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1. INTRODUCTION

In theory the problem of spontaneous breakdown of Higgs potentials is the fol

lowing: given a Higgs (scalar) field ‘I’ belonging to a given representation of a group

G (not necessarily irreducible) and a given (renormalizable) potential V(’1), find the

vector ‘ (more precisely the orbit of vectors ) which minimizes V(). Then the little

group H of that orbit gives the breakdown i.e., G H. In pijç however be

cause the Higgs sector is not known experimentally, the pattern G — H (or hierarchy

G — H — K...) is deduced from the fernñonic (and possibly gauge) sector, so the

problem is rather the reverse: given a desired pattern G ‘ H (or G . H : K...),

find a corresponding Higgs sector i.e. find a representation of the Higgs field , and

a potential V() that will produce it. This problem is not easy to solve because, not

only are and V() not necessarily unique, but they are strongly constrained by the

following conditions. The representation R of should be as irreducible as possible

and the irreducible components should be as small as possible (in order to minimize

the number of Higgs parameters) and the potential V() should be quartic (in order

to be non-trivial, bounded below and renormalizable). It is clear that the constraint

on the potential is both the stronger and the more inflexible of the two.

As a matter of fact, if there were no minimality constraints for the parameters

and no renormalizability constraint for the potential, there would be no problem at all,

because there is a theorem (due to Mostow’)) which guarantees that every closed sub

group of a compact Lie group occurs as a little group for some finite-dimensional (but

not necessarily irreducible) representation. and there is a theorem (due to Schwarz2)

which states that the invariants in any finite-dimensional representation of a Lie group

separate the orbits in the representation. Hence to obtain a given subgroup H as the

little group for some representation R and some potential V(), all that one has to

do is to choose a representation for which H is a little group, choose an H-orbit in

this representation, let I(’I’) be a function of the invariants such that I() = 0 on this

orbit alone, and then set V = I()2. Thus the problem of finding a suitable R and V

i.e. of constructing a Higgs sector is due entirely to the constraints on the parameters

and the degree of V.

So far there does not seem to have been any systematic approach to this problem.

Indeed in many grand-unification schemes the problem is ignored, partly because so

little is known about the Higgs sector anyway and partly because the problem is not

one that lends itself to a general analysis. In the present talk I wish to present some

general results, which although they do not by any means solve the problem, go some
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way towards clarifying it, and in some cases help to solve it. The results are essentially

of three kinds, namely, on the ordering of little groups, on symmetric algebras, and on
the construction of a certain type of Higgs potential, namely one which consists only
of squared terms. The little group and symmetric algebra results may be thought of
as first steps in clarifying the problem and the sum-of-squares potential as a solution
for certain special (but relevant) cases. A generalization of the sum-of-squares method

has been in use independently by the Naples group3.

2. ORDERING OF LITTLE GROUPS

It is now well-known that in a given representation R of a group G, the little
groups can be partially-ordered (by inclusion, up to conjugation). Thus one has in
general a pattern such as

H6

H3

H1

H0 H4 — H7 f— H10
H2

H8 H11 (2.1)

e.g. for the adjoint representation of SU(5)

S(U(2)2 x 11(1)) 11(4)

- S(U(2) x U(i)3)

S(U(3) x U(1)2) S(U(3) x 11(2))

where H — K means that K contains a G-conjugate of H. The maximal little groups

are not unique, but the minimal little group H0 is unique and is the little group for

the generic orbits in the representation (which form a dense set in the orbit space).

The interest of this ordering for symmetry breaking is that it is found empirically
that for non-isotropic quartic potentials (i.e. quartic potentials which depend non-

trivially on invariants other than the norm (, )) the smaller and more irreducible
the representation R, the larger is the little group. In fact, there was a conjecture

by Michel4 that if the representations are irreducible the little group would always

be maximal, and although counter-examples to this conjecture are now known (one
of which will be constructed later by the sum-of-squares method) it is true in most
cases of interest, and illustrates the general trend. In any case the ordering of the
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groups clearly plays an important role in surveying the problem of finding suitable

Higgs representations R.

There are some more precise statements on the ordering that can be made. First,

there is a resu1t5 which relates the minimal little group H0 to the dimension of an

(irreducible) representation R and to the value of the so-called index 1(R) of R, defined

as ..y2(p\ 1,1(p\ ,7;p (j
— (1.1k ¶.LL) — LI(.LL) uI1bLL y U) to1?b.LL

(2 2
trX2(A) — C(4)d:mA — (a,a+)dimA

where X(R) denotes any generator, G(R) the second-degree Casimir and h the highest

weight of R, A, a the corresponding quantities for the adjoint representation and S the

sum of positive roots The result may be expressed conveniently by the following table

of equivalences

1(R)> 1 dimR> dimA f— Ho finite

1(R) = 1 R = A -) H0 abelian

1(R) < 1 C dimR < dimA *
> H0 non — abelian

where the star in the last equavaience means that it does not hold in two excep

tional cases, namely the 2-dimensional representation of SU(2) SO(3) and the

6-dimensional (symmetric 2-tensor) representation of SU(3). Actually the set of rep

resentations for which d:rnR < d:mA is quite limited and, apart from the funda

mental (defining) representation of each of the simple compact groups (except E(8))

and its conjugate for SU(n), the set includes only the traceless symmetric 2-tensors of

SU(n), 11 3, the anti-symmetric 2-tensors of SU(n) n 4 and Sp(2n) n 2, the

totally anti-symmetric 3-tensors of SU(6). SU(7). SU(8) and Sp(6) and the lowest-

dimensional spinoriai representations of SO(’7)...SO(14).

A second precise statement that can be made concerns the dimensions of the little

spaces’ R1 of the H1, which are defined as the linear spans of all the vectors for which

the H1 are little groups (H1 Let us consider any ordered chain in (2.1) i.e. a

chain
(2.3)

where Hm is maximal. Then since H1+j implies H1 it is clear that the

spaces R1 are ordered in the opposite way i.e.

(2.4)

and in fact, one can say more, namely, that the ordering is strict i.e.

R0 D R1 D R2 D ... D Rm....i D Rm or dimR1 - dimR 1. (2.5)
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To see this one notes that if R were equal to R1.... then any vector which had H1_1

as little group would also have H1 as little group so H1_1 could not be a little group

(maximal stability group) of to begin with.

A corollary of this result is that if the ‘little vector’ of a little group H is unique

(up to normalization) then H must be a maximal little group i.e. dimR1 = 1 > =

Rm. In all cases of irreducible representations that we know, the converse is also true

i.e. dimRm = 1, but we know of no general proof and it might be interesting to find

a counter-example

3. SYMMETRIC ALGEBRAS

Let R be a representation of a group G and suppose that the symmetric product

(R x R)9 contains the representation R at least once. For most representations of

interest this can be checked using the Sla.nsky tables6. Then a G-invariant symmetric

algebra (R x R)9 — R can be defined by letting

(aVb)a=C7ab, a,bER (3.1)

where are the OG-coefficients for (R x — R. It is then obvious that one can,

in fact, define an independent symmetric algebra for each occurrence of R in (R x

Let us consider some examples.

1) Adjoint representation of SU(n): It is well known that this representation is con

tained (once) in its symmetric product, and if the elements of the representation-space

R are realized as traceless, hermitian n x n matrices A, B then the product is defined

by

A B = {A. B} — tr {A. B} (3.2)

where curly brackets denote the anti-commutator of the two matrices.

2) The symmetric tensor representation of SO (n): This is a special case of the previous

one when A and B are real.

3) The symmetric tensor plus anti-symmetric tensor (adjoint) representation of SO(n):

For SO(n) the adjoint representation A does not contain A in the symmetric product.

So a symmetric algebra cannot be constructed from A alone. However, the symmetric

product (Ax A)9 does contain the symmetric tensor representation of example 2. Hence

if we adjoin these two representations to form the direct sum representation S e A, we

can define a symmetric algebra, and, in an obvious notation it reads

SS=S, SA=A, AA=S. (3.3)
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It is interesting to contrast (3.3) with the Lie algebra for SU(n) which reads

[A, A] = A, [4, SJ = S, [5,5] = A. (3.4)

4) The 27-dimensional (or (2,2)) representation of SU(3): This representation has the

property that it is contained twice in its symmetric product We describe the Yector

for this representation by 8 x 8 symmetric matrices X, which satisfy the conditions

ya_- ja yC_
— , -bc”a —

where the d’s are the OG-coefficients for (8 x 8) 8 (Gell-Mann matrices). Note that

any symmetric matrix X can be modified so as to satisfy (3.5) by letting

— S(X) = X
-

- (3.6)

In this notation the two independent symmetric algebras7 may be defined as

(XV Y) = S(F(X, Y)) and (Xv Y) = S({X, Y}), (3.7)

where
a(y v — pa ;f ytyj

b , 1 ) — JijJb9

and {X, Y} denotes the anti-commutator of X and Y.

A useful property of the symmetric algebras is that they leave the little spaces

of the previous section invariant. For if X and Y are H:-invariant. and the operation

v is G- (and therefore H:-) invariant, the product X I must he Hi-invariant and

therefore lie in R. Thus

RRcR. (3.8)

(Although the mapping (3.8) is onto all of R, there may exist vectors which map

themselves to zero i.e. vectors k for which

kk=O, kER, (3.9)

and we shall see an example later.)

In particular, if R is one-dimensional i.e. the little vector is unique (and therefore

Hm is maximal) then the little vector is an idempotent of the symmetric product,

(3.10)
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where . is some constant. Similarly, if R is 2-dimensional, with base-vectors , I1 say,
then

(3.11)

where and t are constants (and similarly for W). If there are two or more symmetric
algebras, then (3.10) and (3.11) hold for each one separately. For example,

(3 12)

‘ V +P2 ‘I’ (3.13)

In this case there exists a symmetric algebra for which is an idempotent,

A , A = —
1iiA2, (3.14)

namely the linear combination = V —ji 7, or

AB=24vB—1AB. (3.15)

4. SUM-OF-SQUARES POTENTIALS
We have already mentioned that for renormalizable (quartic) potentials, the more

irreducible the Higgs representation the more likely it is that the little group will be
maximal or near-maximal. Thus in many cases one is interested in maximal and near-
maximal little groups (at least at the separate stages H — H_1 of a sequence of
spontaneous symmetry breakdowns). For such little groups it is often possible to turn

the tables on the renormalization constraint and exploit the fact that V() is quartic.
in order to obtain the required little group. This is done by writing V() as a sum of
squares, and although the technique does not always work, when it does work it is very
effective. A generalization of this approach has been adopted by the Naples group3),
who have noted that if Ra are those representations in the expansion (R x R)8 for
which ( V is zero, where is a little vector of H, then the potential

V() = Gcr( V Z)a( V )c? , GcE > 0, (4.1)

vanishes for =, and that in many cases (for a sufficiently large number of R) it
vanishes when = (or a conjugate). What I shall use below is a different vari
ation of the sum-of-squares method, based on the symmetric algebra. This approach
uses the fact, that if a required little vector is an idempotent of a symmetric algebra,
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and is the only (normalized) vector with the given ezgenvalue (up

then the potential

h,k>O

to conjugation)

V()=k(tr’2—npq)2+str(’Z’v—2(p—q))2,k,s>O.

From (5.3), one sees that V() = 0 if, and only if, is conjugate to pq•

maximal little groups are realizable, and are realized for the given (p, q) by

8

(4.2)

(5.3)

Thus all

(5.3).

where c is the norm, will vanish, if, and only if, is conjugate to . But this is best

illustrated by examples

5 EXAMPLES OF HIGGS SECTORS

Example 1

The Higgs field belongs to the adjoint representation of SU(n) and the most

general quartic potential is

V() = h(tr2)2+ g tr’’4 + f tr3 in tr2 . (5.1)

It is well-known that (unless g = f = 0) the immmum of the Riggs potential (5 1) must

fall on an orbit with a maximal subgroup i.e. that the Michel conjecture mentioned

earlier holds in this case. (For completeness I have inserted the latest, and to my mind

the shortest and most elegant, proof8) of this result in the appendix.) In any case,

for the adjoint representation of SU(n), the maximal little groups are just S(U(p) x

U(q)),p + q = n, and they have as little vectors the matrices

“I 0 “ o2

pq=
—

) , tr =x2npq ç = 2x(p — q) (5 2)
qpj

(and their conjugates) where x is arbitrary. Note that this is one of the cases for which

the little vector is unique (up to conjugation) i.e. for which dimRm = 1. and that

for p = q it is one of the cases for which there is a vector which maps itself to zero.

The questions that concern us here are the following. Are all the maximal little

groups S(U(p) x U(q)) realized for a potential of the form (5.1), and, for those that

are, how can the parameters in V() be arranged so as to realize it? Both questions

can be answered at once by simply choosing the potential to be the sum of squares



Example 2

Suppose we wish to break S0(1O) down to U(3) x U(2) (not S(U(3) x U(2))). Since
U(3) x U(2) i not a maxiznai little group (in fact, the dimension of its little space is
three) this cannot be done using the symmetric tensor or adjoint representation aione,
but can easily be done by the combination S e A., which has a symmetric algebra, as
follows: First, we write the generic quartic potential in the form

V(S,A) = As((S,S)
—

ps)2 +A4((.4,A) — m4)2

+A(mA(S, 5) — pg(A, A))2 + o(S A A, S A A) + f(F, F) + g(G, G), (5.4)

where

F = F(cx) = S v S coscw + S sin, G = A V A cos,3 +F(7)sin,3, (5.5)

the symbol A denotes commutator, and the inner-product is defined as the trace. This
becomes a sum of squares if A5,AA, A, o, f and g are all positive and then at the
absolute minimum we have

S S = —tan 5, A A = —tan8
n(

, A A = 0 (5.6)coscf

plus some normalization conditions. It is clear that by choosing tancr suitably we can
break 50(10) to 5(0(6) x 0(4)) (just like SU(1O) — S(U(6) x U(4)) in the previous
example) and that A then decomposes into an 50(6) A and an S0(4) A separately. It
is then easy to see from standard adjoint-of-S0(n) analysis that. for suitable choices
of the parameters, the potentials for these A’s break S0(6) to U(3) and S0(4) to U(2)
respectively. Thus the final symmetry group is U(3) x U(2) as required.

It is only fair to add, however, that it may not be possible to obtain all symmetry
breaking patterns for S e A by a sum-of-squares method. For example, the above
procedure does not lead to S0(6) x U(2) or SU(3) x 0(4).

6. COUNTER-EXAMPLE TO M1CHEL CONJECTURE
As a final example of sum-of-squares potentials, and as an example of the use

of two symmetric algebras, we construct a counter-example to the Michel conjecture
mentioned earlier (that for irreducible representations, and non-isotropic quartic po
tentials the little group must be maximal). There are actually only two known counter
examples7’9at present (for Lie groups) and we shall use the one constructed from the
27-dimensional or (2,2) representation of SU(3). There are three maximal little groups
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for this representation, namely, SO(3), U(2) and W3 A (U(1) x U(1)) where W is the

Weyl group for SU(3) and A denotes semi-direct product. Note that, although the

third little group is maximal its algebra u(1) x u(1) is not, which shows that global

properties of groups play an important role in these considerations. Each of the above

three little groups has a unique little vector (up to normalization and conjugation) so

that again we have the empirical result dimRm = 1. Let us denote the three normal

ized little vectors by , (,) = c2, a = 1,2,3, respectively. Since they are unique

they are idempotents of both symmetric algebras

V = A(a) , = (a) (a not 8ummed) (6.1)

where )(a) and (a) are numerical coefficients7 Consider now the 2-space spanned

by £2 and £3. It is clear that the little group for a generic point in the 2-space is the

intersection group W = U(2) fl W3 A (U(1) x U(1)) = W2 A (U(1) x U(1)) where W2

is the Weyl group for SU(2), and that this little group is not maximal But from the

discussion of section 3, we know that there exists a symmetric algebra <>for which

is an idempotent
0 0 00 00 2xx=o(x)x, (x,x)=c (6.2)

Furthermore, it is easy to check7 that although the , a = 1, 2,3 are also idempotents

of this algebra, their eigenvalues are different

<) = u(a) , (a) .T(r), (a,a) = c2 (a not sttmmed) (6.3)

Hence, if we choose as quartic potential the quantity

h,k >0 (6.4)

it is clear that V() > 0 and V() = 0, so the vectors L with maximal little

groups cannot minimize it. Thus V () is minimized by the next-to-maximal little

group W2 A (U(1) x U(1)) (and possibly by some other non-maximal little groups).

Finally, one should check that SU(3)/Z3 really is the maximal invariance group of V.

This follows from the fact that, by the construction of the symmetric products, the

invariance group of V must leave the structure constants f and the CG-coefFicients

d (which are expressible in terms of one another) invariant and hence must belong

to the group of automorphisms of SU(3)/Z3which are all inner.
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7. THE PSEUDO-GOLDSTONE PROBLEM AND MASS-SPECTRUM
In forming the sum-of-squares, or indeed any, Higgs potential, there is the danger

that the minimum point will be unstable in the sense that small variations in the
parameters may change the little group. This is a particularly important problem in
quantum field theory, because the parameters of the classical potential may be changed
by the radiative corrections. (This is what actually happens in the case of the Coleman-
Weinberg potential’°, for example.) Since, in general, V(p, ) V (p + ôp, ) implies
—4 +6 , where p are the parameters one sees that in order to guarantee stability
one needs to guarantee that the given little group H is not only the little group of ,
but also of its immediate neighbourhood

It turns out that a practical way to check whether the combination (H, ) is stable
in this sense, is to check that there are no pseudo-Goldstone fields i.e. that there are
only dimG/H massless fields at . The reason for this is the following. If K is the little
group of the neighbourhood (K( +6 ) = +6 ) then by continuity K =‘I’ which
means that K H. (Note that this implies that the little group increases only at the
boundaries of (locally) open sets.) Now, in the neighbourhood the number of massless
fields dimG/K. which is the number of Goldstone fields for K. Hence, by continuity,
the number of massless fields at dimG/K. But di mG/K = dimG/H+dimH/K.
Hence the number of massless but non-Goldstone (i.e. pseudo-Goldstone) fields at

dimH/K. Thus if there are no pseudo-Goldstone fields dimH/K = 0 and
H = K Thus the absence of pseudo-Goldstone fields is a good criterion for stabahtv
Indeed. if the non-Goldstone fields at are of the order uniw on the general mass-
scale there should be no other little groups anvhere rear In that case one sas
that is deep in the H-basin.

The sum-of-squares potentials are particuiariy good for applying the pseudo
Goldstone criterion and indeed for determining the mass-spectrum in general. For
consider the potential

V() = V()2. where V() = 0. (7.1)

Then the first variation of V() at = vanishes, and the second variation yields

62V() = [(8a)) 6a]
2

(7.2)

which is again a sum of squares. Thus the masses of the various fields are simply

Ma2 =
1

(a):=
(73)
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which is easy to compute. In particular, the massless fields can only be those which

satisfy the set of independent linear equations

(7.4)

In other words, the only massless fields are those which are left massless by each of the
potentials V () separately i.e. which are the intersection of the massless field for each

a. The true Goldstone fields will, of course, satisfy this criterion, and the isotropic

part V((, )) of the potential will give a mass only to the polar Riggs field i.e. the

Riggs field which is parallel to in the representation. So the non-Goldstone, non
polar Riggs fields must get their masses from the non-isotropic terms in the potential

i.e. the terms which depend on invariants of higher degree than the second. Let us see
how the criterion works out for some examples.

8. APPLICATIONS OF THE PSEUDO-GOLDSTONE CIUTERIUM

Application 1

The adjoint representation of SU(n) with potential

V() = h((. ) — npq)2 + g(
—

2(p — q))2 (8.1)

which is zero if, and only if, = diag(plq, —qI), or one of its conjugates. According

to (7.3) the mass-spectrum for fields other than the field parallel to is given by

(,M2S) = 2g( — (p — q)6)2 . (3.2)

There are evidently three such S(Up) x U(q))-invariant mass-muitiplets. namely those

corresponding to the SU(p) and SU(q) adjoint algebras respectively, and the non-

block-diagonal multiplet. For the first two the multiplet is both trace-orthogonal to ‘‘

and commutes with it, so the product ç5 reduces to ordinary matrix multiplica

tion. From (8.2) we then have

= = 2n2g (3.3)

so these multiplets are certainly massive. The non-block-diagonal multiplet is still

trace-orthogonal to , but since it does not commute with the product 2( v6)
reduces only to the anti-commutator = (p q). From (8.2) one then

sees that for these fields M2 = 0. But since the number of such fields is 2pq =

dimSU(n)/dimS(U(p) x U(q)), one sees that they are just the true Goldstone fields.
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Thus there are no pseudo-Goldstone fields in this example, and, in fact, the com
plete mass-spectrum is given by (8 3) and by the mass M of the field in the direction
which is easily computed to be

= 2[npqh+g(p—q)2J. (3.4)

Application 2

The 5.4 representation (54 + 45) of 50(10) with potential (5.4). In this case, the
non-isotropic terms in the potential are evidently

h(S A A, S A A) + f(F, F) + g(G. G) (8.5)

so, apart from the polar field, the mass-spectrum is given by

h(A MS+ S MA)2 +f(5) + g(2 A cos8 +
8F

65 sin)2, (8.6)

where F(O) = S v S co8O + S sin&. Thus any massless field satisfies the three simiil
taneous conditions

o
8F() °2 S 6S = —tancr 6S, 2 A V6A = —tan3 as 65 4 AbS+ S MA = 0 (87)

The first equation in (8.7) is the pure S-condition of the previous example, and it
admits only the true Goldstones for SO(1O)s —+ 5(0(6) x O(4))s. Since .4 and S are
then block-diagonal the remaining equations spat into

o o aF()2 4 76 4d = 0, 2 .4 4od = —tan/3
s’

‘ 4 Ah5d4 S Aö 4od = 0 (8 8)

(plus an identity) where d denotes diagonal and od off-diagonal. The first equation
in (8.8) is just the pseudo-Goldstone equation for the A-sector alone, and for the
breakdowns in question, 50(6) - U(3) and 50(4) — U(2), it is well-known to admit
no pseudo-Goldstone fields. Thus there are no pseudo-Goldstones for SO(iO)s and
SO(10)A separately.

The possibility that the diagonal group SO(1O)S+A, which is the group we are
really interested in, might have pseudo-Goldstone fields, is then eliminated by the last
two equations in (8.8), since these equations show that 65od and öA0d are not linearly
independent

13



pplication 3

As a final application let us consider the 210-dimensional representation of 50(10)

and the potential

V() = ej( V c5 + e2( V + e3(V )1o5o( V h- (8.9)

( E 210) which has been investigated by the Naples group. This potential was chosen

because each of the terms ( V of the expansion ( x included in (8.9) is zero

when ‘ =, where is the 5(0(6) x 0(4)) singlet in the 210. The question is whether

the 5(0(6) x 0(4))-invariant minimum point is stable in the sense described above.

From the computations of T. Tuzi one sees that there are four (non-Goldstone)

5(0(6) x 0(4)) mass multiplets and that their masses are

f2(15,13) =M2(1531) = (e2 +5e)(,),

4 o o 1 o
f2(15, 1, 1) =

, M2(10,2,2) = es(,) (8.10)

respectively. Thus, as long as e1 and e3 are not zero, there are no pseudo-Goldstone

fields and the system is stable. Note that. as far as the above stability is concerned.

one could actually dispense with the constant e2, and hence with the 210-term, in the

potential.
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APPENDIX

Proof of Michel conjecture for adjoint representation of SU(n).

Let us write the non-isotropic quartic potential V() for this representation in

the traditional form

V() = h(tr2)2+ g tr4 + f trI3 — m tr2 , (.41)

(where g 0, because g = 0, f $ 0 is trivial, and g = f = 0 is isotropic) and let

us diagonalize (by an SU(n) transformation) the matrix which minimizes it. The

problem is to show that has only two distinct eigenvalues. We therefore suppose that

there are at least three different eigenvalues A, A2, A3 and choose the basis so that they

are the first three, = diag(A1,A2,A3,...). We consider the subgroup S(U(3) x U(n—3))
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which corresponds to this choice in an obvious way. Then we make an S(U(3) x U(n —
3)) decomposition of , namely A + , where A = diag(Ai — t, A2 — t, A3 — t, 0, ..., 0),
p = diag(t,t,t,A4,A5,...) and 3t = A + A2 + A3. Then since A belongs to the adjoint
representation of SU(3) we have

trA4 = (trA2)2 and — (trA2)3/2 6 trA3 (trA2)3/2 (A2)

Furthermore, in the second equation the equality sign is achieved if, and only if, two of
the eigenvalues A1,A2, A3 coincide, which we are assuming is not the case. If we now
expand the potential (Al) in terms of A we obviously obtain

V() = (f + 4gt)trA3+ U(trA2 , t, i) . (43)

We can then regard t and trA3 as two independent variables and if we consider the
Hessian of V() with respect to them we see by inspection that it is

(U 4g’\H
= 1 4g where

=
(.44)

But this matrix has a negative eigenvalue since detH = —16g2. Hence V(’) cannot
minimize on the open domain 36(trA3)2< (trA2)3,contrary to hypothesis.
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