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1. Introduction.

The Large Deviation Principle (LDP) is the main hypothesis in the statement

of Varadhan’s theorem which provides an effective method for computing te asymp

totic behavior of some integrals. In equibrium statistical mechanics the lirnit’no

specific free—energy can be treated by this method. In the case of quantum sin

systems interacting with a second quantum system, LDP was used to obtain upper

and lower bounds for the free-energy H I
In Ll]the LDP for product measures has been

In this note we present a direct)elementary

2. Large Deviation Principle.

(LDO) The sequence 3 ce,, n ‘ 1

that cn c°

(LD1) I : X LO,7

(LD2) x X ; 1(x)

(LD3) For every closed set

(LD4) For every open set

A sequence Kn , n - 1

said to satisfy the LDP with

if the following conditions

We will formulate and prove the theorem for the product of two spaces.

Theorem.

satisfies the LDP with the rate-function J(x,y) = 1(x) + H(y)

and the constants cn.

2

derived from Varadhan’s theorem 2;

proof.

Let X be a complete separable metric

of Borel probability measures defined on

rate-functio I and constants c , n
n

are fulfilled L2J

space.

x is

of oositi Je real numbers is such

as n —
D

is lower semicontinuous

is a compact set for each \ 0

C X , lirn sup log Kn(C) - inf 1(x)

G X , lim inf log K (G) - inf 1(x)
n x-G

A similar result for the product of n spaces (where n . N ) follows directly

from the case n = 2.

Let X and V be complete separable metric spaces. Suppose that Kn and

are sequences of Bore] probability measures on X and V satisfying the LDP

with rate—functions 1(x) and H(y) respectivelywith the same constants cn.

Then the sequence of the product measures = K x L defined on X < Y

n



3

Proof:

(LD1) is obvious since J(x,y)is the sum of non—negative and lower serrflcon—

tinuous functions.

(LD2) Clearly the following inc3usion holds:

(x,y)& XY ; J(x,y) xX - yY ; H(y)

Since the left hand side is a closed subset of a compact set, it is compact.

In what follows, by an open (closed) rectangle in X Y we shall mean a set

of the form A B where the sets A and B are open (closed) in X and Y

respectively. It is easy to see that (LD3) and (LD4) are true for rectangles.

Indeed, for a rectangle Ax B we have log Mn(A B) = log Kn(A) + log Ln(B)

and both properties follow imediately from the assumptions.

To prove (LD4) in general, let us fix an open set G X x Y and a point

z = (x,y) G. There exists an open rectangle R c C which contains z such

that

lim inf log M(G) lim inflog Mn(Rz) - inf J(R) - J(x,y)

n—”

Since z C was arbitrary, (LD4) follows by taking the supremum with respect

to z&G.

For the proof of (LD3), we need the following lemmata describing the appro

ximation of closed set by finite union of rectangles.

Lema 1.

If c is a constant and S1,.. .S are sets such that for =

N

lim sup log M (S.) then lim sup log M (US.) c
n jl

Lemma la.

If S ,...S1 are rectangles then

N N
lim sup log M ( JS.) - inf J( US.)

n
.

j .=1

Proof of lemma 1 and la:

Indeed, log Mn(USj) log N + log (Mn(Sjn)) where

SE S1 is chosen so that Mn(Sjn) .NMnj)
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M
where UQ is a finite union of closed rectangles contained in the complement

jzl ‘

of F . From (1), (2) and lemma 1 we have

lim sup log M0(C) + =
- inf 3(C) +

n

which completes the proof of the theorem.
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