The Torricelli-Fermat Point Generalised
J. L. Synge

Dublin Institute for Ádvanced Studies

Abstract: The Torricelli-Fermat point (TF-point) of a triangle is that point which minimises the sum of its distances from the vertices. I generalise this definition, replacing the triangle by a set of $M+1$ points in E^{N}. Using the theory of convex functions, I show
 to determine whether it coincides with any of the given points. If it does not, it may be found by solving a set of ordinary differential equations.

1. Introduction. In the geometry of the triangle there are certain familiar points - centroid, circumcentre,
etc. The point discussed in this note is much less familiar: it is that point which minimises the sum of its distances from the vertices of a given triangle. It is strange that this point should be so little known: one can think of obvious applications, such as the location of a centre to supply three outposts with a minimum of distance travelled.

The problen is a very old one, having been stated by Fermat (1601-1665) and solved by Torricelli($1608-1647)$, but only for acute-angled triangles. Coxeter ${ }^{1}$ describes
a proof due to Hofmann in 1929 and remarks that the restriction to acute-angled triangles was removed by Pedoe in 1957. In correspondence with me Coxeter has suggested that the point should be called TorricelliFermat (briefly $T F-p o i n t)$, and I adopt that name.

In the present paper I generalise the problem: To

$$
\begin{equation*}
S(P)=P A_{0}+P A_{1}+\ldots+P A_{M}, \tag{1.1}
\end{equation*}
$$

For the classical problem $M=N=2$ and the three points form an undegenerate triangle.
2. Notation. Vectors in E^{N} are indicated by heavy type. $A_{i}(i=0,1, \ldots, M)$ are the position vectors of given points relative to an arbitrary origin 0 . Scalar products are indicated by dots. If $\underset{\sim}{P}$ is the position vector of an arbitrary point, (1.1) may be written

$$
\begin{equation*}
\left.S(P)=\sum_{i=0}^{M}\left[\left(\underset{\sim}{P}-A_{i}\right) \cdot(\underset{\sim}{P-A})^{p}\right)\right]^{1 / 2} \tag{2.1}
\end{equation*}
$$

If we give an arbitrary infinitesimal displacement to P, we have

$$
\begin{equation*}
\mathrm{d} S(\underset{\sim}{P})=-\mathrm{dP} \cdot \underline{\sim}, \tag{2.2}
\end{equation*}
$$

where Q is a sum of unit vectors

$$
\begin{equation*}
Q_{\sim}=\sum_{i=0}^{M} I_{\psi i}, \quad I_{n} i=\left(A_{\sim}-P_{\sim}\right) / P A_{i} . \tag{2.3}
\end{equation*}
$$

These unit vectors are drawn from $\underset{\sim}{P}$ in the directions of the A-points, and are well defined unless $\underset{\sim}{P}$ coincides with an A-point, in which case the corresponding I-vector does not exist.

Proof: Since $S(\underset{\sim}{P})$ as in (2.1) is positive, there is at least one point P at which it has an absolute minimum. Thus at least one TF-point exists. To prove uniqueness, one appeals to the theory of convex functions. ${ }^{2} A$ function $f(x)$ is conǵㅡㄹ if it satisfies

$$
f\left[\theta x_{1}+(1-\theta) x_{2}\right] \leqslant \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right) \quad(3.1)
$$

for every pair of distinct values of x_{1}, x_{2} and for all in the open range $(0,1)$. This means that the graph of $f(x)$ from x_{1} to x_{2}, excluding end-points, lies below or on (but not above) the straight line joining the endpoints of the graph. For a strigctly congex function the sign of equality in (3.1) is deleted; the graph of $f(x)$ lies below the straight line joining the end points of the graph.

It is easy to see the sum of convex functions is itself convex, and a set of functions of which some are
convex and some strictly convex is itself strictly convex.

Suppose now that there are two TF -points. Let L be the infinite straight line through them and x a measure of length on it, so that, if P lies on L, we may write $S(P)=\sum_{i=0}^{M} f_{i}(x)$. If A_{i} is not on L, a simple calculation shows that $f_{i}{ }^{\prime \prime}(x)$ is positive, and this implies strict convexity. If A_{i} lies on L it is easy to see that $f_{i}(x)$ is convex. Since we have assumed that no three A-points are collinear, the sum $S(P)$ contains at least one strictly convex function, and so $S(P)$ on L is a strictly convex function of x, and it is known that a strictly convex function has at most one minimum. Thus the assumption of two $T F$-points is false, and uniqueness is proved.

Theorem_II: If $S(P)$ has a local minimum or a stationary value for some point P, then P is the $T F-p o i n t$.

Proof: Let T be the $T F$-point. Suppose that P is not T. Draw an infinite straight line L through P and T, with x a measure of distance on L. Then $S=f(x)$ on L, and this function is strictly convex; this is inconsistent with the assumption that P is not T. Therefore P is T, and the theorem is proved.

Theorem_III: A point P which is not one of the given points is the T-point iff

$$
\begin{equation*}
\underset{M}{Q}=\underset{\sim}{I} 0+I_{1}+\ldots+I_{n} M=0, \tag{3.2}
\end{equation*}
$$

where these are the unit vectors drawn from P towards the A-points, that is

$$
\begin{equation*}
{\underset{m}{i}}=\left(A_{i}-P_{n}\right) / A_{i} P \tag{3.3}
\end{equation*}
$$

Progof: This follows immediately from Theorem II, the variation dS being given by (2.2).

$$
\begin{equation*}
\sum \cos \phi_{i j} \leqslant(1-M) / 2, \tag{4.1}
\end{equation*}
$$

 between_the_vectogrs $A_{i}-A_{0}$ and ${\underset{\sim}{n}}^{A_{j}}-A_{o}$.

Progof: Take the origin at A_{o}. The position vector of any point P may then be written $s I_{n}$ where ${\underset{\sim}{m}}^{I}$ is a unit vector and s is the distance P_{o}. Giving all directions to $\underset{m}{ }$ and letting s take all positive values, we cover the whole of E^{N} except the origin where $s=0$. Then the sum S as in (2.1) is

$$
\begin{equation*}
S(P)=s+\sum_{i=1}^{M}\left[\left(s I_{m}-A_{i}\right) \cdot\left(s I_{\sim}-A_{r i}\right)\right]^{1 / 2} \tag{4.2}
\end{equation*}
$$

Differentiating with respect to sand letting send to zero, we get

$$
\begin{equation*}
(d S / d s)_{0}=1-I \cdot R \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\underset{\sim}{R}=I_{n} 1+I_{n}+\ldots+I_{M}, \quad I_{i}={\underset{r}{A}}_{A_{i}} /\left({\underset{\sim}{A}}_{i} \cdot{\underset{\sim}{A}}_{i}\right)^{1 / 2} \tag{4.4}
\end{equation*}
$$

these I^{\prime} 's being unit vectors drawn from A_{o} towards the other A-points.

Rotating the unit vector I_{\sim} in all directions, the expression (4.3) is always positive iff the magnitude of $\underset{\sim}{R}$ is less than unity or equivalently

$$
\begin{equation*}
\underset{\sim}{\mathrm{R}} \cdot \underset{\sim}{\mathrm{R}}<1 \tag{4.5}
\end{equation*}
$$

But

$$
\begin{equation*}
\underset{\sim}{R} \cdot \underset{\sim}{R}=M+2 \sum \cos \phi_{i j} \tag{4.6}
\end{equation*}
$$

where the summation and the angles $\varnothing_{i j}$ are as in (4.1).
Thus we have a local minimum, the equality sign following by continuity. This completes the proof.

In the classical case of a triangle, we have $M=N=$
2. Then the formula (4.1) tells us that the T-point is at a vertex iff cos $\phi \leqslant-1 / 2$, i.e. $\varnothing \geqslant 120^{\circ}$. For a tetrahedron in E^{3}, we have $M=N=3$ and the vertex A_{o} is the TF-point iff

$$
\begin{equation*}
\cos \varnothing_{01}+\cos \oint_{02}+\cos \varnothing_{03} \leqslant-1 \tag{4.7}
\end{equation*}
$$

these being the angles at A_{o} of the faces containing A_{o}.
5. The Tracongruence. Given the points $A_{i}(i=0,1, \ldots M)$
in E^{N} and seeking the $T F$-point, the systematic plan is
first to test whether it lies at one of the A-points.
This is done by investigating the inequality (4.1).

Suppose that the result is negative: then we must seek the TE-point elsewhere.

By Theorem II we know that we need only apply a
stationary condition. Now by (2.2)

$$
\begin{equation*}
\mathrm{d} S(\underset{\sim}{P})=-d \underset{\sim}{P} \cdot Q_{n}, \quad Q=\sum_{i=0}^{M} I_{i}, \quad I_{n}=\left(\underset{\sim}{A} A_{n}-P\right) / P A_{i} \tag{5.1}
\end{equation*}
$$

The stationary points are such that $\underset{\sim}{Q}=0$. That condition is not easy to apply, but if we choose

$$
\begin{equation*}
d P=Q \cdot d \$. T^{s} \tag{5.2}
\end{equation*}
$$

where ds is an element of distance, we have

$$
\begin{equation*}
\mathrm{dS}(\underset{m}{P}) / \mathrm{d} \$^{5}=-\mathrm{Q} \cdot \mathrm{Q} \tag{5.3}
\end{equation*}
$$

This differeential equation defines a congruence of curves in E^{N}, and if we proceed in the correct sense along any one of these curves, $S(\underset{\sim}{P})$ steadily decreases. Since we have ruled out the A-points as possible TFpoints, this congruence of curves must lead us to the TFpoint, no matter where we start. Note that

$$
\begin{equation*}
\underset{\sim}{Q} \cdot \mathrm{Q}=M+1+\sum \cos \phi_{i j} \tag{5.4}
\end{equation*}
$$

Where in the summation $i=0,1, \ldots M$ and $j<1$.
6. The tet트브르으. The tetrahedron in E^{3} stands next in simplicity to the triangle. In (4.1) we have the
conditions that the $T F-p o i n t$ should be at a vertex. If it is not there, it is to satisfy (3.2), which it is convenient to write

$$
\begin{equation*}
\underset{m}{Q}=\underset{m}{I}+\underset{m}{J}+\underset{m}{K}+\underset{\sim}{L}=0, \tag{6.1}
\end{equation*}
$$

where these are unit vectors drawn from the T froint towards the vertices A, B, C, D.

If we transfer L to the other side and square, we get

$$
\begin{equation*}
\underset{\sim}{J} \cdot \underset{\sim}{K}+\underset{\sim}{K} \cdot \underset{\sim}{I}+\underset{\sim}{I} \cdot J=-1 \tag{6.2}
\end{equation*}
$$

a result of apparently little interest. But if we
transfer both $\underset{\sim}{K}$ and $\underset{n}{L}$ to the other side and square, we get

$$
\begin{equation*}
\underset{\sim}{I} \cdot J=\underset{\sim}{J} \cdot \underset{\sim}{L} . \tag{6.3}
\end{equation*}
$$

Thus at the $T F-p o i n t ~ t h e ~ s i d e s ~ A B ~ a n d ~ C D ~ s u b t e n d ~ t h e ~ s a m e ~$ angle. Obviously this is true for all the three pairs of opposite sides of the tetrahedron.

This suggests a construction for the T-point.
With $A B$ as chord, describe a circular arc containing an angle θ and rotate this arc around $A B$, forming a spindle. If θ changes continuously from π to zero, the growing spindle covers all space. If we do the same with $C D$, using an angle $\not \subset$, we shall get a second system of spindles. But if we make $\mathscr{B}=$ and let their common value angle decrease from π, there will be a state in which
the two spindles touch, and this will be the T-point of the tetrahedron. Since this point is unique, we see that there is a unique point (the TF-point) at which for each pair of opposite edges, the two edges subtend the same angle.
7. Conǵㅡㄴ́́응. I thank my colleague Professor J. T. Lewis for discussions, and in particular for suggesting the use of convexity to establish uniqueness. I also thank Professor H. S. M. Coxeter for correspondence.

References.

1. H. S. M. Coxeter, Introduction to Geometry, Wiley 1961, p. 21.
2. R. T. Rockafellar, Convex analysis. Princeton Univ. Press 1972.

-

