$$
\text { W.Cegła, M.Klimek }{ }^{\star *}
$$

```
*Dublin Institute for Advanced Studies
            School of Theoretical Physics
10 Burlington Road, Dublin 4, Ireland
On leave from Institute of Theoretical Physics
University of Wrocław, Cybulskiego 36 Wrocław, Poland.
* Department of Mathematics, University College Dublin,
Belfield, Dublin 4, Ireland.
```

Abstract.
Assuming that the Large Deviation Principle (LDP)
is satisfied in each component of the product space
an elementary proof of the LDP for the product measure
is given.

1. Introduction.

The Large Deviation Principle (LDP) is the main hypothesis in the statement of Varadhan's theorem which provides an effective method for computing the asymptotic behavior of some integrals. In equilibrium statistical mechanics the limiting specific free-energy can be treated by this method. In the case of quantum spin systems interacting with a second quantum system, LDP was used to obtain upper and lower bounds for the free-energy [1].
In [1] the LOP for product measures has been derived from Varadhan's theorem [2] In this note we present a direct, elementary proof.
2. Large Deviation Principle.

Let x be a complete separable metric space. A sequence $\left\{K_{n}, n \geqslant 1\right\}$ of Borel probability measures defined on X is said to satisfy the LDP with rate-function I and constants $\left\{c_{n}, n \geqslant 1\right.$ if the following conditions are fulfilled [2] :
(LDO) The sequence $\left\{c_{n}, n \geqslant 1\right\}$ of positive real numbers is such that $c_{n} \rightarrow \infty$ as $n \rightarrow \infty$
(LDI) $I: X \rightarrow[0, \infty]$ is lower semicontinuous
(LD2) $\{x \in X ; I(x) \leqslant \lambda\} \quad$ is a compact set for each $\lambda \geqslant 0$
(LD3) For every closed set $C=x, \lim _{n \rightarrow \infty} \sup \tau_{n} \log k_{n}(C) \leqslant \operatorname{linf}_{x \in C} I(x)$
(LD4) For every open set $G \subset X, \lim _{n \rightarrow \infty}$ inf $\frac{1}{\epsilon_{n}} \log K_{n}(G) \geqslant \inf _{x \in G} I(x)$
We will formulate and prove the theorem for the product of two spaces. A similar result for the product of n spaces (where $n \in N$) follows directly from the case $n=2$.

Theorem.

Let X and Y be complete separable metric spaces. Suppose that K_{n} and L_{n} are sequences of Borel probability measures on X and Y satisfying the LDP with rate-functions $I(x)$ and $H(y)$ respectively, with the same constan ts C_{n}. Then the sequence of the product measures $M_{n}=K_{n} \times L_{n}$ defined on $X \times Y$ satisfies the LDP with the rate-function $J(x, y)=I(x)+H(y)$ and the constants c_{n}.

Proof:
(LDT) is obvious since $J(x, y)$ is the sum of non-negative and lower semiconsinuous functions.
(LD2) Clearly the following inclusion holds:

$$
\{(x, y) \in X \times Y ; J(x, y) \leqslant \lambda\} \in\{x \subset X ; I(x) \leqslant \lambda ; x \quad y \in Y ; H(y) \leqslant \lambda
$$

Since the left hand side is a closed subset of a compact set, it is compact.
In what follows, by an open (closed) rectangle in $X \times Y$ we shall mean a set of the form $A \times B$ where the sets A and B are open (closed) in X and Y respectively. It is easy to see that (LD3) and (LD4) are true for rectangles. Indeed, for a rectangle $A \times B$ we have $\log M_{n}(A \times B)=\log K_{n}(A)+\log L_{n}(B)$ and both properties follow immediately from the assumptions.

To prove (LD4) in general, let us fix an open set $G C X X Y$ and a point $z=(x, y) \in G$. There exists an open rectangle $R_{z}=G$ which contains z such that

$$
\lim _{n \rightarrow \infty} \inf \frac{1}{c_{n}} \log M_{n}(G) \geqslant \lim _{n \rightarrow \infty} \inf ^{c_{n}} \log M_{n}\left(R_{z}\right) \geqslant-\inf J\left(R_{z}\right) \geqslant-J(x, y)
$$

Since $z \in G$ was arbitrary, (LD4) follows by taking the supremum with respect to $z \in G$.

For the proof of (LD3), we need the following lemmata describing the approximation of closed set by finite union of rectangles.

Lemma 1.
If c is a constant and $S_{1}, \ldots S_{N}$ are sets such that for $j=1, \ldots, N$
$\lim _{n \rightarrow \infty} \sup \frac{1}{C_{n}} \log M_{n}\left(S_{j}\right) \leqslant c$, then $\lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty} \log _{n} M_{j=1}\left(\mathcal{l}_{j}\right) \leqslant c$

Lemma 1 a.

If $S_{1}, \ldots S_{i}$ are rectangles then

$$
\lim _{N \rightarrow \infty} \sup ^{\frac{1}{L_{n}}} \log M_{n}\left(\bigcup_{j=1}^{N} S_{j}\right) \leqslant-\inf J\left(\bigcup_{j=1}^{N} S_{j}\right)
$$

Proof of lemma 1 and la:

Indeed, $\frac{I}{C}_{n} \log M_{n}\left(\underset{j=1}{N} ; S_{j}\right) \leqslant C_{n} \log N+{ }_{C_{n}} \log \left(M_{n}\left(S_{j n}\right)\right)$ where

$$
S_{j n} \epsilon\left\{S_{1}, \ldots S_{N}\right\} \quad \text { is chosen so that } \quad M_{n}\left(S_{j n}\right)=\max _{j=1, \ldots N} M_{n}\left(S_{j}\right)
$$

Observe now that $\lim _{n \rightarrow \infty} \sup _{n \rightarrow \infty} \operatorname{c}_{n} \log M_{n}\left(S_{j n}\right)=\max _{j=1, \ldots i \lim _{n \rightarrow \infty} \sup \frac{1}{n}^{\log _{n}} M_{n}\left(S_{j}\right) \leqslant c} \leqslant$ For rectangular sets it is clear that

$$
\lim _{n \rightarrow \infty} \operatorname{L}_{n} \log M_{n}\left(S_{j n}\right) \leqslant \max _{j=1, \ldots N}\left\{-\inf J\left(S_{j}\right)\right\} \leqslant-\inf J\left(\bigcup_{j=1}^{N} S_{j}\right)
$$

If C is a compact set then (LD3) follows from the above lemmata and semicontinuity of $J(x, y)$.
Suppose now that C is an arbitrary closed set in $X X Y$.
Lemma 2.
For any $\varepsilon>0$ and $a \in X \times Y$ there exists an open rectangle $R_{a} \subset X \times Y$ such that $a \in R_{a}$ and $\lim _{n \rightarrow \infty} \sup \bar{\tau}_{n} \log M_{n}\left(R_{a} \cap C\right) \leqslant-\inf J(C)+\varepsilon$ Proof: Let $\delta=-\inf J(C)$

Fix $a \in X x Y$. If $a \notin C$ the statement is obvious. Assume that $a \in C$. In view of lower semicontinuity of $J(x, y)$, there exists an open rectangle R_{a} containg the point a such that $\inf J\left(\bar{R}_{a}\right) \geqslant J(a)-\varepsilon$. Thus by (LD3) for the closed rectangle we have $\limsup _{n \rightarrow \infty} \frac{1}{n} \log M_{n}\left(R_{a} \cap C\right) \leqslant \lim _{n \rightarrow \infty} \sup \frac{1}{c_{n}} \log M_{n}\left(\bar{R}_{a}\right) \leqslant$

$$
\leqslant-\inf J\left(\bar{R}_{a}\right) \leqslant-J(a)+\varepsilon \leqslant \bar{U}+\varepsilon
$$

Now we are in position to prove (LD3) for an arbitrary closed set C. Take $m \in N$ such that $-m<\bar{\delta}$. The set $F:=\dot{q}(x, y)=x x y ; J(x, y) \leqslant m$; is compact so it can be covered by a finite number of rectangles $R_{a_{1}}, \ldots, R_{a_{N}}$ chosen as in lemma 2. Then by lemma 1 and 2 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{1}{n} \log M_{n}\left(C \cap \bigcup_{j=1}^{N} R_{a_{j}}\right) \leqslant \overline{c^{\prime}}+E \tag{1}
\end{equation*}
$$

Notice that if $A \times B$ is an open rectangle in $X \times Y$ then
$X \times Y \vee A \times B=(X \times(Y \backslash B)) \cup((X \backslash A) \times Y)$ and hence the complement of $A \times B$ is the union of two closed rectangles. Thus De Morgan's Laws combined with the Distributive Laws for \cap and \cup imply that $X \times Y \vee \bigcup_{j=1}^{R_{a}}{ }_{j}$ is a finite union of closed rectangles. Therefore it follows from lemma la that

$$
\begin{align*}
& \quad \lim _{n \rightarrow \infty} \sup _{n} \frac{1}{\tau_{n}} \log M_{n}\left(C \backslash \bigcup_{j=1}^{N} R_{a}\right) \leqslant \lim _{n \rightarrow \infty} \sup \frac{1}{c_{n}} \log M_{n}\left(X \times Y \backslash \bigcup_{j=1}^{N} R_{a_{j}}\right)= \\
& = \tag{2}\\
& \quad \lim _{n \rightarrow \infty} \sup _{j} \frac{1}{C_{n}} \log M_{n}\left(\bigcup_{j=1}^{M} Q_{j}\right) \leqslant-\inf J\left(\bigcup_{j=1}^{M} Q_{j}\right) \leqslant-m<\delta<\delta+\varepsilon
\end{align*}
$$

where $\bigcup_{j=1}^{M} Q_{j}$ is a finite union of closed rectangles contained in the complement of F. From (1), (2) and lemma 1 we have
$\lim _{n \rightarrow \infty} \sup _{n} \frac{1}{\tau_{n}} \log M_{n}(C) \leq \delta+\varepsilon=-\inf J(C)+\varepsilon$
which completes the proof of the theorem.

Acknowledgments.
The authors would like to thank Prof.J.T. Lewis for a valuable comment. One of us (*) is very grateful to Prof.L. Accardi for his warm huspitality at the $2^{\text {nd }}$ University of Rome, where this note was presented at the workshop on "Quantum Probability and Applications".

References.

1. W.Ceg才a, J.T.Lewis, G.A.Raggio "The free energy of quantum spin systems and large deviations" to appear in Commun. Math. Phys.
2. S.R.S.Varadhan Comm. Pure Appl. Math. 19, 261 (1966)
