Dynamical SU(8) for phase-coexistence:
Thermodynamics of the $\mathrm{SO}(4) \times \mathrm{SO}(4)$ submodel

Joseph L Birman
Department of Physics, City College of C.U.N.Y., New York NY10031, U.S.A.

AND
Allan I Solomon
Faculty of Mathematics, Open University Milton Keynes MK7 6AA, England

Dynamical SU(8) for phase-coexistence: Thermodynamics of the $\mathrm{SO}(4) \times \mathrm{SO}(4)$ submodel ${ }^{*}$

Joseph L. Airman and
Allan I. Solomon ${ }^{\dagger}$
Department of Physics, City College of C.U.N.Y., New York NY10031

September 22, 1987

Abstract

We review a scheme for describing a multi-phase interacting system of electrons within the dynamical algebra su(8): we discuss the thermodynamics of a submodel which incorporates the relevant physics, and has so (4) \oplus so (4) for its dynamical algebra.

Talk delivered to the XVI International Colloquium on Group Theoretical Methods in Physics, Varna Bulgaria (June, 1987).

[^0]We first write down a mean-field hamiltonian H in terms of electron annihilation (creation) operators $a_{k 6}\left(a_{k 6}^{t}\right)$ which satisfy the anti-commutation relation:

$$
\begin{equation*}
\left\{a_{k G}, a_{k^{\prime} G^{\prime}}^{t}\right\}=\delta_{k k^{\prime}}, \delta_{66^{\prime}} \tag{1}
\end{equation*}
$$

and which moneurmis (apart from the knetic chergy verm hat, bingleb axperconductivity $\left(H_{S O}\right)$, charge-density ($H_{C D W}$) and spin-density wave ($H_{S D W}$) terms. Thus

$$
\begin{equation*}
\bar{H}=H_{K E}+H_{S C}+\tilde{H}_{C D W}+H_{S D W} \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
H_{K E}=\Sigma \epsilon(k) a_{k 6}^{\dagger} a_{k 6} \tag{3}\\
H_{S O}=\Sigma \Delta^{*} a_{k \dagger} a_{-k \downarrow}+\text { h.c. } \tag{4}\\
H_{O D W}=\Sigma \gamma_{0} a_{k+Q \sigma}^{\dagger} a_{k \sigma}+\text { h.c. } \tag{5}\\
H_{S D W}=\Sigma a_{k+Q}^{\dagger} \underline{\gamma} \cdot \underline{\sigma} a_{k}+\text { h.c. } \tag{6}
\end{gather*}
$$

Here expressions 3-6 are standard, with $Q=2 k_{F}$ (k_{F} is the wave vector of the fermi level) a characteristic wave vector for density wave order. [Summation \sum over repeated indices and over implied spin indices in (6).] With the additional simplification that there is no contribution from terms for which $|k|>Q$, we may write H as a direct sum, $H=\oplus_{k}^{k_{F}} H(k) ; H(k)$ is a hermitian bilinear in $B_{i}(k)$, where (writing $\bar{k}=k-Q$)

$$
\begin{equation*}
\left\{B_{i}(k)\right\}=\left\{a_{k \uparrow}, a_{-k l}^{\dagger}, a_{\bar{k} \uparrow}, a_{-\bar{k} \downarrow}^{\dagger} ; a_{k \downarrow}, a_{-k \uparrow}^{\dagger}, a_{\bar{k} \downarrow}, a_{-\bar{k} \dagger}^{\dagger}\right\} \tag{7}
\end{equation*}
$$

As in (1), $\left\{B_{i}, B_{j}^{\dagger}\right\}=\delta_{i j}$ and the bilinears $X_{i j} \equiv B_{i}^{\dagger} B_{j}$ generate the Lie algebra $g l(8)$; the hermitian combinations occurring in the hamiltonian - which in addition has zero trace - may be shown to generate the whole of $\operatorname{su}(8)[1]$. A physical consequence of this mathematical property is that, among others, triplet superconductivity terms are generated [2].

This su(8) model incorporates the mean field hamiltonian necessary for a discussion of coexistence of any of these phases (superconducting or density wave). However, a more tractable model which nonetheless encapsulates the essential features may be obtained by choosing only specified components of the density wave terms in (5) and (6) (γ_{0} purely imaginary, real Δ and $\underline{\gamma}$ with $\underline{\gamma}$ along the third axis and assuming the so called "nesting" condition, $\epsilon(\bar{k})+\epsilon(\bar{k})=0)$. The resulting hamiltonian δH may be written as

$$
H=\oplus_{k} H(k),
$$

where

$$
\begin{align*}
& H(k)=\quad \epsilon\left(a_{k \dagger}^{\dagger} a_{k \dagger}+a_{-k \downarrow}^{\dagger} a_{-k \downarrow}+a_{k \downarrow}^{\dagger} a_{k \downarrow}+a_{-k \dagger}^{\dagger} a_{-k \dagger}\right) \\
& -\epsilon\left(a_{\bar{k} \dagger}^{\dagger} a_{\bar{k} \dagger}+a_{-\bar{k} \downarrow}^{\dagger} a_{-\bar{k} \downarrow}+a_{\bar{k} \downarrow}^{\dagger} a_{\bar{k} \downarrow}+a_{-\bar{k} \dagger}^{\dagger} a_{-\bar{k} \dagger}\right. \\
& -\Delta\left(a_{k \dagger}^{\dagger} a_{-k \downarrow}^{\dagger}+a_{\bar{k} \dagger}^{\dagger} a_{-\bar{k} \downarrow}^{\dagger}-a_{k \downarrow}^{\dagger} a_{-k \dagger}^{\dagger}-a_{\bar{k} \downarrow}^{\dagger} a_{-\bar{k} \dagger}^{\dagger}\right)+\text { h.c. } \\
& +\frac{1}{2} \gamma_{3}\left(a_{k \dagger}^{\dagger} a_{\bar{k} \dagger}+a_{-k \downarrow} a_{-\bar{k} \downarrow}^{\dagger}-a_{k \downarrow}^{\dagger} a_{\bar{k} \downarrow}-a_{-k \dagger} a_{-\bar{k} \dagger}^{\dagger}\right)+\text { h.c. } \\
& +\frac{1}{2} i \gamma_{0}\left(a_{k \dagger}^{\dagger} a_{\bar{k} \dagger}-a_{-k \downarrow} a_{-\bar{k} \downarrow}^{\dagger}+a_{k \downarrow}^{\dagger} a_{\bar{k} \downarrow}-a_{-k \dagger} a_{-\bar{k} \dagger}^{\dagger}\right)+\text { h.c. } \tag{8}
\end{align*}
$$

We define operators $\underline{L}^{\alpha}, \underline{K}^{\alpha}(\alpha=\dagger$ or \downarrow) as follows:

$$
\begin{array}{r}
L_{3}^{\dagger}=\frac{1}{2}\left(a_{k \dagger}^{\dagger} a_{k \uparrow}+a_{-k \downarrow}^{\dagger} a_{-k \downarrow}-a_{\bar{k} \dagger}^{\dagger} a_{\bar{k} \dagger}-a_{-\bar{k} \downarrow}^{\dagger} a_{-\bar{k} \downarrow}\right) \\
L_{1}^{\dagger}=\frac{1}{2}\left(a_{k \dagger}^{\dagger} a_{-k \downarrow}^{\dagger}+a_{\bar{k} \dagger}^{\dagger} a_{-\bar{k} \downarrow}^{\dagger}\right)+\text { h.c. } \\
K_{1}^{\dagger}=\frac{1}{2}\left(a_{k \dagger}^{\dagger} a_{\bar{k} \dagger}+a_{-k \downarrow} a_{-\bar{k} \downarrow}^{\dagger}\right)+\text { h.c. } \\
K_{2}^{\dagger}=-\frac{i}{2}\left(a_{k \uparrow}^{\dagger} a_{\bar{k} \dagger}-a_{-k \downarrow} a_{-\bar{k} \downarrow}^{\dagger}\right)+\text { h.c. }
\end{array}
$$

with similar expressions for $\underline{L}^{\downarrow}, \underline{K}^{\downarrow}$ with the spins reversed. Then $H(k)$ takes the form

$$
H(k)=H^{\dagger}(k)+H^{\downarrow}(k)
$$

where

$$
H^{\alpha}(k)=\underline{\lambda}^{\alpha} \cdot \underline{L}^{\alpha}+\underline{\kappa}^{\alpha}, \underline{k}^{\alpha}, \quad(\alpha=\uparrow \text { or } \downarrow)
$$

with

$$
\begin{aligned}
\underline{\lambda}^{\dagger}=(-2 \Delta, 0,2 \epsilon) ; \underline{\kappa}^{\dagger} & =\left(\gamma_{3},-\gamma_{0}, 0\right) \\
\underline{\lambda}^{\downarrow}=(2 \Delta, 0,2 \epsilon) ; \underline{\kappa}^{\downarrow} & =\left(-\gamma_{3},-\gamma_{0}, 0\right) .
\end{aligned}
$$

Introducing operators $L_{2}^{\dagger}, K_{3}^{\dagger}$ as

$$
\begin{aligned}
& L_{2}^{\dagger}=-\frac{i}{2}\left(a_{k \uparrow}^{\dagger} a_{-k \downarrow}^{\dagger}-a_{\bar{k} \dagger}^{\dagger} a_{-\bar{k} \downarrow}^{\dagger}\right)+\text { h.c. } \\
& K_{3}^{\dagger}=\frac{1}{2}\left(a_{k \uparrow}^{\dagger} a_{-\bar{k} \downarrow}^{\dagger}-a_{-k \downarrow} a_{\bar{k} \uparrow}\right)+\text { h.c. }
\end{aligned}
$$

and analogous expressions for $L_{2}^{\downarrow}, K_{3}^{\downarrow}$, the system of operators $\underline{L}^{\alpha}, \underline{K}^{\alpha}$ closes under the cummutation relations of so(4) \oplus so(4):

$$
\begin{aligned}
& {\left[L_{\ell}^{\alpha}, L_{m}^{\beta}\right]=i \delta^{\alpha \beta} e_{\ell m n} L_{n}^{\alpha}} \\
& {\left[L_{\ell}^{\alpha}, K_{m}^{\beta}\right]=\imath \delta^{\alpha \beta} e_{\ell m n} K_{n}^{\alpha}} \\
& {\left[K_{\ell}^{\alpha \alpha}, K_{m}^{\beta}\right]=i \delta^{\alpha \beta} e_{\ell m n} L_{n}^{\alpha \alpha} \quad \ell, m, n=1,2,3}
\end{aligned}
$$

It follows immediately, on use of the two invariants $\lambda^{2}+\kappa^{2}$ and $\underline{\lambda} \cdot \underline{\kappa}$ associated with $S O(4)$, that the energy spectrum of the system has the values

$$
\begin{equation*}
E^{ \pm}(k)=\frac{1}{2}\left[4 \epsilon(k)^{2}+\gamma_{0}^{2}+\left(2 \Delta \mp \gamma_{3}\right)^{2}\right]^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

The hamiltonian $H(k)$ may be rotated to a sum of the Cartan elements of the algebra ($L_{3}^{\alpha}, K_{3}^{\alpha}$) by the rotation $R(k)$,

$$
\begin{equation*}
R(k)=e^{i \phi_{2}\left(L_{3}^{1}-L_{2}^{1}\right)} e^{i \phi_{3}^{\prime}\left(K_{2}^{1}-K_{2}^{1}\right)} e^{i \phi_{1}\left(K_{1}^{\prime}+K_{1}^{-1}\right)} \tag{10}
\end{equation*}
$$

with

$$
\begin{array}{r}
\phi_{1}=\tan ^{-1}\left(\gamma_{0} / 2 \epsilon\right) \\
\phi_{2}=-(1 / 2) \tan ^{-1}\left\{4 \Delta\left(4 \epsilon^{2}+\gamma_{0}^{2}\right)^{\frac{1}{2}} /\left(4 \epsilon^{2}+\gamma_{0}^{2}+\gamma_{3}^{2}-4 \Delta^{2}\right)\right\} \\
\phi_{2}^{\prime}=(1 / 2) \tan ^{-1}\left\{2 \gamma_{3}\left(4 \epsilon^{2}+\gamma_{0}^{2}\right)^{\frac{1}{3}} /\left(4 \epsilon^{2}+\gamma_{0}^{2}-\gamma_{3}^{2}+4 \Delta^{2}\right)\right\} \tag{11}
\end{array}
$$

[The index k is suppressed in (12).]
In addition to this inner automorphism of so(4) \oplus so(4), a further rotation R_{0}, which is an element of $S U(8)$ but an outer automorphism of so(4) $\oplus s o(4)$ is necessary in order to send the Cartans into a sum of number operators $M_{i} \equiv B_{i}^{\dagger} B_{i}$, thus diagonal in Fock space. (In the basis (4) R_{0} may be chosen to be $\exp \frac{i \pi}{4}\left(\tau_{0} \times \tau_{1} \times \tau_{2}\right)$.)

The ground state (temperature $\tau=0$) properties of this model were discussed in reference [2]: we now proceed to a discussion of the thermodynamics.

The thermodynamics of the system $H=\oplus H(k)$ is particularly straightforward. Thus the partition function Z may be written

$$
Z \equiv \operatorname{Tr} \exp (-\beta H)=\operatorname{Tr} \exp (-\beta \Sigma H(h))=\prod_{k} Z(k) \quad\left[\beta=\left(k_{B} T\right)^{-1}\right]
$$

where $Z(k j=\operatorname{tr}(\exp -\beta H(k))$ is the partition function restricted to the k system. (Tr is the trace over all states, $t r$ over the k-states only.) Similarly for an operator $Q=\sum_{k} Q(k)$, we may easily see that

$$
\langle\langle Q\rangle\rangle_{\beta} \equiv \operatorname{Tr} \exp (-\beta H) Q / Z=\sum_{k}\langle\langle Q(k)\rangle\rangle_{\beta}
$$

If under the diagonalizing rotation - valid even in the su(8) case -

$$
\begin{aligned}
& H(k) \longrightarrow \sum_{i=1}^{8} E_{i} n_{i} \\
& Q(k) \longrightarrow \sum_{i=1}^{8} \mu_{i} n_{i}+\text { (non-diagonal terms) }
\end{aligned}
$$

then one may evaluate readily

$$
\langle\langle Q(k)\rangle\rangle_{\beta}=\sum_{i=1}^{8} \mu_{i}\left(e^{\beta E_{i}}+1\right)^{-1}
$$

In the so(4) \oplus so(4) case, we have

$$
\left\{E_{i}\right\}=\left\{E^{+}, E^{-},-E^{+},-E^{-} ; E^{+}, E^{-},-E^{+},-E^{-}\right\}
$$

where $E^{ \pm}$are given in (11), similarly for the rotated $Q(k)$

$$
\left\{\mu_{i}\right\}=\left\{\mu_{+}, \mu_{-},-\mu_{+},-\mu_{-} ; \mu_{+}, \mu_{-},-\mu_{+},-\mu_{-}\right\}
$$

so that in general we have

$$
\langle\langle Q(k)\rangle\rangle_{\beta}=-2 \mu_{+} \tanh \frac{1}{2} \beta E^{+}-2 \mu_{-} \tanh \frac{1}{2} \beta E^{-}
$$

In the same way, the average total energy of the system may be written

$$
\langle\langle H(k)\rangle\rangle_{\beta}=-2\left\{E^{+} \tanh \frac{1}{2} \beta E^{+}+E^{-} \tanh \frac{1}{2} \beta E^{-}\right\} .
$$

Choosing the negative square root values in (10), we see that the zero-temperature limit $(\beta \rightarrow \infty)$ is given by

$$
\langle\langle H(k)\rangle\rangle_{\infty}=2\left(E^{+}+E^{-}\right)
$$

This corresponds to a filled Fermi sea ground state. The analogous zerotemperature order parameters are

$$
\langle\langle Q(k)\rangle\rangle_{\infty}=2\left(\mu_{+}+\mu_{-}\right)
$$

All 12 operators in so(4) \oplus so(4) may be identified with physical processes; six have zero-thermodynamic expectation at all temperatures. In the appended table we give the thermodynamic and ground state ($\beta=\infty$) expectations for the six non-vanishing operators; the latter values are in complete accord with the zero-temperatue calculations of reference [2].

Acknowledgement: We thank the organizers of the XVI ${ }^{\text {th }}$ Colloquium for their hospitality and support.

References

[1] A.I. Solomon and J.L. Birman, J.Math.Phys.28,1526(1987)
[2] A.I. Solomon and J.L. Birman, "Mechanism for Generation of triplet Superconductivity" [to be published].

[^0]: *This work was supported in part by a grant from FRAP of the PSC-CUNY.
 ${ }^{\dagger}$ Permanent Address: Faculty of Mathematics, Open University, Milton Keynes MK7 GAA, England.

