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§1 Introduction

In this lecture we review some large deviation results for probability distributions
associated with the free boson gas and discuss briefly their application to models of an
interacting boson gas. In §2 we describe the probabilistic setting; in §3 we review results
on the free boson gas which we shall require; in §4, §5, §6 and §7 we summarize large

deviation results in increasing order of sophistication; in §8 we sketch some applications.

§2 The Probabilistic Setting

Our ultimate aim is to compute thermodynamic functions for certain models of an
interacting boson gas. The physical relevance of these calculations will not be discussed
here; we shall concentrate on the probabilistic aspects of the investigation.

The probability space Q on which the models are defined is the space of terminaﬂing

sequences of non-negative integers: an element w of {1 is a sequence
(w(j)e N:j=12,...}

satisfying 3.5, w(j) < oo.
The basic random variables, the occupation numbers, are the evaluation maps o, :

Q — N given by
oj(w) = w(j) (2.1)
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The sequence {H;:1=1,2...} of free-gas hamiltonians is defined by

Hiw) =Y Mli)o;(w), (

21

o
o
pa—

where {M(J) 1 7 = 1,2,...}is an ordered sequence of real numbers associated with a

region A; of some Euclidean space R%:
0=X2(1)< M(2) <. (2.3)
The total number of particles .V(w) is defined by

N(w) = ZO’J‘(W). (2.4)

21

As in §2 of [1], we are in a position to define for p < 0, the grand canonical measure

PPl -] on Q and the grand canonical pressure pi(p):

BN (w)=Hi(w))

Pl = —vmm (2.5)
where
pi(w) = (V1) In(Y_ 7T, (26)
wefd

Because of (2.3), both (2.5) and (2.6) hold for all 4 < 0. The mean particle number
density E#[X)], where X; = N/V; and E{[ - |, denotes the expectation with respect to
the probability measure P/ - | is given by

Ef'[Xi] = pi(u)- (2.7)

Using an identity known to Euler, we have

exp BVipi(p) = H(l — A=y =L (2.8)
j21
so that we write
pi(p) = Vi Y p(slM(d)- (2.9)
121

where the partial pressure p(u|)) is given by

p(plA) = 8~ n(1 — A=) 7L, (2.10)
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Lemma 1. For each u < 0, the occupation numbers are independent, geometrically
distributed random variables:

P[“[aj > m| = emBlu=Ai(1))

Proof: Fora; <0, j =1,2,..., we have
Blp—=Xxi(]))
m ’5(2,' ajei)y (1 —€ )
E‘ {e st } - H (1 - eﬁ(#+d,‘~>«l(])))'
;21
O
It is convenient to introduce the distribution function
Fi(A) = (V)7 {7 - M) £ Ak (2.12)
with respect to this, (2.9) can be rewritten as
pilu) = /[ PHINAROY) (2.19)
0,00
the mean particle density is given by
BIX] = [ pNER(). (2.14)
(0,00)

We note that, for each I, u — pi() is a convex function defined on (—o0,0); we
define

pi(0) = limpi(p) = +o0 (2.15)
and
pi(p) = 00, u>0. (2.16)

Then each p; is a closed convex function defined on the whole of R; its essentlal domain
1S

dom p; = (—20,0).
In order to prove the existence of the pressure in the thermodynamic limit, it is necessary
to make some assumptions about the A;(j) and the Vi; putting 0/(3) = f[om) e PAEF(N),
we formulate conditions:
(S1)

#(8) = lim ¢1(B)
l—o0

exists for all B in (0, 00)
(S2) ¢(B) is non-zero for at least one value of B € (0,0).

These conditions are weak restrictions on the sequences; their verification in a par-
ticular instance can involve some hard analysis.



§3 Results Concerning the Free Boson Gas

In this section we review some results on the general theory of the free boson gas;

the proofs can be found in [2].

Proposition 1. Suppose that (S1) and (52) hold; then the following limits exist.

(1) p(u) = lim pi(p),  p <0,
(2) F()) = lim Fi(A).

They are related by
)= [ pudFQR)

Moreover, we have

ﬂm=4wym»wm.

The standard example is the following one: let Ay = —+A in A; with Dirichlet
conditions on dA; where {A;: [ =1,2...} is a sequence of dilations of a convex region in
R% which eventually fills out the whole of R%; let /(1) = /(2) < ... be the eigenvalues
of by and put A\i(j) = e1(j) — =i(1); then (S1) and (S2) hold and F(A) = C4A¥/2.

Next we define the critical density p.:

if A = p'(0 |\)is integrable on [0, 00) with respect to F, put
m=[ 0 NIFA) (3.1)
0,00

put p. = oo otherwise.

It follows from the dominated convergence principle that if p. is finite then

pe = lim p'(pA)dF(A) = lim P (0|A)dF(N). (3.2)
#10 Ji0,00) €10 Jle,00)
Clearly, if F(A) ~ A\? with o > 1 then p is finite; if p. is finite then F(A)—0as F |0
(In fact, we have the more precise estimate: for ¢ > 0, F (e) < BeeP®p.). Note that in
the standard example, p. is finite if and only if d > 2.
Again it is convenient to follow the standard conventions for convex functions in
extending p to the whole of R: we define p(0) by p(0) = limuro p(p) and put p(p) =

+00, p > 0. Since p is convex and differentiable for 4 < 0, p_(0) = limyo_= pec- Define




p';(0) to be +0 and p'_(p) = pli(u) = +o0 for 4 > 0. Then p is a closed convex function

on the whole of R.
The sub-differential dp is given by

(3p)(p) = {p'(f‘;), (3.3)

[pe

For fixed [, the function u ~— pj(u) is strictly increasing on (—00,0) and pj(u) — 0 as
4 — —oo while pj(p) — oo as u — 0 since A(1) = 0. It follows that the equation

pi(p) =p (3.4)

has a unique solution w(p) in (—0,0), for each p in (0, 00). On the other hand, for
pe < oo, the function u — p'(u) increases from zero to pc as p ranges through (—o0,0).
It is convenient to define u(p) for p in (0,00) to be the unique root of

pl(p)=p (3.5)

if p < p. and to be zero if p > pc.
Defining
mi(p) = (p1 o pi)(p),

so that m;(p) is the pressure at mean density p and = (po u)(p), we have

Proposition 2. Suppose that (S1) and (S2) hold; then

(1) jim p(p) = ulp),
(2) Hm mi(p) = m(p),
(3) f(z)=sup(pz — p(p)) = zp(z) — =(z).

Thus we have a first-order phase-transition when p. is finite; the first-order phase-

transition segment is [p, o).

§4 Large Deviations of the Particle Number Density

Let KI' = P/ o X ! be the distribution function of the particle number density
X, = N/Vi. 1t follows from Theorem 1 of (1] that, for u <0, {K'} converges weakly
to the degenerate distribution é, concentrated at p = p'(u). It follows from Theorem 2
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of [1] that the Large Deviation upperbound (LD3) holds for u < 0 with rate-function
I#( - ) given by

*(z) =p(p) + f(z) — pz. (4.1)
However, the existence of the pressure is not sufficient to ensure that the Large Deviation
lowerbound holds for an arbitrary open subset of [0,00) when p. is finite; although
ran Op = [0, 00), the existence of the first-order phase-transition segment [p., >0) prevents
an application of Theorem 3 of [1] to the whole of [0,00). Nevertheless, as we shall see,

special features of the free boson gas enable establish the Large Deviation lowerbound

(LD4).
Theorem 1. Suppose that (S1) and (S2) hold; then, for u < 0, the sequence

{It =P} o Xrtl= 1,2,...}

satisfies the Large Deviation Principle with constants {V;: l = 1,2, } and rate function
I*( - ) given by

Proof:
It was proved in §9 of (1] in this volume that (LD1), (LD2) hold and in §6 that
(LD3) holds; it remains to prove that, for each open subset G of [0,0) :

lim inf —l—

<l > - H(
minf oo ln K['[G] > ucl;fI (z). (4.3)

Let y be an arbitrary point of G; choose 8 > 0 so that Bz =(y—4y+6) CGandty
such that pj(p + t;) =y. Then, as in §8 of (1], we have

K{“{G] > @»’3‘/1{P:(n+t:)—p:(u)—uy—-z"[n{}K;u,-:,ng1
2 'BY.
By Proposition 2, 4 + tt — p(y) and pi( + t1) — plu(y)) so that

lim inf Elf/';anl“[G] > p(u(y)) — plp) = (ply) = ply

. 1 .
© —6|p(y) = pl + liminf ET/II”K’W (Byl.

We now have to distinguish two cases: if y < pe then u(y) < 0 and we make use of
the fact that u — p(u) is differentiable for u < 0; then, by Theorem 1 of (1], for all
sufficiently large K}*"[B?] > ; and hence

1
lim inf 7, ln K" (Bf] =0 (4.4)

on the other hand, if y > p. we have u(y) = 0 and we must proceed differently.
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Lemma 2. Let N, and N3 be independent non-negative integer-valued random variables .
with means m; and m2 respectively. Suppose that Ny is geometrically distributed and

that § _>_( iw;%tben

1 m mi+ma+2
N, + N, € BS > . 4.5
Proof:
 The interval Bl 1, = (M1 +ma —1my +my + 1) contains a unique integer
ng > mp + mz. Now '
PN+ N €8 im)l= D D PINi=m—n|P[N2=n]
m536 n=0
mi+my

(4.6)

n=0

Since N; is geometrially distributed, n — P[N} = n] is a decreasing function so that

no
Z P[N, =ng —n|P[N; =n] > P[N, = ng]P[N2 £ no) (4.7)
n=0
Now
1 my re
P[N, = =
[ 1 no] m1+1<m1+1>
1 my my+may+1
> %,
“m1+1<m1+1> (48)
and
m
P[Nz < no]l 2 P[N2 <my +ma] 2 r—n::‘-%-— (4.9)
by Markov’s Inequality. Hence
1 m my+ma+2
s > 1
P[N1 + N, € Bm1+mg] > — (ml " 1) . (4.10)
a

Returning to the proof of Theorem 1, it follows from Lemma 1 that o, is geomet-
rically distributed; applying Lemma 2 with N; = oy and N, = N - oy, we have

™ _ B+t and my + mg = Viy; thus
my -+ 1
T 3 o 1
o 8 KBt Bs > —Alrttu)(Vig+d) 4.11
% l [ y}-— ‘Gy ( )




for V; > % It follows that

[
li&gf T In KBl =0 (4.12)

since, for y > pe, 4 + ti — 0. Thus we have, in both cases,
[
e b B> B
lim inf v InKP[G] 2 —p(p) — fly) + 1y
= —I*(y) (4.13)

for all y in G, since § was arbitrary. Hence
e 1 u
—_ > —JH
hﬁg}f 3V ln K'[G] 2 S‘ép( I*(y))
= —-i%fl"‘(y) (4.14)

§5 The Large Deviations of a Vector-valued Random Variable.

The Large Deviation result established in §4 enables us to apply Varadhan’s Theo-
rems to suitable functions of X; = N/Vj; to deal with functions of the m + 1 variables
o1/Vi,...,0m/Vi, N/Vi we prove a Large Deviation result for the sequence of probability
distributions of a vector-valued random variable.

" Define the vector-valued random variable X;: @ — R™*! by

XPw) =V loy(w),

X((m-%-l)(w) - Vl—l Z aj(w).
j>m
In order to prove a Large Deviation result for K = P/ oX !, it is necessary to make
a further hypothesis about the single-particle spectrum. First, we define the cumulant
generating function C{[ - | by

1
Bl — e B BVI<tXi>) .
Ciltl= gy 1o Ejle ] (5.1)
Lemma 3. Suppose that (S 1) and (S 2) hold and that limi—oo Mi(j) = A(J) exists for
j=1---,m+ 1; then the cumulant generating function

cHit] = Jim CY1H
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exists for all t in R™*! and is given by

[ p(p +tmer = Am+1)=p(u), tE€ Dy .
CHltl = { 0, otherwise. (5.2)
where
D,={t:t; +Mj)<-e,j=1---,m+1} (5.3)
Proof:
Put .
P’ (1) = Jp7 In(1 = 77N (5.4)
for 1 € 7 < m and put
m -1 - ]
pg +1)(#) = 571 Z 1n(1 - eﬂ(u «\c(J))). (5.5)
1>m

Since Mi(j) — A(j) as | — oo, p\(u + t&) is defined, for all ! sufficiently large, for
4 < A7) —tj. On the set D,, we have, by Proposition 1,

Hm P (4 + tmar) = P(p + tmar — A(m + 1)), (5.6)
while for | < j < m,
lim pi” (4 +1;) = 0. (5.7)
It follows that
lim .,
| — oocl [t] = p(p + tmsr - Am+1)=p(p) . t€Dyu (5.8)

put C#[t] = oo for t in the complement of D,. Then t — C*t] is a closed proper convex
function on R™*! with dom C* = D,; put

I*[z] = sup {<z,t>-CHt]}. (5.9)
teR™+!

Theorem 2. Suppose that (S1) and (S2) hold and that lim;— Ai(j) = A(7) exists for
| <j <m+1; then, for u < 0, the sequence

{K‘,“‘-‘-"-F‘,"OX,"1 1=1,2,-}
satisfies the Large Deviation Principle with constants {Vi : 1 = 1,2, -} and rate-function
.
Proof.
The proof that (LD1) and (LD2) holds follows, as in §9 of [1], by the fact that I Bl

is the Legendre transform of C* [ - |. to prove that (LD3) holds, we follow Ellis (3] and
adapt to our situation Gartners's Lemma:



Let K be a non-empty closed subset of R™*! define L[K] = infg I*[z]. IfO <
I*[K] < oo then there exists a finite set v . 7" of non-zero vectors in R™*!
such that, forc = I*[K] —¢, €>0,

K c Ul Hi(rW;e), (5.10)
where H(1;¢) = {z :< z,7 > =CH[t] 2 ¢} if I#[K] = +oo then, for each R > 0, there
exists a finite set 719 ... (" of non-zero vectors in R such that

K c Ui, HY(rU;R). (5.11)

First suppose that K is such that 0 < I#[K] < oo; then

KK <Y KPHL(TD )
=1

= i K{{z :< z,7 > > c“[r(j)] + c}l. (5.12)

s=1

But by Markov's Inequality,

Ki{z <z, >> CHrI + ¢} € e=BVi{e*[r]+c} / e'BVl<z'r(”>K;‘{d$]

Rm-{-l
= = AVIH{CH r D e=cl (7))

(5.13)

hence

lnKP[K] < -I*[K] (5.14)

limsup ==

oo /BVI
since C}'[t] — C*[t] and € > 0 was arbitrary. Now suppose that [*[K] = +o0; then

limsu
I—-oop ﬁVl

for each R > 0 and the result follows. To prove that (LD4) holds for an arbitrary open
set G of R™+!, let y be an arbitrary point of G and choose § > 0 such that

m+1
[[wi-6vi+6cCG (5.15)
=1
Then
m+1
12 I K7™ (s = &,vi + 6)] (5.16)
=1
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where K l(j )# is determined by

/ itz gD dz] = ¢PVilol (wttj)=p (W)}, (5.17)
[0,00)
Now .
liminf = ln K{™ 5 (s = 6ymas +0) 2 =TTV w), (318)
where
(maD gy = [ P(B)+ f(2) = (p=A(m+ 1))z, 220 -
I (z) = { i 20 (5.19)
by the reasoning which established Theorem 1. For 1 < j; < m,
1 .
liminf = ln K" 4((y; = 8,y + 8)] 2 =I9(v)) (5.20)
by direct calculation, where
(1) m — —(,U - )\(J))Iv T2 07 =
I'H(z) = {oo, 2 <0 (5.21)
since o} is geometrically distributed (Lemma 1). Hence
1 m<+1
_t n > (D, V= T8 5.
liminf — In K![G] > Z [y = —I*(y) (5.22)
and since y was an arbitrary point of G
hmmf—-}—ln K['[G] 2 sup(=I*(y)) = —inf I*(y). (5.23)
[—o0 ,3% G G
a

§6 A Large Deviation Result for a Banach Space-valued Random Variable

Let X;: Q — I} be defined by

XOW) =V 'Nw), X)) =Vlow), iz

R

thenK} = P} o X! is a probability measure on I} = {z; 2 0: 3_;5,2; < oo} We
regard {1 as the positive cone of the real Banach space ! ; equipped with the norm
topology, I! is a complete separable metric space (a Polish space). However, for our
purposes, the weak#topology on I (the o(I*,co) topology induced by the space ¢o of
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real sequences converging to zero) is the appropriate one for our purposes. The space I*
equipped with the o(i!,¢,) topology is not metrizable; nevertheless, the theory of large
deviations is still applicable since the o-field of Borel subsets of 1! is the same in both
the norm topology and in the o(I*, co)topology (see Azencott [4] for a full discussion of
this point and Yamasaki [5] for the measure theory).

Notice also that each of the measures K}* is supported on the convex set {z € 1L
To = 3 ;»1 £} since N(w) = 2 i>1 95(w).

The proofs of the results in this section are more technical and we will not give

them here.

Lemma 4. Suppose that (S1) and (S2) hold and that limj—c M(j)=0forj=1,2,...

then, for u < 0, we have for each t in co

lim - D
Bls] — Bral P(/J +t5) P(U)s te Dy,
Chltl = [ — ooC’ [t = {oo, otherwise, (6.1)
where .
A { e
C{“[t] — E—ﬁlnE l[ela{tatv+¢101+tzdg+ }}

and

D“={t€co:to+p<0,to+supt1+a<0}. (6.2)

121

Let I4[z] = supy.., {< z,t > —C*[t]}; then a straightforward caculation yields

I*[z] = {P(#)+f(xa —2121 ;) —pzro. €Dy, (6.3)

00, otherwise,

where

D::{xelL:rOZer}. (6.4)

121

Theorem 3. Suppose that (S1) and (S2) hold and that limj—x M(j) = 0 for ) =
1,2,...; then, for u < 0, the sequence

(K =PloX ' :1=12,..}

of probability measures on I} satisfies the Large Deviation Principle with constants {V;}

and rate-function I*{ - |.
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§7. A Large Deviation Result for the Occupation Measure

We introduce a measure-valued random variable

L(w;B) = %Z 75(w)éx (5B

121

, where 6x[B] = 1 if A is in B and is zero otherwise. Then L; maps Q into the space
E = M T (R™T) of positive bounded measures on the positive real line. Let K}' = PFoL;}
be the induced probability measure on E; in terms of this we can express the expectation

of a functional of L; as an integral over E. For example,

EpfemeN V) = /E £?VIG(™) Ko {dm]

where G(m) = —;—l]mH2 and ||m|| = f[O,oo) m(d)). But even in this simplest of examples
there is a difficulty in applying Varadhan's Theorem (supposing that we have established
a Large Deviation result for {K}'}. It is this: in order to prove a Large Deviation result,
we have to make use of the weakx-topology on E determined by C,(R™), the continuous
functions vanishing at infinity; but the function m — |m|| is not continuous in this
topology and Varadhan’s Theorem does not apply. We get around this difficulty as
follows: we introduce a cut-off T and prove a Large Deviation result for K{* = Pf'o L
where now

Liw;B)y=V' > o;(w)éxn(Bli (7.1)
{7:% (LT}

then we prove an estimate for PP[X[ > ¢] where
LA

XFwy =Vt > @) (7.2)
{2 (1)>T})

We state these results without proof:

Theorem 4. Suppose that (S1) and (S2) hold; then, for u < 0, the sequence {K;' =
P} oL]'} of probability measures on M; ([0, T)) satisfies the Large Deviation Principle
with constants {Vi} and rate-function I*[ - ], given by

I*lm] = sup {<m,t>-C"[t]} (7.3)
c((o,m)
where
CHlt] = { f[o,T; {p(p + t(N)A) = p(ulz)}F(R), supio,{t(N) — A} < =4, (7.4)
o0, otherwise. ,'
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Lemma 5. For § > 0 and T such that
, 6
[ pwinaroy < §,
[T, 00) <

we have
lim inf PHX <6 >1—-e/? (

~1
Ot
-

§8 Applications

In this section, we sketch some applications to the statistical mechanics of models
of the interacting boson gas. In [6] in this volume, we used Theorem 1 of §4 to prove
the existence of the pressure in the mean-field model.

In the same way, Theorem 2 of §5 has been used to prove the existence of the
pressure in the Huang-Yang-Luttinger model; details will be found in [7]. Let Hi(-) be
the hamiltonian of the free boson gas in the region A;; the m-level H-Y-L model has
hamiltonian

H™(w) = H(w) + ——{w Z oi(w (8.1)

with a > 0. It was introduced in [8] and discussed also by Thouless [9]. Using Varadhan'’s
Theorem and Theorem 2 we can prove

Theorem 5. Suppose that (S1) and (52) hold and that inf{\ : F(\) > 0} = 0. Then
the pressure
P (p) = lim pi™(p)

in the H-Y-L mode! with hamiltonian (8.1) exists for all real values of u and is given by

a )
P ()= sup  {uzo = flzo —11) — 2223 - 22)}. (8.2)
{0<z1<z0} <

Remarks:

(1) The results is independent of m for m > 1, so that it is reasonable to conjecture
that the same result holds for the pressure pir in the H-Y-L model with hamiltonian
H;~ (). we hoped to prove this using Theorem 3 of §6, but, so far, technical difficulties
have prevented us.
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(2) No explicit assumption is made concerning the existence of lim;_. o A((), while

the A(j) = limjmoo Ai(4)> 7 = 1,...,m+ 1, occur explicitly in the statement of Theorem
2. The reason is that inf{A : F(A) > 0} = 0 implies that A(j) =0for j =1,2,....

are equal.
The H-Y-L model is a special case of the diagonal model [9] for which the hamilto-
nian is
a ‘
HP () = Hi(w) + 552N (@) = 3_o3(w)°}

i=1

ZZu (M), M(3)ai(w)as(w). (8.3)

=1 =1

l\)

The last two terms in this hamiltonian have different asymptotic behaviour for large [.
To understand the effect of each of these two terms we study them separately. Therefore

we consider the regularized hamiltonian:
1 x =<}
Hf{(w) = Hilw) + 57 Z Z v(A(d), Mi())oi(w)as(w)- (8:4)

If we assume that v : R — R is continuous, bounded and positive then we can use

Theorem 4 and Lemma 5 of §7 to obtain the following result which is proved in [10].

Theorem 6. Suppose that (S1)and (S2) hold; then the pressure pf(u) corresponding

to the sequence of hamiltonians {HR} is given by

pR(uy=sup {ullml = F¥(m]} (3.5)
meM}(R¥)
where .
Rim] = d = d\ AN u( A, N
FR{m] /{Om) Am(dh) + 3 /{w m@) [ @)
[ s(pnaFe) (3.6)
[0,00)
and
s(z)=(1+z)ln(l+z)—zlnz; (8.7)
here
m(dA) = my(dA) + p(N)dF(A) (8.8)
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is the Lebesgue decomposition of m with respect to dF'(}).
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