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Abstract

We present a review of some aspects of the linearised Robinson-Trautma,n

metrics, mainly the study of the initial-value problem and a long-term expansion

of a special case of these line elements. The problem of wire-singularities is also

considered.
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INTRODUCTION

The purpose of this lecture is to expose some aspects of the dynamics of

the hnearised* Robinson-Trautman (henceforth RT) line elements This question

received much consideration (e g in [1-5]) and therefore we shall have to restrict

attention and to concentrate here on a few topics only.

In the first section, we shall give a physical motivation for the study of the RT

metrics. Their interpretation as the gravitational field produced by an accelerated

point-mass will then become clear The necessity of considering the question of

‘‘cire-singulanties in the RT framework will also be obvious

In the second section, we shall present an algorithm for studying the initial

vaiue problem of the RT metrics. This will enable us to find a large class of line

elements exhibiting no wire-singularities, at least for a small period of evolution

from the initial conditions

Finally, in the third section. we shall investigate the long-term behaviour of

the RT metrics and compare their time evolution with the one of an ordinary heat

wave in one spatial dimension.

I) PHYSICAL MOTIVATION OF THE RTLINE ELENTS

To motivate the RT metrics, it is convenient to start by considering briefly

the Minkowski space and by introducing Svnge s retarded construction” [6] This

will enable us to define a vector field T which will play a fundamental role when

making the transition to General Relativity.

Consider the Minkowski space M expressed in Cartesian co-ordinates Let

C be a time-like curve on which r is the proper time The equation of C is

= Z (T), Z1 being known. (C will be interpreted later as the world line of a

* The reader is referred to the lecture of Prof. D. Kramer in this volume for

non-linear aspects
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point-particle generating the RT gravitational field.) For any point p of M, we can

draw the past null cone of p, which intersects C at a unique corresponding point

q. (Alternatively we can draw the future null cone of q, which in turn contains

p) We define as the vector and F as the vector passing through p and

perpendicular to the unit tangent vector V (velocity vector) to C at q In this

way, we can attach to p the vectors and , and also the scalar r defined as

the value of the proper time of q. (See Fig. 1.) By construction, the scalar field T

is constant on each future null cone emanating from C

Fig. 1 Future null
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Putting: T = 4-, r one shows easily that T is related to r as:

(1.1)

Moreover, the vector field T is:

null: k’ k = 0 (1.2)

geodesic: k k’ = 0 (1.3)

shear-free: q2 = V — (ikP)2 = 0 (1.4)

twist-free: = 0 (1.5)

1 1
diverging: e = — . (1.6)

Finally, we can decide to use r as the parameter along the integral curves of T,
in such a way that:

dr
(1.7)

We can paraphrase this construction by saying that, in the Minkowski space,

there exists a family of null hypersurfaces r = constant (the null cones), such that

the vector field defined by (1.1), with the choice of the parameter (1.7), has the

properties (1.2)-(1.6).

To obtain the RT line elements, we now envisage the following problem:

Consider a Riemannian space and a family of null hypersurfaces o = constant.

From this family, construct a vector field I in an analogous way to (1.1), namely:

= . (1.8)

One can ask the question whether there exist solutions of Einstein’s equations (in

vacuo) such that the vector field I defined by (1.8), with the parameter choice

(1.7) has the same properties as in the Minkowski space (i.e.: (1.2)-(1.6), with

covariant derivatives, rather than partial ones). It turns out that the answer to this
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question is affirmative and that the solutions which have the required properties

are the RT metrics:

ds2 = h(u,cJ) dr2 +2 drdo—2r2P2(o,cJ) dçd , (1.9)

in which the co-ordinates are o, r, ç, and h is given in terms of P as:

hK—2Hr—2 (1.10)

H—lnP (1.11)

KEI.lnP (1.12)

_2P2 ‘ 113
—

whereas P is a solution of:

K + l2mH =0, (1.14)

m being a constant.

Having obtained the form of the RT line elements, one can get some further

insight in them by returning briefly to the Minkowski space M. From Fig. 1 and

the definition of T, it follows that:

(1.15)

Applying a procedure attributed to Robinson [1], one considers (1.15) as a co

ordinate transformation in M, x being the Cartesian co-ordinates and two of the

new co-ordinates being r and r. Using the properties (1.2)-(1.6) of T, one proves

[1] that it is possible to find a complex co-ordinate ç such that:

T=(i+ç, (c+), -(c-, 1-ç)P’ (1.16)

P0 (1 + cflV0
— (1— cflV — (V1 — iV2)

— (Vt + iV2)* . (1.17)
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One can interpret ç as the co-ordinate labelling the generator of the null cone to

which the point p belongs. (See Fig. 1.) Alternatively, one could use the two

ordinary (real) spherical co-ordinates (1 and c defined as: ç = tan . e

It is then a simple matter to calculate the expression of the Minkowski metric in

these co-ordinates:

ds2 = h0 dr2 + 2drdr —2r2Pj2dçd , (1.18)

in which:

K0 — 2H0 r (1.19)

a
H0 —lnP0 (1.20)

8q

K0 t.0 In P0 = 1 (1.21)

82
2P . (1.22)

The analogy between (1.18)-(1.22) and (1.9)-(1.13) is striking. The main difference

between the two settings (apart from the term involving m in (1.10)) is that, in

the RT case, P is a solution of the field equation (1.14), rather than being a known

function, totally determined by the curve C, as in the Minkowski case (1.17).

The above analysis provides us with a convenient framework to investigate

the gravitational field produced by an accelerated point-mass. Assuming that the

field is weak, the solution will be approximately the Minkowski metric and the

following procedure is justified [1]:

1)Impose the motion of the source in the Minkowskian background (i.e.: take

for the curve C, the (preassigned) world line of the source) and calculate the

corresponding P0 by (1.17).

2)Express that the total P of (1.9) is a perturbation of this F0:

P=Po x (1+f(0,c,?)) II < 1 . (1.23)

3)Determine c in (1.23) by the requirement that the total P should satisfy (1.14)

to the first order in e.
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This shows the close analogy which exists between the RT metrics and the

Liénard-Wiechert potentials in Electromagnetism: An accelerated point-charge

generates an electromagnetic field, whereas an accelerated point-mass generates a

gravitational field. Both fields can be calculated given the (preassigned) motion

of the source. As an illustration of the above-described procedure, we consider

briefly the example of a point-mass which oscillates harmonically along the z-axis.

According to step 1), we choose for the curve C, the world line:

=a , x =,\coswcv

x’ =x2 =0

jAwj < 1

in which ) is the amplitude of the oscillation and a is a parameter along C, related

to the proper time q as:

= E(wa, w)

where E is the elliptic function of the second kind This yields the expression for

P0 by (1.17).

Following step 2), we express that the total P is a perturbation of P0. Due to

the fact that the motion of the source is rectilinear in the Minkowskian background,

it is reasonable to assume that the solution is axially symmetric. Therefore it must

be independent of the azimuthal angle çf. This will be achieved by imposing that

P depends on ç and by the combination ç.

Finally, we solve the field equation as explained is step 3), with the result:

P(, )=2 (1-rnf(a) e 1nI12t)+o(2) (1.24)

in which the notation is:

g(a) (1.25)

(1.26)
çç + g2
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coswa
f(a)

— 2 2 2 3’2
(1.27)

(1—A L’ sin c.ia)

To determine the arbitrary functions which appear in the course of the integration

leading to (1.24)-(1.27), we calculated the Riemann tensor and imposed that the

only singularities which may possibly occur are “point-like” singularities, i.e. poles

in the curvature. It turned out that we did have at our di5poal enough

functions of integration to remove j the other singularities. In particular, the

component ‘Ø of the curvature in the Newman-Penrose formalism has a “wire

singularity”, i.e. a line of infinite curvature for = ±1:

— 2m \2 (3 2 df (3 — 2)

. + d (1_2)2

The values = ±1 are equivalent, by (1.26), to ç = cc or 0, i.e. to the polar

angle 9 being either r or 0. This corresponds to the z-azds, the axis of oscillation

of m.

This simple example shows that, in general. it is not possible to preassign to

the source an arbitrary path in the Minkowskian background. Such an arbitrary

path would require that energy from infinity be supplied to the source (through the

wire-singularities) in order to maintain the assumed motion. Some very general

results have been obtained [3] on the type of motion for which no such singularities

occur. In the sequel, we shall present an alternative formalism to investigate the

same problem. We shall prove that there exists a large class of approximate RT line

elements which do not exhibit wire-singularities. In Section II), we shall study the

initial-value problem for the RT metrics and in Section III), a long-term expansion

of a special class of solutions.

II) INITIAL-VALUE PROBLEM FOR THE RT SOLUTIONS

11.1) Introduction

If one restricts the RT line element (1.9) to a fixed value of o and r, and

performs a rescaling, one obtains a family of two-dimensional metrics indexed by
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the parameter u

ds2(or = constant) = 2P2(= constant, ç , ?) dç d? . (2.1)

This family is interpreted as representing the geometry of the wave fronts. More

over, K in (1.12) and in (1.13) are then the Gaussian curvature and the invariant

Laplacian on (2.1). Therefore, if the wave fronts (2.1) are known at a given value

of o, say o = 0, i.e. if P is known at o = 0, one can calculate z.K by (1.12) and

(1.13) in such a way that the field equation (1.14) determines ()(L7 = 0):

12m = -(K)( =0), . -. (2.2)

Thus, by a Taylor expansion, P can be obtained (approximately) for a> 0.

In Section 11.2, we shall systematise these ideas and show how to construct

an algorithm from which one can calculate the successive derivatives of P with

respect to a at a = 0 in terms of the known function P(a = 0, ç , ?) This will

enable us to study the initial-value problem for the RT line elements. We shall

insist here mainly on the idea of this method, the reader being referred to [7] for

the details

11.2) Construction of the Power Expansion of the Solution

Our aim is to form the Taylor polynomial:

Pfr)=P(O) + (0)a + +.... (2.3)

However, it will be simpler to expand H, for it is H which appears directly in the

field equation (1.14). It is straightforward to transform the expansion for H in the

required expansion for P using (1 11)

The values of the derivatives of H at a = 0 can be calculated by the field

equation (1.14):

(24)
12m
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For the rest of this section, all the equations will be understood as restricted to

the value a = 0. The aa’gument o• = 0 will be omitted everywhere to simplify the

notation.

Moreover, by (1.11) and (1.13):

\ A T % Yr A T A

= LL1 L11. t t...t1.

Iterating the derivation:

K=2C1(aiK)(a1iH) + -1 K , n1 , (2.6)

where C is the binomial coefficient. This expression becomes, with (2.4):

8 H = 2 (ô1 H) H) k , n 1 . (2.7)

If the second term on the right-hand side were absent, (2.7) would be the solution

of the initial-value problem since it would enable us to calculate the nth-order

derivative of H in terms of derivatives up to order ii — 1 at most. So, using

repeatedly (2.7), it would be possible to express 91 H (at a = 0) as a function of

H(0), which is known by (2.4) with n = 0.

To evaluate the term involving K in (2.7), we apply a system similar to (2.5)

and (2.6), with the result:

K = 2HK + H (2.8)

8 (8 K) = 2C_( K))(81’H)+8’ (a’ K), 1.

(2.9)

These formulae make it possible to compute terms of the type 8 h(ôm K),

appearing in (2.7), as combinations of expressions such as 8?_1 (8 K), 8’ H

and ö’ (8+1 K), in such a way that a repeated application of (2.7), (2.8)

and (2.9) yields 8’ H in terms of ö H, 0 I n — 1 and tS(o’ K), 1 f n.

Consequently, what remains to be done is to express (8’ K), 1 j n as a
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function of 8 H, 0 I — 1. This is similar to the above treatment. We get

[7]:

K = 2 C_1 (8 K) (ôn_1_1 H) + 8 H , n 1 (2.10)

j3fl Tfl 2c1(1(O H))(’ H)+3 (m4 H), 1.

(2.11)

To show how this algorithm is used in practice. we shall apply it to the case

in which P(0) describes wave fronts which are axially symmetric perturbations of

a sphere. Moreover, we shall perform the expansion in o only up to order 1. At

order 0 in o, the calculation is trivial: and K are known by (1.13) and (1.12),

and H(O) is calculated by (2.4) with n = 0. At order 1, we get from (2.7) and

(28)

H = 2H2 - ——K (2.12)
12m

K=2HK+H. (2.13)

The complete framework (2.7)-(2.11) comes in operation only from order 2 on

[7] We shall now particularise (2 12), (2 13) to the case where P(0) describes an

axially symmetric perturbation of a sphere.

11.3) Axially Symmetric Perturbations of Spheres

Let E be the surface obtained by rotating about the z-axis, the curve F of the

xz-plane. Let the equation of F be given in polar co-ordinates as: x = (O) sin 9,

= x(9) cos9, where 0 is the angle between the z-a.xis and the radius-vector of

an arbitrary point of F, and x is the magnitude of this radius-vector. The line

element of E is then:

d12 = (x’2 +2)d92 + x2 sin2 0 d2 , (2.14)

in which ç denotes the azimuthal angle. Obviously, the expression x(°) =

(where R is a constant) is the equation of a sphere of radius R and therefore an
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axially symmetric perturbation of this sphere will be characterised by: x(°)
R(1 + c(O)), C 1. The metric (2.14) then takes the form:

d12 = 2R2P2dcd? , (2.15)

with:
1—

cosO , çtane . (2.16)

Thus, we have expressed the line element of £ in a manner which is appropriate to

identify it with the metric (2.1) of the wave fronts of the RT solutions at the initial

value of . Moreover, (2.16) gives us the explicit equation of the function P in

terms of the (known) perturbation E. Consequently, it is a simple routine to apply

the equations of the initial-value problem (2.12), (2.13) to obtain the first-order

expansion in LI of H. (See [7].) The results are:

l2mH(O) = 4(32
— 1)e” + 8(2

— 1)E1 + (1 —
2)2IV (2.17)

144m2H(O) =96(1 32)e” + 64(21 — 332)E111 + 24(—19 + 1342 — 13l4)EIV

+ 96(—9 + 262 —
174)fV + 32(2 — 15 + 24 —

+ 32(1 2)3f1’— (1 2)4fVIII
. (2.18)

Here, Roman numerals denote derivatives with respect to . It should be noted

that H(O) and H(O) are both polynomials in with coefficients being the deriva

tives of the perturbation with respect to . A straightforward calculation of the

curvature in the basis w1 rP1dç, w2 E rP’d, do, w4 dr + dLI

shows that the curvature components (in the Newman-Penrose notation) b1, t’2,

3t’, L74 are also polynomials in with derivatives of as coefficients. Therefore,

these quantities are regular for any value of provided the coefficients are finite

for all . (In fact, —1 E 1, by (2.16).) Thus, we have proved that all the RT

solutions for which the wave fronts are smooth perturbations of spheres (i.e. all

the derivatives of c are finite) evolve in time without creating wire-singularities.
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However the above approach, giving only a power expansion of the metric, is

valid only for small values of o. It would therefore be desirable to investigate the

behaviour of the solutions for arbitrarily large values of o, at least for a restricted

class of line elements Several methods have been devised for this purpose, e g the

Liapunov formalism [81, applicable to wave fronts which are topologically spheres.

As a complement to these studies, we shall develop here some other formalism

which will enable us to investigate (approximately) perturbed cylinders. This

is complementary to [8}, since the cylinder is the simplest surface which is not

topologically a sphere. We shall explain only the fundamentals here, referring the

reader to [9j for more details.

III) LONG-TERM EXPANSION OF THE RT METRICS

111.1) Introduction and Form of the Metric

We shall mainly be interested in axially symmetric perturbations of cylinders.

When a RT line element is axially symmetric, it is sometimes convenient to in

troduce the Robinson co-ordinates and q [9]. It is sufficient to know that the

metric is:

ds2 = hdo2 + 2dr do — r2 [f (d + afdo)2 + fdi12] , (3.1)

where a and f depend on o and , and are solutions of

__

- l2ma)] =0 (3.2)

(3.3)

The field equations (3 2), (3 3) are simplified by extracting a from (3 2), substitut

ing the value in (3.3) and removing, via a simple change of variables, the arbitrary

function generated by the integration of (3.2). The final result is:

2’-’ —o 34m—-rj
—
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We are now going to solve approximately (3.4) in the case where the wave fronts

are axially symmetric perturbations of cylinders.

111.2) Application to Perturbed Cylinders

By (3.1), the metric of the wave fronts o = o (constant), r = rn (constant)

is:

ds2 (UO , rO) = —rg [f (o , ) d2 + f(ro , ) dq2 ] (3.5)

It would be possible to develop a method to express an arbitrary surface of rev

olution in this form and to find the corresponding function f. (See [9].) For our

purposes, it will be sufficient to note that if f = 1, (3.5) is fiat. Moreover it has

a built-in axial symmetry and is free of singularities. Therefore, f = 1 must rep

resent a cylinder. (A complete proof is available in [9].) Thus, we shall define a

perturbed cylinder” as a surface on which the line element is (3.5), for f given

by:

ffr, ) = 1 + f(7, ) . (3.6)

To obtain the equation for f, one substitutes (3.6) in (3.4) and keeps only the

terms which are linear in f, getting:

(3.7)

in which the constant 12m has been absorbed in the definition of o. This equation

is very similar to the one satisfied by the temperature of a heat-conducting bar:

F —
= 0 and, for this reason, one expects that the behaviour of the solutions

e and T will also be similar. By a standard technique of Fourier integrals, the time

evolution of e is found to be:

= 1 J dx E(O, x) — x) (3.8)
V-oo

(3.9)
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00

x(x) [ dy e! eY4
. (3.10)

\/J-oo

This is analogous to the case of the heat conduction:

Tfr, )
= 1 f dx T(0, x) e — x) (3.11)

V-oo

jx()

2

(3.12)

x(x) dx e’
=

/4 (3.13)

We shall not pursue any further the comparison with the heat equation. The point

which is still worth mentiomng here is that one of the conserved quantities which

can be constructed from E is related to the total heat Q in a heat diffusion. To

00 2 00

Q f_00 d T(€r, ) corresponds D rR f_00 d E(, ), the latter representing

the limiting vaiue of the excess in area of a slice —z z of the (perturbed)

wave front, compared with the unperturbed one (a cylinder or radius R), when z

tends to infinity.

To conclude the study of the wire-singularities, one can find a useful upper

bound on the derivatives of e

-F() f°°dxIc(ox)I (3.14)

in which the notation is the same as in (3.9), and F is the F-function. This equation

shows that, if the perturbation of the wave front is absolutely integrable at the

initial time, the solution and all its derivatives tend to 0 when the time of evolution

from the initial conditions tends to infinity. Moreover, the Gaussian curvature of

the wave fronts tends to 0 and there are no wire-singularities. All these metrics

tend therefore asymptotically to the (fiat) unperturbed cylinder. Thus, we have

found a class of (approximate) RT metrics which are free of wire-singularities for

any time of evolution from the initial conditions Moreover, the comparison with

the heat equation gives a clear intuitive picture of this evolution: at the initial time,

the total excess D of area between the actual wave front and the unperturbed one
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is given. When u increases, this excess diffuses similarly to a heat wave, with the

condition that this total excess remains constant, as the total quantity of heat Q
remains also constant in a heat diffusion.

IV) CONCLUSION

In this lecture, we started by motivating physically the RT metrics. We

showed how it is possible to consider the linearised RT solutions as the gravi

tational analogues of the Liénard-Wiechert electromagnetic potentials. We then

investigated the question of the”wire-singularities” appearing in the RT line ele

ments. Using two different formalisms, we proved that there exist (approximate)

RT metrics which exhibit no such singularities. In some special case, the RT

solutions evolve in time in a similar way to a heat wave.
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