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Abstract

It is explained how the renormalization transformation can be used to take
the continuum limit of a lattice field. It is shown that, by rescaling, the problem
can be formulated on a fixed lattice Zd. The procedure is illustrated by two
examples: the one-dimensional Euclidean free field and a hierarchical model with

g -interaction.

* Talk given at the Mark Kac Seminar, Amsterdam, 5 December 1986.
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1. The general renormalization procedure

In the following we shall adopt as a definition of a (Euclidean) scalar field
theory a generalized random field on some space F of functions, i.e. a linear
mapping q! F — L°(E, au), where L°(E, i) is the set of random variables on
a topological space E with probability measure 1u . We do not concern ourselves
here with the Osterwaider-Schrader axioms. In the case of a d-dimensional lattice
field F is a class of functions f: Z’ —* C, and in the case of a continuum field
F is a class of functions f: R’ —* C.

We want to study the continuum limit of a lattice field on Zd. We therefore
rescale the lattice Z” with a factor 6 > 0 to obtain fields yo on finer and finer lat
tices SZt ,and hope to be able to give a meaning to the limiting field so = limo
In general it will be necessary to rescale the parameters defining the fields p in
order to obtain a meaningful limit. This defines a transformation of parameters
which is called the renormalization transformation. As a function of S > 0 these
transformations obviously form a multiplicative 1-parameter semigroup, which is
(erroneously) called the renormalization group.

In order to arrive at a suitable procedure to obtain a continuum limit let us
assume for the moment that the continuum field y is already given. Then we can
obtain lattice fields y by coarse-graining, i.e. by averaging over lattice blocks

= — 6 < + 6, i = 1, ..., d} (1.1)

for x E SZd

Explicitly,
=6_d(l(J) (1.2)

where IA is the indicator function of the set A.
For f F this becomes

soo(f)= > f(.)Y(1D6()) (1.3)

The lattice fields y satisfy

(pL6() = L_d (1.4)

yEt5Z’flDL6(.)

Conversely, given a sequence of lattice fields ‘p on , we can define p
by the limit

y(f) = lim so(f) = urn (1.5)
n—oo n—oo

zEL Zd
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If the cp satisfy (1.4) then this limit certainly exists for functions f of the form

f(i1Dm() (1.6)

for some positive integer m.
Although it is desirable that this limit exist for a class of smooth functions f

we do not go into that problem here and concentrate on obtaining a sequence p,
satifying (1.4). Rescaling we can reduce the latter problem to a fixed unit lattice
Zd. Indeed, given fields q on Z’ satisfying

= Ld (1.7)

YEBL(x)

with
,i=1,...,d}, (1.8)

we can put
S0n() = q5(L’2x) (. LZ’). (1.9)

We shall obtain q by averaging a field çb on Zd with a restricted number of

parameters that can vary with n. The eventual continuum field then also depends

on a finite number of parameters and thus, in principle, has predictive power. We
define the averaging procedure by

(Mq) = (1.10)

yBL(x)

where a is an adjustable parameter, to be fixed later.
We denote the original field q, but with parameters depending on m, by 1’(m)

The fields can be defined by

(c?r)z = L lim (MmçL(m)). (1.11)
m -÷ oo

One easily checks that these fields satisfy (1.7). Notice also that the limit depends

on a ,so that this is not a superfluous parameter. In fact only one particular choice

of a leads to a non-trivial limit.

2. The one-dimensional Euclidean free field.

Let us now illustrate the above procedure by a simple example : a one

dimensional Euclidean free field. We can define a Gaussian measure 7M on S’(Z)

by its covariance

C=fS.6 d7, (2.1)
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where S(q) q!(x). We put

C (—zi + M2);,’, (2.2)

where L is the lattice Laplacian,

(zif)(x) = f(x + 1) + f(x — 1) — 2f(x). (2.3)

By Fourier transformation we find

1 ip(x—y)

cxy = f_ 4 sin2 + M2dP
2 (2.4)

e_IZ —yl
if xy,

2M/1 + (M/2)2

with

= 2 arsinh--. (2.5)

The field qf’ is simply given by

q(f)(F) = (F, f) ; f E S(Z), F E S’(Z), (2.6)

where (.,.) are the duality brackets.
Heuristically,

= exp[-,(- +M2))] H (2.7)

xEz
(Because of the simple defining relation for the field we write instead of F with

an abuse of notation). Z is a normalization factor.

Let us calculate the covariance C’ of the renormalized field cb’ = Mb.

C 7(d)

L2+2d7 c

uEBL(z)VEBL(y) ( )

— L2+2 f sinh 12

—

X y.

Clearly (ML) = MLn , so that

, 2
—cCL Ix—yI I h—e sin 2 1> (2 9)

XJ 2M1 + (M/2)2 ( sinh W J
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Obviously c) —* 0 unless we let w = w, depend on n so that wL —* const.

We shall take M = so that, by (2.5), wL —* M0. Formula (2.9) then

contains a factorL22n° +2ii ,so that we have to take o =

The covariance C, of the field defined by (1.11) thus becomes

— -2n i (,,(m—n)
L/n;zy — ii im

m—*oo \ zy

_MoLIz_yI fsinhMoL’2
(2.10)

— 2M0 -M0 5
Rescaling we find the covariance of the fields on LZ,

eM sinh1M0L
2

f 2M0 { M0 } (2.11)

Taking the limit n —* oo of

fn(f)Yn(g)7n(dn) = L2nf()g(y)fyfl()yfl(y)7fl(dyfl)

,yELZ

we find the covariance of the continuum field,

e_M0j_

C(f,g)=fdfduf()g(y)
2M0

- (2.12)

The kernel
1 °°

2M0 2fP2+M4
(2.13)

is the usual Euclidean free field “propagator” or Green’s function.

In d dimensions one finds ci = 4ja. This is called the canonical dimension of
the scalar field o. If one considers fields with (self-)interaction it may be necessary
to change ci. One then speaks of an anomalous dimension.

All this may seem like a complicated way of replacing z by

=L2’[f(. + L) + f(x — L) — 2f(x)]

and taking the limit

Lf()((- + M).g)()
‘S f d f()((- + M).g)().
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For models with interaction, however, i.e. models with non- quadratic terms in

the Hamiltonian or in other words a non- Gaussian measure ,u instead of y

serious singularities appear. By the renormalization group method described above

these singularities are broken up into contributions from different scales, which all

have approximately the same form. We illustrate this by a hierarchical model in

which the massless quadratic part of the Hamiltonian is replaced by a hierarchical

analogue.

3. The hierarchical model.

We replace the massless quadratic part — of the Hamiltonian by the ex

pression

H0 L_(2+d)kFk (3.1)

The kernels Fk are defined by

= F(x’,y”) (3.2)

with
F(x,y) = 1— Ld if x = y

= _Ld if x y but = (3.3)

=0 ifx’

is the label of the block containing x , i.e. x BL(x(’)), and more generally,

e B(x(’)).
The corresponding covariance is

=L_2F(x,y) (3.4)

witha=.
One easily shows that

(0H)’
=L2C1)(1)+ F(x, y). (3.5)

Heuristically one can define a measure p

(d)=e -,H0)- v()j II
XEZd

1
=exp[- >

xEZ’
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with the quartic interaction potential

= rç5 + (3.7)

It can be shown that there actually exists a Gibbs measure for the Hamiltonian

H() = (&Ho) + v() (3.8)

if g 0. For details see [1]. Alternatively one can work in a finite volume AN but
prove the convergence independently of N. (Cf.[2j ).

The simplifying property of the hierarchical model is that qY can be described
on a measure space with a measure 1u’ of the same form as

= exp[- vl()j7H(d) (3.9)

xZd

with
—

+y)]7r(d)
(

— I exp[—EYEBL(X)v(eY)j7p(d)

The integrals appearing in formula (3.10) are finite dimensional. Nevertheless this
transformation is far from simple. However, one can make a Taylor expansion in

g. Replacing v by the Wick-ordered expression

(3.11)

and retaining terms up to second order one finds

= : I2 : +g’ : : +03 (3.12)

with
= L2(r — 3arg — 6cg2)

(3.13)
= L4_d(g

— 9ag2)

where
a=1—L

(3.14)
c = 3L2_d(1 — L”)(q2)+ (1 — L)(1 — 2L_d + 2L2’)

For d = 3 one finds that v’ converges as m ,‘ cc if we put

Tm = L_2m(ro + 6mcgg)
3 15

r—mgyi—- go
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Apart from the scaling factors L2 and L_ there appears a non-trivial mass
renormalization term 6mcgg . It corresponds to the primitive divergent Feynman

diagram__0__

A closer look at (3.13) shows that the substitution (3.15) might well be suf
ficient to all orders of perturbation theory. Indeed the mass-renormalization term
appears because g = O(Lm)while rm = O(L_2m). Using techniques developed
by Gawedzki and Kupiainen {2j , this can actually be proved to be the case: see
[1].
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