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Abstract.

Assuming that the Large Deviation Principle (LDP)
is satisfied in each component of the product space
an elementary proof of the LDP for the product measure
is given.
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1. Introduction.

The Large Deviation Principle (LDP) is the main hypothesis in the statement
of Varadhan’s theorem which provides an effective method for computing the asymp-
totic behavior of some integrals. In equilibrium statistical mechanics the Timiting
specific free-energy can be treated by this method. In the case of guantum spin
systems interacting with a second quantum system, LDP was used to obtain upper

and lower bounds for the free-energy 0]

In [1]the LDP for product measures has been derived from Varadhan’s theorem [2] .

In this note we present a direct elementary proof.
2. Large Deviation Principle.

Llet X be a complete separable metric space. A sequence & Kn , N = 1}
of Borel probability measures defined on X s said to satisfy the LDP with
rate-functio~ I and constants ; C,» N > 1} if the following conditions
are fulfilled L2 ]

(LDO)  The sequence %cn, n> j of nositive real numpers is such
that Ch > as n — o°

(Lb1) I : X — L0,>] is lower semicontinuous

(LD2) x x e X3 I(x) <A } is a compact set for each A 2 0

(LD3)  For every closed set C<X, 11m~§yp %} log Kn(C) < -inf I(x)
7 x=C

(LD4) For every open set G <X , lim inf £ log K (6) 2 - inf ()
n xe G

We will formulate and prove the theorem for the product of two spaces.
A similar result for the product of n spaces (where n e N ) follows directly
from the case n = 2.

Theorem.

let X and Y be complete separable metric spaces. Suppose that Kn and L.
are sequences of Borel probability measures on X and Y satisfying the LDP
with rate-functions I(x) and H(y) respectively}with the same constants c..

Then the sequence of the product measures Mn = K ox L, defined on X XY

satisfies the LDP with the rate-function J(x,y) = I(x) + H(y)

and the constants cn.



Proof:
(LD1) is obvious since J(x,y)is the sum of non-negative and lower semicon-

tinuous functions.

(LD2) Clearly the following inclusion holds:

N

%(xd)eXxY ;de)gx};%}¢X;Iu)sAf x%ytY;}Mmngl
Since the left hand side is a closed subset of a compact set, it is compact.

In what follows, by an open (closed) rectangle in X =Y we shall mean a set
of the form A x~ B where the sets A and B are open (closed) in X and Y
respectively. It is easy to see that (LD3) and (LD4) are true for rectangles.
Indeed, for a rectangle AxB we have log Mn(Ar B) = log Kn(A) + Tlog Ln(B)
and both properties follow immediately from the assumptions.

To prove (LD4) in general, let us fix an open set G< X xY and a point
z = (x,y)eG. There exists an open rectangle RZ = G which contains z such
that

lim inf & log M.(6) > Tlim inf ElogM (R) 2 - inf J(R) 2 - J(x.)

Ny N n s n n‘'z z
Since z ¢ G was arbitrary, (LD4) follows by taking the supremum with respect
to zeG.

For the proof of (LD3), we need the following lemmata describing the appro-
«imation of closed set by finite union of rectangles.

Lemma 1.

If ¢ 1is a constant and S]""SN are sets such that for J = 1,..,N

N
Tim sup %}1og Mn(S-) < ¢, then Tlim sup %Blog Mn( LJS,) ¢ ¢
n-—o J n —> o j=1 J
Lemma la.
If S]""SN are rectangles then
N N
lim sup T log M (US:) < - inf J(USY)
N —p Do n n jz'l \] ~ jzl \]

Proof of lemma 1 and la:

N
Indeed, %}109 Mﬂ(jéésj) < %hlog N o+ %hlog (Mn(sjn)) where
Sin€ bsiu.sy is chosen so that M (S.) =j=q1ax NMn(Sj)



Observe now that  1im sup %alog Mn(Sjn) =._max ]im sup %%log Mn(535 < ¢
n-—> > j=1l,..Nn—o>¢°
For rectangular sets it is clear that
N
. 3 o \ Vo .
Tim SUD‘%B]OQ Mn(Sjn) < 'amax §—1nf J(Sj); < inf J(.;153>
n. »»>> J—],..N ] -

If C is a compact set then (LD3) follows from the above lemmata and

semicontinuity of J(x,y).
Suppose now that C is an arbitrary closed set in X %Y.

Lemma 2.

For any ¢ >0 and aeX x Y there exists an open rectangle Rac, X =Y
such that . . ,
aeR, and  lim sup %%1og M. Ry ) ¢« - inf J(C) +¢

Proof: Let & = - inf J(C)

Fix ae X»xY . If a2 C the statement is obvious. Assume that a  C .
In view of lower semicontinuity of J(x,y) , there exists an open rectangle Racon—

taing the point a such that inf J(ﬁa) >J(a) — ¢ - Thus by (LD3) for the closed
rectangle we have 1im sup n109 M (R.AC) < Tim sup %}109 Mn(Ra) <

n— > n-a n— ==
<-infUR) € -da) +e €+
2
Now we are in position to prove (LD3) for an arbitrary closed set C .
Take me&N such that -m <.§— . The set F : = é(x,y) = X=xY ; J(x,y) &m }

is compact so it can be covered by a finite number of rectangles Ra "'JRa
A
chosen as in lemma 2. Then by lemma 1 and 2 we have 1 i
. L N
Tim sup n1og Mn(sz o Ra.

n—s o j=1 7]

19!

-
) & O

Notice that if A x B is an open rectangle in X x Y then

XxY~NAXxB = (Xx(YNB)) w ((X~A)=xY) and hence the complement
of A x B is the union of two closed rectangles. Thus De Morgan’z Laws combined

with the Distributive Laws for ~ and w imply that X x y ~ J Ra
=1 7]

is a finite union of closed rectangles. Therefore it follows from lemma la that

. 1 N _ b N
lim sup T,log M (C ~ Y Ry) & 1im sup T, log Mo (X = ¥ N g:%Ra ) =

n—o= j=1 7] n— 0= ] j

) o< - inf I U0 < _m< D <O +E

= 1im sup %h]og Mn( ; 3
: 571

n—>0 J

M
UQ
=1



(@A

M

where Q. is a finite union of closed rectangles contained in the complement
: J
j=1
of F. From (1), (2) and lemma 1 we have
Tim sup %}1og Mn(C) < U+ & = -idnf J(C) + ¢
n—oe

which completes the proof of the theorem.
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