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§1 Introduction

In this lecture we review some large deviation results for probability distributions

associated with the free boson gas and discuss briefly their application to models of an

interacting boson gas. In §2 we describe the probabilistic setting; in §3 we review results

on the free boson gas which we shall require; in §4, §5, §6 and §7 we summarize large

deviation results in increasing order of sophistication; in §8 we sketch some applications.

§2 The Probabilistic Setting

Our ultimate aim is to compute thermodynamic functions for certain models of an

interacting boson gas The physical relevance of these calculations will not be discussed

here, we shall concentrate on the probabilistic aspects of the investigation

The probability space Q on which the models are defined is the space of terminating

sequences of non-negative integers: an element ‘ of Q is a sequence

{w(j)EN:j1,2,...}

satisfying w(j) <ce.

The basic random variables, the occupation numbers, are the evaluation maps a

N given by

(2.1)
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The sequence {H1 : 1 = 1,2. .
. } of free-gas hamiltonians is defined by

IIj(w) = l(j)j(), (2.2)

j1

where {.A,(j) : j = 1, 2,. . .}is an ordered sequence of real numbers associated with a

region A1 of some Euclidean space

0 = (1) < i(2) <... (2.3)

The total number of particles V() is defined by

N(w) =
(2.4)

J1

As in §2 of [1], we are in a position to define for < 0, the grand canonical measure

on and the grand canonical pressure pj():

PfL[w]
=

(2.5)

where

= ‘‘ ln( . (2.6)

c2

Because of (2.3), both (2.5) and (2.6) hold for all i < 0. The mean particle number

density Er[X1], where X1 = N/V and Er{ ], denotes the expectation with respect to

the probability measure } is given by

E{X1] = p.i). (2,7)

Using an identity known to Euler, we have

exp/3Vpz(/L) = J’J(i — (2.8)

j1

so that we write

p1(p) = p(pIi(j))• (2.9)

jt

where the partial pressure p(pjX) is given by -

C”I) = /3 ln(1 — (2.10)
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Lemma 1. For each < 0, the occupation numbers are independent, geometrically

distributed random variables:

Pju{j rn] = em(141(j)) (2.11)

Proof: For , <0, j = 1,2,..., we have

11 —

E[e j = fJ1 (1
j>1

It is convenient to introduce the distribution function

F1() =(1{j : A(j) <A}; (2.12)

with respect to this, (2.9) can be rewritten as

= f p()dF1(A); (2.13)
[o,)

the mean particle density is given by

Er[X1}
= f p’(A)dFj(). (2.4)

(o,)

We note that, for each 1, -+ pj() is a convex function defined on (—oo, 0); we

define
pj(O) = limpj() = + (2.15)

1410

and
pjCu) = +, > 0. (2.16)

Then each pi is a closed convex function defined on the whole of R; its essential domain

is
doin pi = (—,0).

In order to prove the existence of the pressure in the thermodynamic limit, it is necessary

to make some assumptions about the )j(j) and the ; putting Q1(!3) = J{o,) eAdFj(A),

we formulate conditions:

(Si)
= ‘i’ii zC3)

exists for all j3 in (0, )
(S2) C) is non-zero for at least one value of t3 E (O,oo).

These conditions are weak restrictions on the sequences, their verification in a par

ticular instance can involve some hard analysis.
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§3 Results Concerning the Free Boson Gas

In this section we review some results on the general theory of the free boson gas;

the proofs can be found in [2].

Proposition 1. Suppose that (Si) and (S2) hold; then the following limits exist.

(1) p() = urn pj(), <0,

(2) F(A) = urn F1(A).

They are related by

[0,oo)

Moreover, we have

= I p’(jA)dF(A).
J(0,0)

The standard example is the following one: let h1 = in A1 with Dirichiet

conditions on A, where {Aj: 1 = 1, 2...} is a sequence of dilations of a convex region in

RL which eventually fills out the whole of Rd; let j(1) = (2) ... be the eigenvalues

of h1 and put A1(j) = 1(j) — E,(1); then (5].) and (52) hold and F(A) = CdAd/2.

Next we define the critical density Pc:

if A p’(O A)is integrable on [0,) with respect to F, put

Pc
= f p’(O A)dF(A); (3.1)

put Pc = otherwise.

It follows from the dominated convergence principle that if Pc is finite then

Pc = limf p’(pjA)dF(A) = limf p’(0)dF(A). (3.2)
1410 eiO (E,oc)

Clearly, if F(A) A with o > 1 then Pc is finite; if Pc is finite then F(A) 0 as F j 0.

(In fact, we have the more precise estimate: for > 0, F(e) < $ce’p). Note that in

the standard example, Pc is finite if and only if d> 2.

Again it is convenient to follow the standard conventions for convex functions in

extending p to the whole of R: we define p(O) by p(O) = lim,10 p(p) and put p(p) =

+, p > 0. Since p is convex and differentiable for p < 0, pL(O) = lixno=pc. Define
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4(0) to be +00 and p(j) = 4Cu) = +oo for 4 > 0. Then p is a closed convex function

on the whole of R.

The sub-differential op is given by

(ap)()
= { <‘ (33)

For fixed 1, the function -+ p() is strictly increasing on (—, 0) and p) —. 0 as

—+ —00 while p(u) —+ :c as —p 0 since \j(l) = 0. It follows that the equation

(3.4)

has a unique solution ,uj(p) in (—, 0), for each p in (0, ce). On the other hand, for

p <ce, the function .i p’(u) increases from zero to Pc as ranges through (—00,0).

It is convenient to define (p) for p in (0, ) to be the unique root of

= p (3.5)

f P < Pc and to be zero if p Pc-

Defining
irj(p) = (P1 0

so that ir(p) is the pressure at mean density p and = (P o ,u)(p), we have

Proposition 2. Suppose that (Si) and (52) hold; then

(1) urn j(p) =

(2) urn lrl(p) =
1-co

(3) f(x)E sup(/.Lx — p()) = xu(x) — ir(x).

Thus we have a first-order phase-transition when Pc is finite; the first-order phase-

transition segment is [Pc, 00).

§4 Large Deviations of the Particle Number Density

Let K = o X1 be the distribution function of the particle number density

= N/. It follows from Theorem 1 of [1] that, for < 0, {Kr} converges weakly

to the degenerate distribution S, concentrated at p = p’(.s). It follows from Theorem 2
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of [1] that the Large Deviation upperbou.nd (LD3) holds for < 0 with rate-function

) gives by
= p() + f(x) — x. (4.1)

However, the existence of the pressure is not sufficient to ensure that the Large Deviation

lowerbound holds for an arbitrary open subset of [0, ) when Pc is finite; although

ran op = [0, ), the existence of the first-order phase-transition segment [Pc, ) prevents

an application of Theorem 3 of [1] to the whole of [0, cz). Nevertheless, as we shall see,

special features of the free boson gas enable establish the Large Deviation lowerbound

(LD4).

Theorem 1. Suppose that (Si) and (S2) hold; then, for < 0, the sequence

{ rr = P/A o : 1 = 1,2, }

satisfies the Large Deviation Principle with constants {V1 : 1 = 1,2, ...J and rate function

• ) given by

I(x) =
p() + f(x) x, X O (4.2)

x<0.

Proof:

It was proved in §9 of [1] in this volume that (LD1), (LD2) hold and in §6 that

(LD3) holds; it remains to prove that, for each open subset G of [0, ):

liminflnK[G} —infI(x). (4.3)
i-V1 G

Let y be an arbitrary point of G; choose 6 > 0 so that B (y — 6. y ± 6) C G and tj

such that p + t1) = y. Then, as in §8 of [1], we have

I([G} e it

By Proposition 2, + t1 —+ (y) and pi( + tj) p((y)) so that

liminflnKr[G] p()) -p() - () -

jb 9T7

—6I() — I + liinf lnKr+tl [B].

We now have to distinguish two cases: if y < Pc then (y) < 0 and we make use of

the fact that p() is differentiable for < 0; then, by Theorem 1 of [lj, for all 1

sufficiently large Kt’[B] . and hence

Iiminf lnKt’[B] = 0; (4.4)

on the other hand, if y p we have /A(y) = 0 and we must proceed differently.
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Lemma 2. Let N1 andN2 be independent non-negative integer-valued random variables

with means in1 and respectively. Suppose that N1 is geometrically distributed and

that 6 1; then
mi+rn2+2

1 ( rn ) . (4)P{Nl+N2eB1÷ 1>
— m1 + m2 m1 + 1

Proof:

The interval Bi+m2 = (rn1 + m2 — 1, m1 + m2 + 1) contains a unique integer

n0 m1 +m2. Now

m

PLY1 + N2 E3rnt+m21= P{N1 = m — n]P{N2 = nj

mEB 4m2

Ti0

P[N1 = no — n]P{n2 = n]. (4.6)
n=O

Since N1 is geometrially distributed, n P{N1 = nJ is a decreasing function so that

no

P[Ny. = — n]P[N2 = nj P[N1 = no]P{N2 no] (4.7)

n=O

Now
\ rio

P[N1 = flo]
= m1+ 1 (m )

rn +m2+1
1 / rn1

>
— m1 + 1 m1 + i)

and

P[N2 no] P{N2 m + m21 (4.9)
m1 + m2

by Markov’s Inequality. Hence

rn1 +rn2+2

P[N1 + N2 E Bt+m21 m2 (m ) . (4.10)

Returning to the proof of Theorem 1, it follows from Lemma 1 that a is geomet

rically distributed; applying Lemma 2 with N1 = d1 and N2 = N — o, we have
m1

= eflt and m1 + m2 = y; thus
Tflj+1

Kr+tI[B6] —_e+t+2) (4.11)
Vy
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for Vj .. It follows that

liminf lnKtt{BJ 0 (4.12)

since, for y Pc, + ti — 0. Thus we have, in both cases,

limnflnKt[GJ -p() -f(y) +y

= —I(y) (4.13)

for all y in G, since S was arbitrary. Hence

liminfln K[G) sup(-I(y))

= —infI’(y) (4.14)

§5 The Large Deviations of a Vector-valued Random Variable.

The Large Deviation result established in §4 enables us to apply Varadhan’s Theo—

rems to suitable functions of X1 = N/; to deal with functions of the m + 1 variables

N/ we prove a Large Deviation result for the sequence of probability

distributions of a vector-valued random variable.

Define the vector-valued random variable X1 : —. R÷l by

X’(w) =

=

j>rn

In order to prove a Large Deviation result for K = P/1oXr, it is necessary to make

a further hypothesis about the single-particle spectrum. First, we define the cumulant

generating function C [ I by

Cr{tI = lnEr[e<tX1>). (5.1)

Lemma 3. Suppose that (S 1) and (S 2) hold and that limj_. A,(j) = A(j) exists for

j = 1- -. , m + 1; then the curnulant generating function

CL(t] = Urn Cr[tl
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exists for all t in R’ and is given by

c[tJ =
P” + tm+l —

+ 1))— ()‘ ;. (52)otherwise.

where
= {t : t +(j) < —a,j = 1••,m + 1} (5.3)

Proof:
Put

= ln(1 — (54)

for 1 j m and put

(m+l)() = ln(1 — e’’) (5.5)

Since .\,(j) \(j) as 1 — DO, + tk) is defined, for all 1 sufficiently large, for

< A(j) — t,. On the set V, we have, by Proposition 1,

urn (m+l)(
+ tm+i) P( + tm+i A(m + 1)), (5.6)

while for 1 j m,

+ t,) 0. (5.7)

It follows that

urn
C{} = P( + tm1 — (m + 1)) — p() , t (5.8)

put CIA[tl = for tin the complement of V,. Then t CtJ is a closed proper convex

function on RT1 with doni C = D; put

I’[xJ = sup {< z,t > —C[t]}. (5.9)
tERm+t

Theorem 2. Suppose that (Si) and (S2) hold and that 1imi_ 1\1(j) = \(j) exists for

1 j m + 1; then, for < 0, the sequence

{Kr=P/4oXr’:l=1,2,•j

satisfies the Large Deviation Principle with constants { ½ : 1 = 1, 2, } and rate-function

Proof.

The proof that (LD1) and (LD2) holds follows, as in §9 of [1], by the fact that I”[.

is the Legendre transform of Cl* [•J. to prove that (LD3) holds, we follow Ellis [3] and

adapt to our situation Gartners’s Lemma:
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Let K be a non-empty closed subset of Rm’ define I[K1 = K P’[z}. If 0 <

I[KJ < then there exists a finite set ‘r1’,. , (r) of non-zero vectors in RT

such that, for c = 1L[KJ — , > 0,

K C (5.10)

where H(r;c) = {z :< x,r > —C[tJ c} if PL[Kj + then, for each R> 0, there

exists a finite set
, r of non-zero vectors in R such that

K C R). (5.11)

First suppose that K is such that 0 < PL[Kj <cx; then

K[Kj

=

Kfl{ :< x, r> c{r] + c}1. (5.12)

But by Markov’s Inequality,

K{{x :< x, r > C[r] + c}] fRm+1

=

(5.13)

hence
urn sup In K[K] -I[K] (5.14)

since Cr[tJ —
Ch{t] and e > 0 was arbitrary. Now suppose that P’JK] = +; then

urn sup lnKr[K1 -R

for each R> 0 and the result follows. To prove that (L04) holds for an arbitrary open

set G of Rm’, let y be an arbitrary point of C and choose 6 > 0 such that

m+1

IT (si, —&y, +6) C G. (5.15)

2=1

Then
m+1

Kr[G1 JJ K))1L[(y
— t5,y2 + 8)] (5.16)

j=1
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where K2))1h is determined by

eV1tizK[dxj = (5.17)

Now

liminf lflKm+l){(ym+i
— 6, Ym+i + 6)] _f(m+l)(y), (5.18)

where
I(m+1)(x) { p() + f(x)

- ( - (m + 1))x,
(5.19)

by the reasoning which established Theorem 1. For 1 m,

liminf lnK’’[(y — 6, y + 6)] —I(y) (5.20)

by direct calculation, where

—
x 0, (5.21)
x<0,

since aj is geometrically distributed (Lemma 1), Hence

m+1

liminflnKr[G] —
I(y) = —I(y) (5.22)

and since y was an arbitrary point of G

1iminflnK[GJ sup(—I(y)) = —infI(y). tS.23)
G

§6 A Large Deviation Result for a Banach Space-valued Random Variable

Let X, : —i l be defined by

X°(w) = I’71N(w), X(w) = V’(w), 1;

th.enKr = o X’ is a probability measure on 1. = {x, 0 : x) < }. We

regard l as the positive cone of the real Banach space 1’ ; equipped with the norm

topology, l is a complete separable metric space (a Polish space). However, for our

purposes, the weak*-topology on j1 (the (j1, co) topology induced by the space CO of
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real sequences converging to zero) is the appropriate one for our purposes. The space

equipped with, the o(l’, c0) topology is not metrizable; nevertheless, the theory of large

deviations is still applicable since the o-field of Borel subsets of P is the same in both

the norm topology and in the a’(l’, c0 )topology (see Azencott [4] for a full discussion of

this point and Yamasaki [5] for the measure theory).

Notice also that each of the measures K is supported on the convex set {z E

= E1 x} since N(w)
=:

The proofs of the results in this section are more technical and we will not give

them here.

Lemma 4. Suppose that (Si) and (S2) hold and that lirnj_i(j) 0 forj = 1,2,...

then, for < 0, we have for each t in c0

C[t]
= urn

Cj[tJ =
p( + t0)

—
p(), t E (6.1)

1 L. , otherwise,

where

Cr[t] =

and

= {t E c, : t0 + < 0,t0 +supt3 -rc < 0}. (6.2)
j1

Let I[xj = supEC {< s,t > .CIL[tj}; then a straightforward caculation yields

I[xj =
p() + f(x0 x e D (6.3)

1. otherwise,

where

= {x E 1 x0 x}. (6.4)

J1

Theorem 3. Suppose that (Si) and (S2) hold and that limj_ ‘\i(j) = 0 for j =

1, 2,...; then, for < 0, the sequence

{Kr=P/oXr’:l=1,2,...}

ofprobability measures on l satisfies the Large Deviation Principle with constants {}
and rate-function P’[.].
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§7. A Large Deviation Result for the Occupation Measure

We introduce a measure-valued random variable

Lj(w; B) =

J1

where SA{BJ = 1 if \ is in B and is zero otherwise. Then L1 maps Q into the space

E = M(R) of positive bounded measures on the positive real line. Let K = Pt’ aLl’

be the induced probability measure on E; in terms of this we can express the expectation

of a functional of L1 as an integral over E. For example,

Er[e_N2/2}
=

where G(m) = _Jm2 and mW = ffO) m(d.A). But even in this simplest of examples

there is a difficulty in applying Varadhan’s Theorem (supposing that we have established

a Large Deviation result for {K}. It is this: in order to prove a Large Deviation result,

we have to make use of the weak*-topology on E determined by C3(Rj, the continuous

functions vanishing at infinity; but the function m —+ mJ is not continuous in this

topology and Varadhan’s Theorem does not apply. We get around this difficulty as

follows: we introduce a cut-off T and prove a Large Deviation result for K = Pt’ a LI’

where now

Li(w;B) = J(w)SA1(3)[B}; (7.1)
{j:A, (j)<T}

then we prove an estimate for Pt’[X ] where

X?’(w)=V j(w). (7.2)

{j:Aj (j)>T}

We state these results without proof:

Theorem 4. Suppose that (Si) and (S2) hold; then, for < 0, the sequence {Kr =

Pt’ a L’ } of probability measures on M([O, T]) satisfies the Large Deviation Principle

with constants {} and rate-function I{ 1’ given by

I”[rnj= sup {<m,t>—C{t}} (7.3)
C([O,79)

where

CM{t] = Jo{p(i. + t(A)IA) p(x)}dF(A), supro{t(A) —
A} <—ia,

(7.4)
1% 00, otherwise.
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Lemma 5. For 6 > 0 a.nd 2’ such that

p’()dF(A) <

we have

liminfP1[Xt <6] 1 — e2 (73)

§8 Applications

In this section, we sketch some applications to the statistical mechanics of models
of the interacting boson gas. In [6] in this volume, we used Theorem 1 of §4 to prove
the existence of the pressure in the mean-field model.

In the same way, Theorem 2 of §5 has been used to prove the existence of the
pressure in the Huang-Yang-Luttinger model; details will be found in [7). Let H1() be
the hamiltonian of the free boson gas in the region Aj; the rn-level H-Y-L model has
hamiltonian

Hm)(W) = IIj(w) + {2N(w)2 - (8.1)

with a > 0. It was introduced in [8] and discussed also by Thouless [9]. Using Varadhan’s
Theorem and Theorem 2 we can prove

Theorem 5. Suppose that (Si) and (S2) hold and that inf{1\ F(1\) > 0} = 0. Then
the pressure

(m) . (rn)p () = urn p1 ()

in the H- Y-L model with harniltonian (8.1) exists for all real values of and is given by

a 2 2p’ ‘(u) = sup {xo — f(xo x) — (2x0 — ‘)}. (8.2)

Remarks:

(1) The results is independent of m for m 1, so that it is reasonable to conjecture
that the same result holds for the pressure pj in the H-Y-L model with hamiltonian
H; we hoped to prove this using Theorem 3 of §6, but, so far, technical difficulties
have prevented us.
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(2) No explicit assumption is made concerning the existence of limj_. A1(j), while

the A(j) = Aj(j), j = 1,.. . , rn + 1, occur explicitly in the statement of Theorem

2. The reason is that inf{A : FtA) > 0} = 0 implies that .A(j) = 0 for j = 1, 2,....

are equal.

The H-Y-L model is a special case of the diagonal model [9] for which the hamilto

nian is

Hf() = H1() + —

+
u(1(i),A1(j))(w)i(w). (8.3)

— 1=1 j=1

The last two terms in this hamiltonian have different asymptotic behaviour for large 1.

To understand the effect of each of these two terms we study them separately. Therefore

we consider the regularized hamiltonian:

H1R(w) = IIi(w) + v(A1(i), Aj(j))(j(w). (8.4)

:=1 j=1

If we assume that v: R —+ R is continuous, bounded and positive then we can use

Theorem 4 and Lemma 5 of §7 to obtain the following result which is proved in [10].

Theorem 6. Suppose that (S1)and (S2) hold; then the pressure R() corresponding

to the sequence of ha.rniltonians {H} is given by

= sup tUmW fR{j} (8.5)
mEM(R+)

where
fR{m]f Am(dA)+f m(d)f m(dA’)v(A\’)

[o,) [o,) [O)

-3’ f s(p())dF() (86)
[O,)

and

s(x) = (1 +x)ln(l+x) —zlnx; (8.7)

here

m(d.A) = rn,(d\) + p()dF(X) (8.8)
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is the Lebesgue decomposition of m with respect to dF(\).
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