \geq 0} \frac{1}{n!} \int_{\mathbb{R}} d n d X_{n}^{\prime} \int_{\Omega_{\mathrm{D}}} P_{X_{m}} X_{n}^{\prime}\left(d \tilde{X}_{m} d \tilde{X}_{n}^{\prime}\right) \times \\
\\
\times \Pi_{\varepsilon}\left(X_{m}, \tilde{X}_{m} \mid X_{n} \tilde{X}_{n}^{\prime}\right) \rho\left(\tilde{X}_{m}\left(t \beta^{-1}\right), \tilde{X}_{n}^{\prime}\left(t \beta^{-1}\right)\right)
\end{gathered}
$$

Lemma 1.3

If the potential ϕ is a positive-definite function from $C^{3}\left(\mathbb{R}^{d}\right)$ and

$$
|\phi(x)| \leq \phi^{0},|\nabla \phi(x)| \leq \phi^{0},|\Delta \phi(x)| \leq \phi^{0}, \Delta=\nabla^{2}, \nabla=\frac{\partial}{\partial x} .
$$

then the following uniform in ε bound holds
(1.4)

$$
\begin{gathered}
s n!(\sqrt{2} \exp \{\hat{\nu}(t)\})^{m+n} \\
\dot{\nu}(t)=\left(\beta \phi^{0} x(t)\right)^{2}+\frac{1}{2} \phi(0)+\frac{1}{2} t(-\Delta \phi)(0),
\end{gathered}
$$

and the functions $\Pi_{\varepsilon}\left(X_{m}, \tilde{x}_{m} \mid X_{n}^{\prime}, \tilde{X}_{n}^{\prime}\right)$ converge a.e. to functions
$H_{o}\left(X_{m}, \tilde{X}_{m}\left|X_{n}^{\prime}, \tilde{X}_{n}^{\prime}\right\rangle\right.$, satisfying (1.4) for $\varepsilon=0$.

Corollary . The operator π_{0}^{t}, defined by (1.3) for $\varepsilon=0$ maps \mathbb{L}_{ξ}^{1} into $\mathbb{L}_{\xi(t)}^{1}$, if $\xi(t)<1$.

Theorem 1.1

Let the conditions of the Lemma 1.3 be satisfied. If the following conditions are also satisfied

$$
\begin{aligned}
& \exp \left\{\frac{1}{2} \beta U\right\} \rho^{\varepsilon} \in \mathbb{L}_{\xi}^{1}, \\
& \left\|\exp \left\{\frac{1}{2} \beta U\right\} \rho^{\varepsilon}-\rho^{0}\right\|_{\mathbb{L}_{\xi}}^{1} \leq o(\varepsilon),
\end{aligned}
$$

where $\left(\exp \left\{\frac{1}{2} \beta U\right\}\right)\left(X_{n}\right)=\exp \left\{\frac{1}{2} \beta U\left(X_{n}\right)\right\}$,
then the functions $\left(\pi_{\varepsilon}^{t} \rho^{\varepsilon}\right)\left(X_{m}\right)$ converge weakly to the functions $\left(\pi_{0}^{t} \rho^{0}\right)\left(X_{m}\right)$, sequence of which satisfies eq.(2) in a weak sense

$$
\begin{array}{r}
\frac{\partial}{\partial t} \int_{\mathbb{R}}{ }_{d m} \rho_{t}^{\circ}\left(X_{m}\right) h\left(x_{m}\right) d X_{m}= \tag{1.5}\\
=\sum_{j=1}^{m} \int_{\mathbb{R}} d m
\end{array} \beta^{-1} \rho_{t}^{O}\left(X_{m}\right) \frac{\partial^{2}}{\partial\left(x_{j}\right)^{2}} 2^{h\left(X_{m}\right)-} .
$$

$\left.-\left(\frac{\partial}{\partial x_{j}} h\left(X_{m}\right)\right) \int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial X_{j}}\right)\left(x_{j}-x_{m+1}\right) \quad \rho_{t}\left(X_{m+1}\right) d x_{m+1}\right\} d X_{m}$

Let us prove the equality (1.3). We start from resumming in (1.1)

$$
\begin{equation*}
\pi_{\varepsilon}^{t}=\sum_{n \geq 0} \frac{\varepsilon^{-n}}{n!} \int_{\mathbb{R}} d n d x_{n}^{\prime} \sum_{s=0}^{n} \frac{n!}{s!(n-s)!}(-1)^{n-s} D_{X_{s}^{\prime}}^{\prime} P^{t} D_{X_{\{n \backslash s\}}^{\prime}} \tag{2.1}
\end{equation*}
$$

where

$$
\left(\mathrm{D}_{\mathrm{X}_{\mathrm{m}}} \psi\right)\left(\mathrm{X}_{\mathrm{n}}^{\prime}\right)=\psi\left(\mathrm{X}_{\mathrm{m}}, \mathrm{X}_{\mathrm{n}}^{\prime}\right)
$$

Let * be the operation of multiplication defined on sequences of kernels $\left\{K\left(X_{n} ; Y_{n}\right)\right\}_{n \geq 0}, K(\varnothing, \varnothing)=1 \quad$ (see Lemma 1.2$)$. $e_{o}=(1,0,0, \ldots)$ is the unit with the respect to * . Define

$$
\begin{aligned}
& (K)^{-1}=\sum_{n \geq 0}(-1)^{n}\left(K-e_{0}\right) * \ldots *\left(K-e_{0}\right),(K)^{-1} * K=e_{0}, \\
& \langle K\rangle_{\psi}=\sum_{n \geq 0} \frac{1}{n!} \int_{\mathbb{R}} d n d X_{n} \int_{\mathbb{R}} d n\left(X_{n} ; Y_{n}\right) \Psi\left(Y_{n}\right) d Y_{n}
\end{aligned}
$$

Then (1.2) is rewritten in the following fashion
(2.2)

$$
\left(\pi_{\varepsilon}^{\mathrm{t}} \rho^{\varepsilon}\right)\left(\mathrm{X}_{\mathrm{m}}\right)=\int_{\mathbb{R}} \mathrm{dm}^{\langle } e_{-1} * D_{\left(X_{m} ; Y_{\mathrm{m}}\right)} P_{\varepsilon}^{\mathrm{t}}>_{\varepsilon}^{-1} \mathrm{D}_{Y_{\mathrm{m}}} \rho^{\varepsilon d Y_{m}}
$$

where $\left(e_{ \pm_{1}}\right)\left(X_{n} ; Y_{n}\right)=\left(\pm_{1}\right)^{n_{\delta}}\left(X_{n}-Y_{n}\right),\left(\hat{\varepsilon}^{-1}\right)\left(\rho^{\varepsilon}\right)\left(X_{n}\right)=\varepsilon^{-n_{\rho} \varepsilon}\left(X_{n}\right)$
As a result we derive the cluster expansion
(2.3) follows from the law of conservation of probability for the smoluchowski equation and the equality $e_{-1}=\left(e_{+1}\right)^{-1}$
in the following way

$$
\begin{aligned}
& \left\langle\left(P_{\varepsilon}\right)^{-1} * D_{\left(X_{m} ; Y_{m}\right)} P_{\varepsilon}\right\rangle_{\psi}=\sum_{n \geq 0}\left\langle\left(P_{\varepsilon}^{t}-e_{0}\right) *{\underset{n}{ }}^{*}{ }^{*}\left(P_{\varepsilon}^{t}-e_{0}\right){ }^{* D}\left(X_{m} ; Y_{m}\right) P_{\varepsilon}^{t}\right\rangle \psi= \\
& =\sum_{n \geq 0}\left\langle\left(e_{1}-e_{0}\right){ }_{n} \ldots{ }^{*}\left(e_{1}-e_{0}\right){ }^{* D}\left(X_{m} ; Y_{m}\right)^{\left.P_{\varepsilon}^{t}\right\rangle}=\right. \\
& =\left\langle\left(e_{+1}\right)^{-1} * D_{\left(X_{m} ; Y_{m}\right)} P_{\varepsilon}^{t}\right\rangle_{\psi}=\left\langle e_{-1}^{*} D_{\left(X_{m} ; Y_{m}\right)} P_{\varepsilon}^{t}\right\rangle_{\psi} .
\end{aligned}
$$

It is well known that, if a function $\mu_{t}^{\varepsilon}\left(X_{n}\right)$ satisfies the Smoluchowski equation, the function

$$
\exp \left\{-\frac{1}{z} \varepsilon \beta U\left(X_{n}\right)\right\} \mu_{t}^{\varepsilon}\left(X_{n}\right)
$$

satisfies the heat equation with the potential $V_{\varepsilon}\left(X_{n}\right)$

$$
V_{\varepsilon}\left(X_{n}\right)=\frac{1}{2} \beta \varepsilon \sum_{j=1}^{n}\left\{\frac{\partial^{2}}{\partial X_{j}^{2}} U\left(X_{n}\right)-\frac{1}{2} \beta \varepsilon\left(\frac{\partial}{\partial X_{j}} U\left(X_{n}\right)\right)^{2}\right\}
$$

Applying the Feynman-Kac formula we derive the following representation for the kernel P_{ε}^{t}

$$
\begin{equation*}
P_{\varepsilon}^{t}\left(X_{n} ; Y_{n}\right)=\exp \left\{-\frac{1}{2} \beta \varepsilon\left(U\left(X_{n}\right)-U\left(Y_{n}\right)\right)\right\} \times \tag{2.4}
\end{equation*}
$$

$\times \int_{\Omega_{d}} P_{X_{n}}\left(d \tilde{X}_{n}\right) \exp \left\{\int_{0}^{t \beta^{-1}} V_{\varepsilon}\left(\tilde{X}_{n}(\tau)\right) d \tau\right\} \delta\left(\tilde{X}_{n}\left(t \beta^{-1}\right)-Y_{n}\right)$
(2.2) and (2.4) yield (1.3) with

$$
\tilde{U}_{t}^{\varepsilon}\left(X_{n} ; \tilde{X}_{n}\right)=\frac{1}{2} \varepsilon\left\{U\left(X_{n}\right)-U\left(\tilde{X}_{n}\left(t \beta^{-1}\right)\right)\right\}+\beta^{-1} \int_{0}^{t \beta^{-1}} V\left(\tilde{X}_{n}(\tau)\right) d \tau
$$

3. Proof of the main estimate.

In order to prove (1.4) we shall make use of the following identity
(3.1) $\exp \left\{-\frac{1}{4} \beta^{2} \varepsilon^{2} \sum_{j=1}^{n} \int_{0}^{t \beta^{-1}}\left(\frac{\partial U}{\partial \mathbf{x}_{j}}\right)^{2}\left(\tilde{X}_{n}(\tau)\right) d \tau\right\}=$
$=\int_{\Omega_{d}^{n}} P\left(X_{n}^{*}\right) \exp \left\{-\frac{1}{2} \beta \varepsilon i \sum_{j=1}^{n} \int_{0}^{t \beta^{-1}}\left(\left(\frac{\partial U}{\partial X_{j}}\right)\left(\tilde{X}_{n}(\tau)\right), d x_{j}^{*}(\tau)\right)\right\}$.
where $P\left(X_{n}^{*}\right)=\prod_{j=1}^{n} P\left(d x_{j}^{*}\right), P\left(d x^{*}\right)=P_{o}\left(d x^{*}\right), P_{o}\left(d x^{*}\right)$ is the Wiener measure , $\int\left(\ldots, \mathrm{dx}^{*}(\tau)\right)$ is the stochastic integral, (..., ...) is the scalar product of \mathbb{E}^{d} (we omit ~ over x_{j} in derivatives).

Substituting (3.1) into (1.3) we obtain
(3.2)

$$
\Pi_{\varepsilon}\left(X_{m}, \tilde{X}_{m} \mid X_{n}^{\prime}, \tilde{X}_{n}^{\prime}\right)=\int_{\Omega}^{m+n} \underset{d}{ } P\left(d X_{m}^{*}\right) P\left(d X_{n}^{\prime *}\right) \Pi_{\varepsilon}\left(\hat{X}_{m} \mid \tilde{X}_{n}^{\prime}\right)
$$

where $\hat{X}_{m}=\left(\hat{x}_{1}, \ldots, \hat{x}_{m}\right), \hat{x}_{j}=\left(\hat{x}_{j}, \tilde{x}_{j}, x_{j}^{*}\right) \in \mathbb{R}^{d} \times \Omega_{d}^{2}$,
$\Pi_{\varepsilon}\left(\hat{X}_{m} \mid \hat{X}_{n}^{\prime}\right)=\varepsilon^{-n}\left(\left(\exp \left\{-\varepsilon \beta \hat{U}_{t}\right\}\right) * D_{X_{m}} \exp \left\{-\varepsilon \beta \hat{U}_{t}\right\}\right)\left(\hat{X}_{n}^{\prime}\right)$

$$
\hat{U}_{t}\left(\bar{X}_{n}\right)=\sum_{1 \leq k<j \leq n} \hat{\phi}_{t}\left(\hat{x}_{k} \mid \hat{x}_{j}\right)
$$

$$
\begin{gathered}
\tilde{\phi}_{t}\left(\tilde{x}_{k} \mid \tilde{x}_{j}\right)=\tilde{\phi}_{t}\left(x_{k}-x_{j}, \tilde{x}_{k}-\tilde{x}_{j}\right)+\phi_{t}^{*}\left(\tilde{x}_{k}-\tilde{x}_{j} \mid x_{k}^{*}, x_{j}^{*}\right), \\
\tilde{\phi}(x, \tilde{x})=\frac{1}{2}\left[\phi(x)-\phi\left(\tilde{x}\left(t \beta^{-1}\right)\right)+\int_{0}^{t \beta^{-1}}(-\Delta \phi)(\tilde{x}(\tau)) d \tau\right]
\end{gathered}
$$

$$
\begin{aligned}
& \phi_{t}^{*}\left(\tilde{\mathbf{x}} \mid \mathbf{x}_{\mathbf{k}^{*}}^{*} \mathrm{x}_{\mathrm{j}}^{*}\right)=\frac{1}{2} \mathrm{i}\left\{\varphi_{t}\left(\tilde{\mathrm{x}} \mid \mathbf{x}_{\mathrm{k}}^{*}\right)-\varphi_{t}\left(\tilde{\mathrm{x}} \mid \mathbf{x}_{\mathrm{j}}^{*}\right)\right\}, \\
& \varphi_{t}\left(\tilde{\mathbf{x}} \mid \mathbf{x}^{*}\right)=\frac{1}{2} \int_{0}^{t \beta^{-1}\left((\nabla \phi)(\tilde{x}(\tau)), \mathrm{dx}^{*}(\tau)\right),}
\end{aligned}
$$

The sequence $\Pi_{\varepsilon}\left(\hat{X}_{m} \mid \hat{X}_{n}^{\prime}\right) \quad m \geq 1, n \geq 1$ satisfies the standard relation [9]
(3.3) has the limit for $\varepsilon \rightarrow 0$.

$$
\begin{equation*}
\Pi_{0}\left(\hat{X}_{m} \mid \hat{X}_{n}^{\prime}\right)= \tag{3.4}
\end{equation*}
$$

$$
=\sum_{\{s\} \in(1, \ldots n)} \prod_{1 \in\{s\}}(-\beta) \hat{\phi}_{t}\left(\hat{x}_{j} \mid \hat{x}_{1}\right) \Pi_{o}\left(\hat{X}_{m(j)},^{\prime} \hat{X}_{\{s\}^{\prime}}^{\left.\prime \hat{X}_{\{n \backslash s\}}^{\prime}\right)}\right.
$$

Proposition 1.3 (The main bound)
If the conditions of Lemma 1.3 are satisfied then the following uniform in all variables, except t, bound (3.5)

$$
\left\{\int_{\Omega_{d}^{m}} P\left(d X_{m}^{*}\right)\left[\int_{\Omega_{d}^{n}} P\left(d X_{n}^{*}\right)\left|\Pi_{E}\left(\hat{X}_{m} \mid \hat{X}_{n}^{\prime}\right)\right|\right]^{2}\right\}^{\frac{1}{2}} \leq n!(\sqrt{2} \exp \{\hat{\nu}(t)\})^{m+n}
$$

$$
\begin{aligned}
& \text { (3.3) } \\
& \Pi_{\epsilon}\left(\hat{X}_{m} \mid \hat{X}_{n}^{\prime}\right)=\exp \left\{-\varepsilon \beta \sum_{1}^{m} \hat{\phi}_{t}\left(\hat{x}_{1} \mid \hat{x}_{j}\right)\right\} \times \\
& 1 \neq j \\
& \times \sum_{\{s\} \in(1, \ldots n)} K_{\varepsilon}\left(\hat{X}_{j} \mid \hat{X}_{\{s\}}^{\prime}\right) \Pi_{\varepsilon}\left(\hat{X}_{m(j)}, \hat{X}_{\{s\}}^{\prime} \mid \hat{X}_{\{n \backslash s\}}^{\prime}{ }^{\prime}\right. \\
& \Pi_{\varepsilon}\left(\hat{X}_{m} \mid \varnothing\right)=\exp \left\{-\varepsilon \beta \hat{U}_{t}\left(\bar{X}_{m}\right)\right\}, \Pi_{\varepsilon}\left(\varnothing \mid \bar{X}_{n}\right)=0, m(j)=(1, \ldots m) \backslash j \\
& K_{E}\left(\hat{x} \mid \hat{X}_{n}\right)=\prod_{j=1}^{n} \varepsilon^{-1}\left(\exp \left\{-\epsilon \beta \hat{\phi}_{t}\left(\hat{x} \mid \hat{x}_{j}\right)\right\}-1\right)
\end{aligned}
$$

Proof.

To derive (3.5) we have to symmetrize (3.3), taking into consideration that the potential

$$
\phi_{o t}(x, x)=\tilde{\phi}_{t}(x, \tilde{x})+\frac{1}{z} \phi\left(\tilde{x}\left(t \beta^{-1}\right)\right)
$$

is stable (see also $[6,9,10]$). Now we prove (3.5) by induction for $\varepsilon=0$.

Let us integrate (3.4) by $P\left(\mathrm{dx}_{\mathrm{n}}{ }^{*}\right)$ and apply the Schwartz inequality

$$
\begin{aligned}
& \int_{\Omega_{d}<s>} P\left(\mathrm{dx}_{\{s\}}^{\prime *}\right) \prod_{l \in\{s\}} \hat{\phi}_{t}\left(\hat{x}_{j} \mid \hat{x}_{1}\right) \mid x \\
& \times \int_{\Omega_{d}^{<n-s\rangle}} P\left(d X_{\{n \backslash s\}}^{\prime *}\right) \quad H_{o}\left(\hat{X}_{m(j)}, \hat{X}_{\{s\}}^{\prime} \mid \hat{X}_{\{n \backslash s\}}^{\prime}\right) \\
& s\left[\left.\int_{\Omega_{d}>} P\left(d x_{\{s\}}^{\prime *}\right) \prod_{l \in\{s\}} \hat{\phi}_{t}\left(\hat{x}_{j} \cdot \hat{x}_{1}\right)\right|^{2}\right)^{\frac{1}{2}} x \\
& \times\left[\int_{\Omega_{d}\langle s\rangle} P\left(d X_{\{s\}}^{\prime *}\right)\left[\int_{\Omega_{d}\langle n \backslash s\rangle} P\left(d X_{\{n \backslash s\}}^{\prime *}\right)\left|H_{o}\left(\hat{X}_{m(j)}, \hat{X}_{\{s\}}^{\prime} \mid \hat{X}_{\{n \backslash s\}}^{\prime}\right)\right|\right]^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

where <s> is the number of elements in the sequence \{s\}. Let us square the obtained inequality, split the sum over \{s\} into two sums (over $\left\{s_{1}\right\}$ and $\left\{s_{2}\right\}$) and integrate by $P\left(d X_{m}^{*}\right)$ the resulting expression, utilizing the Schwartz inequality. Assume that (3.5) holds for all <s> sm+n-1.In this case

$$
\begin{aligned}
\int_{\Omega_{d}^{m}} P\left(d X_{m}^{*}\right) & {\left[\int_{\Omega_{d}^{n}}\left|\Pi_{0}\left(\hat{X}_{m} \mid \hat{X}_{n}\right)\right| P\left(d x_{n}^{\prime *}\right)\right] \leq\left(n!\sum_{s \geq 0} \frac{1}{s!} K_{s, 0}\right)^{2} \times } \\
& \times\left(\sqrt{2} \exp \left\{\hat{\nu}_{o}(t)\right\}\right)^{2(m+n-1)}
\end{aligned}
$$

$$
K_{s, o}=\beta^{s} \underset{\operatorname{all}(x, \tilde{x})}{ } \int_{\Omega_{d}} P\left(d x^{*}\right)\left[\left.\int_{\Omega_{d}} P\left(d x_{s}^{*}\right) \prod_{l=1}^{s} \phi_{t}\left(\hat{x} \mid \tilde{x}_{1}\right)\right|^{2}\right)^{\frac{1}{2}}
$$

Making use of the Schwartz and generalized Helder inequalities we obtain the following bound for $\mathrm{K}_{\mathrm{s}, \mathrm{o}}$
$K_{s, 0^{s}} \beta^{s} \operatorname{ess}_{\operatorname{all}(x, \tilde{x})}\left[\int_{\Omega_{d}^{s}} P\left(d x_{s}^{*}\right) \prod_{l=1}^{s} \int_{\Omega_{d}} P\left(d x^{*}\right)\left|\hat{\phi}_{t}\left(\hat{x} \mid \hat{x}_{1}\right)\right|^{2}\right]^{\frac{1}{2}} s$

$$
\leq \beta^{s} \underset{\operatorname{all}(x, \tilde{x})}{\operatorname{ess} \sup _{n}}\left[\prod_{l=1}^{s} \int_{\Omega_{d}^{2}} P\left(d x_{1}^{*}\right) P\left(d x^{*}\right)\left|\hat{\phi}_{t}\left(\tilde{x} \mid \hat{x}_{1}\right)\right|^{2 s}\right]^{\frac{1}{2 s}}
$$

It is well known that
$\int_{\Omega} P\left(d \mathbf{x}^{*}\right)\left[\int_{0}^{t \beta^{-1}}\left((\nabla \phi)\left(\tilde{\mathbf{x}}(\tau), \mathrm{d} \mathbf{x}^{*}(\tau)\right)\right]^{2 \mathbf{s}}=\frac{(2 \mathbf{s})!}{(\mathrm{s})!}\left[\int_{0}^{\mathrm{t} \beta^{-1}}(\nabla \phi)^{2}(\tilde{\mathbf{x}}(\tau)) \mathrm{d} \tau\right]^{\frac{1}{2}}\right.$
With the help of the inequalities
$\left(a^{s}+b^{s}\right)^{\frac{1}{s}} \leq(a+b),(a+b)^{s} \leq 2^{s}\left(a^{s}+b^{s}\right), 3^{-n_{n} n} \leq n!\leq n^{n}$
we have
$K_{s, 0} \leq(s!)^{\frac{1}{2}}\left\{72 \beta\left(\left|\tilde{\phi}_{t}\right|_{0}+2|\nabla \phi|_{o} t \beta^{-1}\right)\right\}^{s} s(s!)^{\frac{1}{2}}\left(\phi^{O_{\beta x}}(t)\right)^{s}$
where

$$
|\phi|_{0}=\underset{x \in X}{e s s} \sup |\phi(x)|, x_{0}(t)=72\left(1+\frac{1}{2} 5 t \beta^{-1}\right), \hat{\nu}_{0}=\left(x_{0}(t) \beta \phi^{0}\right)^{2} .
$$

Now it is not difficult to prove the proposition for $\varepsilon>0$, using the symmetrized (3.3)[6] and the above arguements. As a result

$$
x(t)=\exp \left\{\beta \phi^{\circ}\left(1+\frac{1}{2} t \beta^{-1}\right)\right\} x_{0}(t) \text {. }
$$

Now we return to the Theorem 1.1. At first we consider the simplest case

$$
\rho^{\varepsilon}=\exp \left\{-\frac{1}{2} \varepsilon \beta U\right\} \rho^{0} .
$$

Since the algebraic structure of the functions $\Pi_{\varepsilon}\left(\hat{X}_{m} \mid \hat{X}_{n}^{\prime}\right)$ are known, they converge to the functions $\Pi_{o}\left(\hat{X}_{m} \mid \hat{X}_{n}^{1}\right)$ a.e. . From the Lebesque theorem it follows that
$\int_{\mathbb{R}} \operatorname{dn}\left(\pi_{\varepsilon}^{t} \rho^{\varepsilon}\right)\left(X_{m}\right) h\left(X_{m}\right) d X_{m} \Rightarrow \int_{\varepsilon \Rightarrow 0}\left(\pi_{0}^{t} \rho^{0}\right)\left(X_{m}\right) h\left(X_{m}\right) d X_{m}$.

It means that the r.s. of (1.2) converges to the r.s. of (1.5) . Since the r.s. of (1.5) is a continuous function of t (the series in (1.3) converges uniformely on a finite time interval, the $1 . s$. of (1.2) converges to the left side of (1.5). It is clear that in a general case

$$
\rho^{\varepsilon}=\exp \left\{-\frac{1}{2} \varepsilon \beta U\right\}\left(\rho^{0}+\rho^{\prime}\right) \text {. }
$$

From Lemmas $1.1,1.2$ it follows that the remaining term $\pi_{\varepsilon}^{\mathrm{t}} \exp \left\{-\frac{1}{2} \varepsilon \beta U\right\} \rho^{\prime \varepsilon}$ converges to zero in \mathbb{L}_{ξ}^{1} if $\xi(t)=\sqrt{2} \exp \{\hat{\nu}(t)\} \xi<1$.

The theorem is proved .
4. Proof of Lemma 1.1

Let us put

$$
\rho_{\mathrm{N}}^{\varepsilon}=\exp \left\{\epsilon \int \mathrm{d}_{\mathrm{X}}\right\} \mu_{\mathrm{N}}^{\varepsilon}, \mu_{\mathrm{N}}^{\varepsilon} \in \mathbb{L}_{\xi}^{1}, \mu_{\mathrm{N}}^{\varepsilon}\left(\mathrm{X}_{\mathrm{n}}\right)=0, \mathrm{n}>\mathrm{N}
$$

Then

$$
\begin{aligned}
\rho_{t, N}^{\varepsilon}\left(X_{m}\right) & =\left(\pi_{\varepsilon}^{t} \rho_{N}^{\varepsilon}\right)\left(X_{m}\right)=\left(\exp \left\{\int d_{x}\right\} P_{\varepsilon}^{t} \mu_{N}^{\varepsilon}\right)\left(X_{m}\right)= \\
& =\sum_{n=0}^{N-m} \frac{1}{n!} \int_{\mathbb{R}} d_{m} X_{n}^{\prime}\left(P_{\varepsilon}^{t} \mu_{N}^{\varepsilon}\right)\left(X_{m}, X_{n}^{\prime}\right) .
\end{aligned}
$$

It can be shown that $\rho_{t, N}^{\varepsilon}$ satisfies (1) in a classical sense. Now let us differentiate it ,taking into consideration that $\left(P_{\varepsilon, n}^{t} \mu_{N}^{\varepsilon}\right)\left(X_{n}\right)=\mu_{t}^{\varepsilon}\left(X_{n}\right)$ satisfies the Smoluchowski equation
$\frac{\partial}{\partial t} \rho\left(X_{m}\right)=\sum_{j=1}^{m} \frac{\partial}{\partial X_{j}}\left\{\beta^{-1 \frac{\partial}{\partial X_{j}}} \rho_{t, N}^{\varepsilon}\left(X_{m}\right)+\rho_{t, N}^{\varepsilon}\left(X_{m}\right) \frac{\partial}{\partial X_{j}} U\left(X_{m}\right)+\right.$
$+\varepsilon \sum_{n=0}^{N-m} \frac{n}{n!} \varepsilon^{-n} \int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial x_{j}}\right)\left(x_{j}-x_{m+1}\right) \mu_{t}^{\varepsilon}\left(X_{m}, x_{n}^{\prime}\right) d x_{n}$
The derivatives in the inner variables $\left(X_{n}^{\prime}\right)$ disappeared since

$$
\int_{\mathbb{R}}\left(\frac{\partial h}{\partial x}\right)(x) d x=0, f, \frac{\partial h}{\partial x} \in L^{1}(\mathbb{R})
$$

and $\mu_{t}^{\varepsilon}\left(X_{n}\right) \in L^{1} \cap C^{2}[10]$. As a result the last term is equal

$$
\begin{gathered}
\int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial x_{j}}\right)\left(x_{j}-x_{m+1}\right)\left[\sum_{n=0}^{N-m-1} \frac{\varepsilon^{-n}}{n!} \int_{\mathbb{R}} \mu_{t n}^{\varepsilon}\left(x_{m}, x_{n}^{\prime}\right) d x_{n}^{\prime}\right] d x_{m+1}= \\
=\int_{\mathbb{R}}\left(\frac{\partial \phi}{\partial x_{j}}\right)\left(x_{j}-x_{m+1}\right) \rho_{t, N}^{\varepsilon}\left(X_{m+1}\right) d x_{m+1}, m \leq N .
\end{gathered}
$$

Hence the sequence $\left\{\rho_{t, N}^{\varepsilon}\left(X_{m}\right)\right\}_{m<N}$ satisfies (1) in a weak sense. Let $N \neq \infty$. Then $\rho_{t, N}^{\varepsilon}$ converges to ρ_{t}^{ε} in the topology of \mathbb{L}_{ξ}^{1}. By the Lebesque theorem the r.s. of (1.2) for $\rho_{t, N}^{\epsilon}$ converges to the r.s. of (1.2). Since π_{ε}^{t} is a strongly continuous semigroup the same is true for the
corresponding left sides. The proof is complete.
REMARK. Our theorem does not allow the canonical correlation functions to converge in the mean-field limit since their limit satisfies the compatibility condition

$$
\int_{\mathbb{R}} \rho_{t}\left(X_{n}\right) d x_{n}=\rho_{t}\left(X_{n-1}\right) \text { and } \rho_{t} \in \mathbb{L}_{\xi}^{1} \text { only if } \xi \geq 1
$$

But there is a possibility to improve our bounds in such a way that $\xi(t)$ goes to 0 when either t or ϕ° goes to 0 .

ACKNOWLEDGEMENT . The author expresses his sincere gratitude to professor John Lewis for invitation, kindness, and hospitality . He thanks also for help Margaret Matthews, Michel Vandyck and Guido Raggio.

REFERENCES

1.Streltsova E.A. Ukrainian Math.Journ., 1959,11, 1, 83-92.
2.Braun W., Hepp K. Comm.Math. Phys.,1977,56, 2, 101-113.
3.Skorohod A.V. Stochastic equations for complicated systems , Moscow, Nauka, 1983 (in Russian)
4.Dobrushin R.L., Sinai Ya.G., Suhov U.M. in : Itogi nauki
i tehniki, series "Modern problems of mathematics", v.2,
233-284: Moscow, VINITI, 1985 (in Russian)
5.Spohn H., Rev.Mod.Phys.,1980, 53, 3, 569-615.
6.Skrypnik W.I.,Teor.Mat.Fiz.,1986, 69,.1, 128-141;1988(to appear)
7.Chueshov I.D., Teor.Mat.Fiz.,1986, 67, 2, 304-308.
8.Petrina D.Ya.,Gerasimenko V.I., Malyshev P.V. Mathematical foundations of Classical Statistical Mechanics , Kiev, Naukova Dumka, 1985 (in Russian) .
9.Ruelle D., Statistical Mechanics.Rigorous results.Benjamin 1970.
10. Dynkin E.B. Markov processes, Moscow, Φ M, 1963 (in

Russian)

