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Abstract: The Torricelli—Fermat point (TF-point) of a

triangle is that point which minimises the sum of its

distances from the vertices. I generalise this

definition, replacing the triangle by a set of M÷l points

in EN. Using the theory of convex functions, I show

that the TF-point is unique and find explicit conditions

to determine whether it coincides with any of the given

points. If it does not, it may be found by solving a

set of ordinary differential equations.

1. Introduction. In the geometry of the triangle there

are certain familiar points — centroid, circumcentre,

etc. The point discussed in this note is much less

familiar: it is that point which minimises the sum of

its distances from the vertices of a given triangle. It

is strange that this point should be so little known:

one can think of obvious applications, such as the

location of a centre to supply three outposts with a

minimum of distance travelled.

The problem is a very old one, having been stated by

Fermat (1601—1665) and solved by Torricelli (1608—1647),

but only for acute—angled triangles. Coxeter1 describes
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a proof due to Hofmann in 1929 and remarks that the

restriction to acute—angled triangles was removed by

Pedoe In 1957. In correspondence with me Coxeter has

suggested that the point should be called Torricelli—

Fermat (briefly TF-point), and I adopt that name.

In the present paper I generalise the problem: 12.

S(P) = PA + PA + . . . + PA , (1.1)
0 1 M

M , 2, N 2

For the classical problem M = N = 2 and the three

points form an undegenerate triangle.

2. Notation. Vectors in EN are indicated by heavy

type. A. (1= 0,1 M) are the position vectors of
- 1

given points relative to an arbitrary origin 0. Scalar

products are indicated by dots. If P is the position

vector of an arbitrary point, (1.1) may be written

M
S(P)

=

.

(P—A.)j1”2. (2.1)

If we give an arbitrary infinitesimal displacement

to P, we have

dS(P) = — dP.Q, (2.2)

where Q is a sum of unit vectors
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Q = I., I. = (A.—P)/PA . (2.3)
•r1 - I

These unit vectors are drawn from p in the directions of

the A—points, and are well defined unless P coincides

with an A-point, in which case the corresponding I-vector

does not exist.

3•

Proof: Since S(P) as in (2.1) is positive, there is at

least one point P at which it has an absolute minimum.

Thus at least one TF—point exists, To prove uniqueness,

one appeals to the theory of convex functions.2 A

function f(x) is convex if it satisfies

÷ (l—ex2] f(x1) ÷ (l—if(x2) (3.1)

for every pair of distinct values of x1, x2 and for all

in the open range (0,1). This means that the graph of

f(x) from x1 to x2, excluding end—points, lies below or

on (but not above) the straight line joining the end

points of the graph. For a stri convex function the

sign of equality in (3.1) is deleted; the graph of f(x)

lies below the straight line joining the end points of

the graph.

It is easy to see the sum of convex functions is

Itself convex, and a set of functions of which some are
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convex and some strictly convex is itself strictly

convex.

Suppose now that there are two TF-pointS. Let L be

the infinite straight line through them and x a measure

of length on it, so that, if P lies on L, we may write
fr’

S(P) = ‘f1(x). If A. is not on L, a simple

calculation shows that f(x) is positive, and this

implies strict convexity. If A. lies n L it is easy to

see that f.(x) is convex. Since we have assumed that no

three A—points are collinear, the sum S(P) contains at

least one strictly convex function, and so S(P) on L is a

strictly convex function of x, and it is known that a

strictly convex function has at most one minimum. Thus

the assumption of two TF—points is false, and uniqueness

is proved.

Theorem II: If S(P) has a local minimum or a stationary

value for some point P, then P is the TF-point.

Proof: Let T be the TF—point. Suppose that P is not T.

Draw an infinite straight line L through P and T, with x

a measure of distance on L. Then S = f(x) on L, and

this function is strictly convex; this is inconsistent

with the assumption that p is not T. Therefore P is T,

and the theorem is proved.

Theorem III: A point P which is not one of the given

points is the TP—point iff

Q = I ÷ I ÷ . . . + I = 0, (3.2)
A.0 t.-i
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where these are the unit vectors drawn from P towards the

A—points, that is

= (A1—P)/A1P (3.3)

Proof: This follows immediately from Theorem II, the

variation dS being given by (2.2).

4• I!_iYII_IzQ2!_I A 1ff

cos ij (1—M)/2 , (4.1)

i and is the angle

between the vectors A.—A and A.-A
1 0 —J 0

Er.91: Take the origin at A. The position vector of

any point P may then be written sI where I is a unit

vector and s is the distance PA. Giving all directions

to I and letting s take all positive values, we cover the

whole of EN except the origin where s = 0. Then the sum

S as in (2.1) is

S(P) = s ÷ [(sI-Ai)
.

(sI-A1)J2 (4.2)

Differentiating with respect to s and letting s tend to

zero, we get

(dS/ds) = (4.3)

where
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= i ÷r ÷ = A./(A.
1 .2 ..i _i

I’s being drawn from A

A-points.

Rotating the unit vector I in all dire

expression (4.3) is always positive iff the

R is less than unity or equivalently

But

R.R < 1.

(4.4)

towards the

R.R = M + 2cos p..,
1J

(4.6)

where the summation

Thus we have a local

by continuity. This

In the classical

2. Then the formula

at a vertex iff cos çì

tetrahedron in E3, we

the TF—point iff

cos ÷ cos
01 o2

these being the angles

and the angles Ø. . are
ii

minimum, the equality

completes the proof.

case of a triangle,

(4.1) tells us that

— 1/2, i.e. 1 12

have M = N

/

o3

of the

as in (4.1).

sign following

5. The TF-conruence. Given the points A. (i=O,1,.

in EN and seeking the TF-point, the systematic plan is

first to test whether it lies at one of the A—points.

,M)

This is done by investigating the inequality (4.1).

R

these

other

I.
M

unit vectors

Ct ions

magni of

the

tude

(4.5)

we have M = N =

the TF—point is

0
0 . For a

= 3 and the vertex A is
0

+ cos

at A
0

- 1, (4.7)

faces containing A0.
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Suppose that the result is negative: then we must seek

the TF—point elsewhere.

By Theorem II we know that we need only apply a

stationary condition. Now by (2.2)

dS(P) = - dP.Q, Q II.,
.

= (A.-P)/PA.. (5.1)

The stationary points are such that Q=O. That condition

is not easy to apply, but if we choose

dP = (5.2)

where ds is an element of distance, we have

dS(P)/d(L -Q.Q . (5.3)

This differeential equation defines a congruence of

curves in EN, and if we proceed in the correct sense

along any one of these curves, S(P) steadily decreases.

Since we have ruled out the A-points as possible TF

points, this congruence of curves must lead us to the TF—

point, no matter where we start. Note that

Q.Q = M + 1 + cos (5.4)

where in the summation i = 0,1,.. .M and j < 1.

6. The tetrahedron. The tetrahedron in E3 stands next

in simplicity to the triangle. In (4.1) we have the
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conditions that the TF—point should be at a vertex. If

it is not there, it is to satisfy (3.2), which it is

convenient to write

Q = I + 3 + K + 0, (6.1)

where these are unit vectors drawn from the TF-point

towards the vertices A, B, C, D.

If we transfer L to the other side and square, we

get

J.K + K.I + I.J = - 1, (6.2)p -

a result of apparently little interest. But if we

transfer both K and L to the other side and square, we

get

I.J = K.L. (6.3)
%

-

Thus at the TF—point the sides AB and CD subtend the same

angle. Obviously this is true for all the three pairs

of opposite sides of the tetrahedron.

This suggests a construction for the TF—point.

With AB as chord, describe a circular arc containing an

angle 8 and rotate this arc around AB, forming a spindle.

If 0 changes continuously from ii’ to zero, the growing

spindle covers all space. If we do the same with CD,

using an angle %, we shall get a second system of

spindles. But if we make % = 0 and let their common
1•

i4e decrease from fl”, there will be a state in which
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the two spindles touch, and this will be the TF-point of

the tetrahedron. Since this point is unique, we see

that there is a unique point (the TF-point) at which i-frr

each pair of opposite edges, the two edges subtend the

same angle.

7. Conclusion. I thank my colleague Professor J. T.

Lewis for discussions, and in particular for suggesting

the use of convexity to establish uniqueness. I also

thank Professor H. S. M. Coxeter for correspondence.
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