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Introduction

Let us consider the gradient hierarchy of the

BBGKY-type for correlation functions

dm d .

X= (x1,...,x) € ll , x € 1P , of a nonequ.l.braum

system of diffusing particles, interacting via a

pair, integrable smooth potential (x). Let us assume

also that the following asymptotic relation holds

Pt(2Cm) =
m P(Xm)i € 0

where the functions P(Xm) have a limit when E 0. Then
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the hierarchy Is written as follows

(1)

=
‘ P(Xm) +

+
(x—x1) P(Xm+i) dx1 }

where ,9 is the inverse temperature and EU(X) is the

potential energy

U(X) =

1 i < jm

= { +
h

2 }3 j ax.ax. 8(x.)
3 3 3

In the mean—field limit ( e’o ) the considered

hierarchy is transformed into a hierarchy of the Vlasov

type

(2)

t P(Xm) { p
‘

P(Xm) +

+ jd
j) (Xj_Xm+i) P(Xm+i) dXm+l }

In this paper we propose a justification of the

mean—field limit in a class of integrable correlation
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functions satisfying eq.(1) in a weak sense. We introduce a

semigroup in a Banach space of sequences of

symmetric itegrable functions and prove that the sequense

Pt(X)
= )(X),

pE
E

satisfies eq.(1) in a weak sense.We show that, if the

E 1
sequence exp ( U(Xm) m1, belongs to then

P(Xm) converges weakly to

P(Xm) = ( it p° )(X)i m1,

where rc as defined as a map

if (t) = / exp{ (t) } < 1

We also prove that the sequence p is a weak solution of

eq (2)

1.
The norm an the Banach space is defined as follows

max I’PflILl(dn
ni

The mean-field limit in a mechanical and a special

random mechanical systems was studied earlier, respectively

an [2,3)( see also [4,5]) The mean—field limit for eq (1)

an a class of bounded correlation functions as investigated

in [6]. It is found in [7] that there is a space in which a

solution of eq.(2) exists and is unique.
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I Main theorem

Let Pt(X;Y) be a fundamental solution of the

n-particle Smoluchowski equation ( eq.(1) without the

t
integral term an the r.s. ). The operators P 1 to,

(pt
p)(X ) = f

pt()
;Y )w(Y )dY

n 2dn € n n n n

defines a contraction strongly continuous semigroup in

L1(2). Let be a diogonal operator in given by

(Pw)(X) = (P)(X)

It is evident that is a contraction strongly

continuous semigroup an ll Let us define an operator fd

which is bounded in II)

fdW )(X)
=

X,X)dX

Then m

(1 1) = exp{ e’fd } exp{

is a strongly continuous semigroup in L. Its structure

coincide with a structure of an evolution operator of the

BBGKY-hierarchy [8).

Lemma 1.1

The sequence =
icpE, pE€ L ,is a weak solution of

eq.(1), that is

4



(1.2)
‘dm

m>
h(X) dX =

=
dm

P’P(Xm) 2
h(X)

-
(—h(X)) L E P(2m) U(X) +

+ d
() (x. _Xm+i) p (X1) dx1 } d X

Lemma 1.2

Let P(dx) be the Wiener measure on = and
m

x (dXm) = 1P (dx) . Let * be an operation of
m j=1 j

multiplication, defined on sequences

X E
dn tp(ø,ø) = 1

by

(*)(XX)

{s}EE(1,..n)

{n\s) = (1,. ,.,n)\{s}

Let (ip)’ be the inverse element to p with respect to *

and

D(Xm;m)P
)(X;X) = P(Xm,Xn;imiXn)
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I I

= E( (exp{ } exp{ — U } )(X ;Xt fin
m m

dX P ‘(dXdX)
X,X m n

n+m m n

If the potential is a positive-definite function from

3d
C (JR ) and

(x) Vc(x)l IA(x)j
,o

A
=

then the following uniform in € bound holds

(1.4)
I —I — —I

ess sup exp{- U(X ,X ;X ,X ) } II (X ,X jX ,X )
all(x,x’,x,x’)

m m n € m m n n

m+n
n!( .,‘ 2 exp { i(t)

There exists a measurable function U(XX) such that, if

fl (X ,X X ,X ) =m m n n

where the n—th component of the sequence exp{ — U }

equals exp{ - tJ(X;X) ,then the cluster expansion for

c holds
E

(1.3)

t E:
(rr p )(X =

t m L T
dnno JR

x

d

— —I

x fl (X ,X IX ,X ) p(X (t),X(t1))
€ m mn n m

Lemma 1.3

(t) = ( 4>° x(t))2 + (O) +4 t (-A)(O)

and the functions flc(XmiXmlXnXn) converge a.e. to functions
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2 Cluster expansaon

Let us prove the equality (1.3). We start from

resumming in (1.1)

(2.1)

= F dX
n! (l)fl_SD Pt D

n!
‘dn

n s!(n—s)! X X{\}

no U? s—a

where ( Dp ) (X) = ( X,X )

Let * be the operation of multiplication defined on

sequences of kernels { K(X;Y) K(ø,ø) = 1 ( see

Lemma 1.2 ) . e0 = ( 1,0,0,...) is the unit with the

respect to * Define

(K)’ = (l)’ (Ke)*. .*(K_e) , (K)’ K = e0

no
n

<K> = —i--- dX F K(X ;Y ) (Y ) dY
n!j

dn
n n

no II? U?

Then (1.2) is rewritten in the following fashion

(2.2)

( 7 PE)()

= ‘dm
e1*

D(Xm;Ym)P E’D
e dY

11? m

where ( e÷)(Xn;Yn) = (±l)n6(X_Y),(l)(P)(X)EnPE(X)

As a result we derive the cluster expansion

(2.3)

T p )(X)
= jdm

(pt)1*
D(Xm;Ym)P >E lDYmpE: dYm

(2.3) follows from the law of conservation of probability

for the SmoJ.uchowski equation and the equality

8



in the following way

<(P)_l*D(Xm;ym)PE>W =
<(Pe)* *(pt_e)*Dpt>

no

= <(e1-e) * * (e1-e) *D(X;y) Pp_

fl;O

= < (e+l) 1*D
Y) > =

< e *D
Y) >

It is well known that, if a function s(X) satisfies

the Smoluchowski equation, the function

exp { -
3 U(X) }

satisfies the heat equation with the potential V(X)

V(X) = U(X) - e ( U(X)
)2 }

Applying the Feynman-Kac formula we derive the following

representation for the kernel

(2.4) P(Xn;Yn) = exp { - ( U(X) - U(Y) ) }x

—1
- tp - - —‘

x J’ PX(dXn) exp { I V(X(t))dt } ö(Xn(tP ) - Y)

(2.2) and (2.4) yield (1.3) with

- -
- 1

U(X;X) = E{ U(X)_U(X(t )) } + S f V(X(r))dt
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= j
—

*
tp_1 *

(xjx ) = f f ( (Vq)(x(t)), dx (r)

The sequence fl (X IX ) m1, n1 satisfies the standard
rn n

relation [9]

(3 3) = exp { -P )

lj

x KE(xjiX{s}) E m(j)IX{s}{n\s})

{s}E(1, n)

Em
= exp { —e Ut(Xm) } fl(ølX) = 0 ,m(j)=(1,. .m)\j

K(xX) = 1(exp { -(xx) }- 1)

(3.3) has the limit for € -* 0

(3.4) 11omn =

tjl fom(j)IX{s}X{n\s})

{s)E(1,..n)

Proposition 1.3 C The main bound

If the conditions of Lemma 1.3 are satisfied then the

following uniform in all variabJ.es,except t, bound

(3 5)

{ SdX)[ fP(dXt) II (X IX >1 ] } n!(/ exp{L.(t)})m
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Proof

To derive (3.5) we have to symmetrize (3.3), taking

into consideration that the potential

+ x(t))

is stable ( see also C6,9,1OJ). Now we prove (3.5) by

induction for = 0

Let us integrate (3.4) by P(dX) and apply the

Schwartz inequality

r — -

P(dX, j
1E{s}

d

1*

x r P(dX ) II CX . ,X X )
{n\s} o m(j) (s} {n\s}

r —

J P(dX 1
2

lE{s)

xl P(dX )E P(dX )fl (X . ,X x )IiJ<> (s} L <n\s>
{n\s) o m(j) {s) {n\s} j

where <s> is the number of elements in the sequence {s).

Let us square the obtained inequality, split the sum over

{s) into two sums (over {s1} and {s2}) and integrate by

P(dX) the resulting expression, utilizing the Schwartz

inequality Assume that (3 5) holds for all <s> m+n-1 In

this case

j’P(dX) [ S miXnH P(dX) ] (n!
_---

K0)2 x

x ( exp { v(t)
))2(m+nl)

12



K
=

ess sup P(dx) [5,0 alI(x,x)
QS

11
d d

Making use of the Schwartz and generalized Helder

inequalities we obtain the following bound for K50

K ess sup I P(dX) r P(dx*)It(xjxl)I2]
SIC

all(x,x) L S

d d

ess sup I P(dx) P(dx*Ht(xlxl) 2s ]all(x,x) 1=1
d

It as well known that

—1

* 2s
2s’ r 2

P(dx ((V) (x(t) ,dx (t)) = (, ); I () (x(t) )dt]
-I

Q

With the help of the inequalities

1

(a5+b5)5 (a+b) , (a+b)5 25(a5+b5) , 3rnn &

we have

K50 (s!) {72 ( I1 + 21V10t’ )} (s!)(°x0(t))5

where

= ess supcP(x) ,x(t) = 72(1+j5t1),=(x(t)°)2
XEX

Now it is not difficult to prove the proposition for > o,

using the symmetrized (3 3)[6) and the above arguements As

a result

x(t) = exp { p0(1+4j t1)} x(t)

13



Now we return to the Theorem 1.1. At first we consider

the simplest case

= exp { - 2 U )

Since the algebraic structure of the functions fl(XmXn)

are known , they converge to the functions flo(XmXn) a.e.

From the Lebesque theorem at follows that

S (7c PE)(Xm) h(Xm) dXm (rr P°Hx) h(X) dx
dn o dn

It means that the r.s. of (1.2) converges to the r.s. of

(1.5) . Since the r.s. of (1.5) is a continuous function of

t ( the series in (1.3) converges uniformely on a finite

time interval ) the l.s. of (1.2) converges to the left

side of (1.5) . It is clear that in a general case

pC=exp{_EU} (p0pE)

From Lemmas 1.1 , 1.2 it follows that the remaining term

Tcexp{ - 3 U } p converges to zero in if

(t) =/ exp { v(t) } < 1

The theorem Is proved

4. Proof of Lemma 1.1

Let us put

= exp{ J’ d } E , 4( X) = 0 , n >N

Then

14



PN(Xm)
= (itt p)(X) (exp{ fd }P HX) =

=
dmdX

(P )(X,X)

It can be shown that satisfies (1) in a classical

sense. Now let us differentiate it ,taking into

consideration that ( IJEN)(Xn) satisfies the

SmoJ.uchowski equation

= { +

+ E
dfl8)cJm+ltmnn

The derivatives in the inner variables(X) disappeared

since

r )(x)dx = 0 , f , €: L1(IR)

and E L’fl C2[iO]. As a result the last term is equal

N-rn-i

dj
(XjXm+i) [ dn

J(XmPXn) dX] dXm+i

r a= J (— ) (X.-X) P. N(Xm+1) dXm+i m N.
j

Hence the sequence { P,N(2m) m<N
satisfies (1) in a

weak sense. Let N *x .Then converges to in the

topology of 114 . By the Lebesque theorem the r.s. of (1.2)

for
t,N

converges to the r.s. of (1.2), Since is a

strongly continuous semigroup the same is true for the

15



corresponding left sides .The proof is complete

REMARK . Our theorem does not allow the canonical

correlation functions to converge in the mean—field limit

since their limit satisfies the compatibility condition

dtnn
= pt(X1) and E ll only if 1

But there is a possibility to improve our bounds in such a

way that (t) goes to 0 when either t or goes to 0
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