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§1 INTRODUCTION

In this lecture, we discuss the density of particles having energy less than )
in a boson system as a stochastic process indexed by ). The notation is that of
(1] in this volume. Recall that the hamiltonian for the free boson gas is given by

Hy(w) = j);lx,(j)cj(w), (1.1)

where 0 = X,(1) € %,(2) ¢ ... . For a system in a region of volume V,, the
grand canonical pressure p,(u) is defined for u <0 by

scumm-n,(u))}' (1.2)

1
- — §
p,(u) BV, n{wéne

In [2] in this volume, we recalled results (proved in [3]) on the existence of the
pressure in the thermodynamic limit:

plp) = !lzimwp,(u). (1.3)

In order to discuss the phenomenon of boson condensation, we introduced in [3] the
family of random variables ({X,(*:}):) » 0} defined by

) = 1 > o; (w). (1.4)
Xglon) = g (a1 j

For the free boson gas, we have the following result:

THEQREM 1
Suppose that (S1) and (S2) hold:; then, for p. finite,
ip Lim Ef (X, (0] = (p-p)t. (1.5)

[Conditions (S1) and (S2) and the critical density p. are defined in §2 and §3 of
(2] in this volume. Here Ef{[-] denotes the expectation taken with respect to
the grand canonical probability measure PH[-] with u = uy(p), defined in §3 of



[2]; it is the expectation at fixed mean density p.]

Proof:

From the definition of Xf(x), we have

EQIX, (1)1 = [P (g (p)1N)AF, ) = p - R SINC AN (1.6)
(0,») =)

But, for u < X\, the sequence
{ Ip'(ulx)dF,(x):! - 1,2,...} (1.7)
[, =)
converges uniformly in ux on compacts to
J'p'(mm(x). (1.8)
(=)
Hence, by Proposition 2 of [2], we have for X > 0:
Lm BRI, )] = p - [t (1.9)
[, =)

But, by hypothesis, p. 1s finite so that we may invoke the dominated convergence
principle to conclude that

p . P < pe
n jp'(u(p)lx)dF(x) - [p'(u(p)lx)dF(x) = [p ¢

[y, =) (0,=)

3
c PBPC°

Thus we have

%imof‘,’[x,(x)] - (p-p)t &

In the free boson gas there is a second effect, discovered by M. Kac in 1971. He
saw in §3 of [2] that the free-energy has a first-order phase-transition segment
[pc,w); it follows that for p>p. there is no guarantee that the weak law of
large numbers will hold for the distribution X§ -IPQ(:X;l of the number density
Xy = N/V,. In fact, there is no guarantee that for, p>pe, the sequence
{KQ:2 = 1,2,...} will converge; nevertheless, by the Helly Selection Principle, a
subsequence will converge, but the limit distribution will depend on the detailed
behaviour of the corresponding subsequence of the sequence {(xg(+):2 = 1,2,...}. In
other words, it is possible to have two sequences, {xg(*):2 =1,2,...} and
{in(')=1 =1,2,...}, each satisfying (S1) and (S2) and having the same integrated
density of states F(-) but having limit distributions KP and KP which are



distinct for p > pe- (For p < Pc. they must both be equal to Sp, the degenerate
distribution concentrated at p, by Theorem 1 of (1].) For example, Kac showed that
in the standard example (described in §3 of [2]) the limit distribution Is the
éxponential distribution supported on [p.,=) with mean p, for p> Pc: other
examples are investigated in detail in [3]. Ve shall see in the next section that,
in the nean-field model, this phenomenon disappears: there Is no first-order
phase-transition segment, the grand canonical Pressure exists for aj] values of 4

and is a differentiable function; the weak law of large numbers holds for Xy, for
all values of the mean density p, nevertheless, condensation persists, In these
Clrcumstances it becones interesting to regard A — Xp(*:2) as a stochastic
process and to enquire about the convergence in distribution of a re-scaled, centred
version of it. This we do in §3.

§2 THE MEAN FIFLD-MODEL

To describe the mean-field model, we define a Sequence of hamiltonians
(Hpst = 1,2,...) by

Hy () = Hy () + = §2(u) (2.1)
2v,

a
With a > 0. The ternm EV—NZ’ which provides acrude caricature of the interaction,
2

can be understood classically: it arises in an "index of refraction” approximation

a uniform optical medium and so receiving an increment of energy proportional to the
density Xg = N/Vyi since a is Positive the interaction is repulsive.
First, we compute the pressure E,(u), as explained in §4 of [1], writing

a
u(x) = (p-a)x - Exz, a straight-forward manipulation gives

~ 1 BV,u(X 1 BV,u(x)
Pypli) = pyla) + gy In Efle ! ( ')] = pyla) + av_In fe ke ax ] (2.2)
1 ]
(0,=)
for each « < 0, where ]K‘} - P‘,"oX;l. But x — u(x) is continuous and

bounded above and {K§:0 = 1,2,...)} satisfies the Large Deviation Principle with
rate-function I%(x) = pla) + £(x) - ax, by Theorem 1 of [2]. Hence, by Varadhan's

First Theoren, E(u) = {QLE,(u) exists and is given by

pu) = pla) + sgp(u(x) - I%(x)} = sgp{ux - ?(x)), (2.3)
where the mean-field free-energy £(+) Is given by

£(x) = f(x) + gxz. (2.4)



Thus we have proved:

THEQOREM 2

Suppose that (S1) and (S2) hold; then the mean-field pressure exists for all real pu
and is given by
plu) = sgp{ux-g(x)), (2.5)

~ ~ a
where X —> £(X) s the mean-field free energy, given by f(x) = £(x) + Exz.

Next, we introduce the mean-field expectation functional If%[’] defined by

BM, BM,

E4(-] = EF[-e 'V/Efle '], (2.6)

and the associated probability measure Iﬁ?[‘], where

My = VyuXy). (2.7)

CORQLLARY

The mean-field pressure @ —> S(u) is differentiable for all values of 1 The sequence
of distribution functions {112‘1‘ - ]ls'i‘o)(;l] converges weakly to the degenerate distribution
) concentrated at p = 5'(u) and satisfies the Large Deviation Principle with constants

P - ~ -
{Vy} and rate-function IF(x) = p(u)+ £(x)-ux.

Proof:

Since x —> f(x) is strictly convex for 0 ¢ x <p. and constant for

a
pc € X < » and ¥ ——>-§x2 is strictly convex for 0 ¢ X < = the function

~ a
x —> f(x) = £(x) + Exz is strictly convex for 0 € x < =; hence there 1is no

first-order phase-transition segment; equivalently, & —_—> E(u), the Legendre
transform of x —> f(x), is differentiable for u < =. It follows from Theorem 1
of [1] that Iﬁf ~ 85, where p = p' (), and from Theorem 4 of [1] that
{K¥:2 = 1,2,...} satisfles the Large Deviation Principle with constants {V,}
and rate-function IX(:) B

Although the first-order phase-transition segment, which was present in the free
energy function of the free-gas, has disappeared, the phenomenon of condensation

persists:



THEQREM 3

Suppose that (S1) and (S2) hold; then. for pe finite, we have

lin lim E&[X, ()] = (p-p)t . (2.8)

@®

where fi‘['] is the mean-field expectation functional and p = p'(u).

Proof:

First, we remark that an elementary exercise yields the following alternative
formula for the mean-field pressure 5(u):

~ . (u—a)z

= inf{——mm

P (k) a<8{ 23

where p(a) is the free-gas pressure. The idea of the proof of (2.8) is that we

+ p(a)}, (2.9)

compute the cumulant generating function of Xg(\); since
VRX!(X) = V‘X! - . z . aj (2-10)
SERYISR22Y:

we get

where Iﬁ}s'X)'“['] is the mean-field expectation functional for which the free-gas

hamiltonian has been modified by the addition of the term T 505 . These
jang (5 IOX
considerations yield the formula {] !(J )

- 3 ~
i By (a2 - — A 2.
Lin EF X, 0] asMu+&s,)Lﬂy (2.11)

where

~ )l
plp+sis,\) = gQg{iEjligiil— + p(a;s,x)} '

and

plars,) = Ipuxlx)dmn j'p<a|s+nar<x>.
[0,%) [y, =)

A standard argument, using Griffith's Lemma, yields the result. ®

§3 FLUCTUATIONS IN THE MEAN-FIELD MODEL

Fluctuations in X, = N/V, in the mean-field nodel in the thermodynamic limit



were studied for the standard example, described in §3 of [2] in this volume, by
Davies [4], Wreszinski (5], Fannes and Verbeure [6] and Buffet and Pule [7]. The
mean-field model in the general situation, where the only assumptions about the
single-particle spectrum are that (s1) and (S2) hold, was investigated in [8]; we
have summarized the results of [8] in §2 and now go on to investigate the
fluctuations in Xj. In fact, we do rather more; we regard » —> X,(\) as a

stochastic process and prove a central limit theorenm:

THEQREM 4

Let Z,(\) = V}/Z(X,(x) - ]E%[X,(X)]}: then, for u < 3pq Zy () & Z{)\), where

Z(\) is gaussian with mean zero and covariance r(xl,xz) given by

T, hp) = I8 Av, - Eigligz (3.1)
' M2y ae
where
= [Pt e) (3.2)
(0,)

_ 2
and «(w) is the value of « at which  inf {-(—’-‘—ﬁ-)—- + p(a)} is attained.
acol 22

Sketch of proof:

The result follows from a routine, but somewhat tedious, calculation of

B(s1Zy (N )+s9Z5(25))
RN 2) ]

along the lines of the proof of Theorem 3. B
It is interesting to identify the process Z(*) in terms of a standard process.

THEQOREM 5

Let B(') be a BM(1), a brownian motion in Rl starting at zero; then, for

u < apeq

ajJ
Z(x)(g)B(J%) - { B(JE+1/a). (3.3)
1 + aJk




Proof:

A routine computation shows that the mean of the right-hand side of (3.3) is
28ro and the covariance is the same as that of Z(-), given by (3.1). Hence the
tWwo gaussian processes are equal in distribution. |

The process (3.3) is a modification of a time-changed brownian bridge; it never
reaches the point at which it is tied-down but, as a increases, that point conmes
Ccloser to JK. This shows how, as the strength of the interaction increases, the
fluctuations in Z(=) are damped down.

It is a little more difficult to deal with the case u > dp-: We introduce

and prove in analagous fashion:

THEQREM 6

(d
For u > ap, W,(x) -—-; W(X)., where W(\) is q gaussian process with mean zero and

covariance T (X\y,\y) given by

T(A.hp) = Kgi‘”z . (3.5)
where
k¢ = [oronar(). (3.6)

(X, =)

In this case,

w(n(g)xga%]. (3.7)
|

The method by which we discovered the representations may be of some interest.
The stochastic differential equation satisfied by a process (xt)t;O with
filtration (Fy) 1s discussed by Nelson [9]; see also McGill [10].

Suppose that a process { Xt,}'t) satisfies the stochastic differential equation

t t
Xe = X + [ olu,X,)dB(w) + [T xau, (3.8)

S S
then



t -s

and

0?(s,Xg) = |in E (X - Xg)21Fg] (3.10)

t-s
Assuming that the processes Z()),W()) satisfy stochastic differential equations,
the corresponding coefficients o and T can be computed using (3.9) and (3.10);
this is a routine exercise starting from the expressions (3.1) and (3.5) for the
covariances since the processes are gaussian. Obvious time-changes then give the
stochastic differential equations for a brownian bridge and a brownian motion
respectively.
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§1 INTRODUCTION

In this lecture, we discuss the density of particles having energy less than )
in a boson system as a stochastic process indexed by . The notation is that of
[1] in this volume. Recall that the hamiltonian for the free boson gas is given by

Hy(w) = jglxn(j )oj (w), (1.1)

where 0 = ,(1) € »,(2) ¢ ... . For a system in a region of volume V,, the

grand canonical pressure p,(g) is defined for u <0 by

B(uN(w)—Hz(w))}. (1.2)

1
= — 1
Py (W) BV, n{wéne

In [2] in this volume, we recalled results (proved in [3]) on the existence of the

pressure in the thermodynamic limit:

p(u) = limp, (p). (1.3)

2—)0)

In order to discuss the phenomenon of boson condensation, we introduced in [3] the
family of random variables ({X,(*;)\):x > 0} defined by

1
) = — ) o; (w). (1.4)

For the free boson gas, we have the following result:

THEOREM 1
Suppose that (S1) and (S2) hold; then, for p. finite,
o . +
%18 j12_1’11\0‘:]*5@ X, ()] = (p-p)7. (1.5)

[Conditions (S1) and (S2) and the critical density p. are defined in §2 and §3 of
[2] in this volunme. Here iEﬁ('] denotes the expectation taken with respect to
the grand canonical probability measure TPH[-] with pu = uy(p), defined in §3 of



[2]; it is the expectation at fixed mean density p.]

Proof:

From the definition of X!(X), we have

ERIX,(\)] = [p'(uﬂ(p)|x)an(x) =p - I p' (kg (p)IN)AF (V). (1.6)
[0,%) (x,=)

But, for u < )\, the sequence

{ j‘p'(ulx)dFR(x)u - 1,2,...} (1.7)
[, =)

converges uniformly in u on compacts to

Ip’(MIX)dF(x). (1.8)
[x,=)

Hence, by Proposition 2 of [2], we have for X > 0:

L ERLG, (01 = p - [pLOIINGF (). (1.9)
v, =)

But, by hypothesis, p. 1is finite so that we may invoke the dominated convergence
principle to conclude that

p . P < pc

lin Ip'(u(p)IX)dF(x) - Ip’(u(p)IX)dF(X) -
240 P 2 Pe-
I\, =) (0,=) c’ c

Thus we have

leimeFj[X,(x)] = (p-p)t B

In the free boson gas there is a second effect, discovered by M. Kac in 1971. VWe
saw in §3 of [2] that the free-energy has a first-order phase-transition segment
[pc,m); it follows that for p>p. there is no guarantee that the weak law of

large numbers will hold for the distribution KR -IP@c:X}l

of the number density

Xy = N/Vn. In fact, there is no guarantee that for, P> Pe the sequence
{KR:2 = 1,2,...} will converge; nevertheless, by the Helly Selection Principle, a

subsequence will converge, but the limit distribution will depend on the detailed
behaviour of the corresponding subsequence of the sequence ()2 =1,2,...0. In
other words, it is possible to have two sequences, {\g(+):2 = 1,2,...} and
{ﬁﬂ('):n =1,2,...}, each satisfying (S1) and (S2) and having the same integrated

density of states F(') but having limit distributions XP and RP  which are



distinct for p > po. (For p < po, they must both be equal to &,, the degenerate
distribution concentrated at p, by Theorem 1 of [1].) For example, Kac showed that
in the standard example (described in §3 of [2]) the limit distribution is the
exponential distribution supported on [pc,°) with mean p, for p > Pci other
examples are investigated in detail in [3]. We shall see in the next section that,
in the mean-field model, this phenomenon disappears: there is no first-order
phase-transition segment, the grand canonical pressure exists for all values of

and is a differentiable function; the weak law of large numbers holds for X, for
all values of the mean density p; nevertheless, condensation persists. In these
circumstances it becomes interesting to regard x —> X,(‘:}) as a stochastic
process and to enquire about the convergence in distribution of a re-scaled, centred
version of it. This we do in §3.

§2 THE MEAN FTELD-MODEL

To describe the mean-field model, we define a sequence of hamiltonians
(Hp:2 = 1,2,...} by

() = Hy () + = N2(w) (2.1)
2V,

with a > 0. The ternm ESINZ' which provides acrude caricature of the interaction,
can be understood classically: it arises in an "index of refraction" approximation
in which we imagine each particle to move through the system as if it were moving in
a uniform optical medium and so receiving an increment of energy proportional to the
density X, = N/Vy,; since a is positive the interaction is repulsive.

First, we compute the pressure E!(u), as explained in §4 of [1]: writing

a
u(x) = (p-a)x - Exz, a straight-forward manipulation gives

~ 1 Vou(X 1 BV, u(x)
Py ) = pyla) + Ev—!n E?[GB 2t !)] = pyla) + Erln Je 2t K§(dx] (2.2)
2 2
[0,=)
for each « < 0, where K§ = Pj‘ole. But x —> u(x) 1is continuous and

bounded above and {K§:2 = 1,2,...} satisfies the Large Deviation Principle with
rate-function I%(x) = p(«)+f(x)-ax, by Theorem 1 of [2]. Hence, by Varadhan's

First Theoren, B(u) - {gaﬁ,(u) exists and is given by

plr) = pla) + suplulx) - I%(x)} = suplux - £(x)}, (2.3)
where the mean-field free—energy f(-) is given by

f(x) = £(x) + %xz. {2.4)



Thus we have proved:

THEOREM 2

Suppose that (S1) and (S2) hold; then the mean-field pressure exists for all real yu
and is given by

plu) = sgp(ux-—%(x)}, (2.5)

~ -~ a
where X —> f(x) is the mean-field free energy, given by f(x) = £(x) + -2-x2.

Next, we introduce the mean-field expectation functional Iﬁ%['] defined by

~ BM BM
EE(-] = EFlre LV/Efle '], (2.6)
and the associated probability measure Iﬁf['], where

COROLLARY

The mean-field pressure @ —> E)(u) is differentiable for all values of w1 The sequence
of distribution functions {IK.";{‘ = ]13‘2‘0)(;1} converges weakly to the degenerate distribution
5 concentrated at p = 5’(11) and satisfies the Large Deviation Principle with constants

p ~ . ~
{Vy} and rate-function IH(x) = p(p) + £(x) - px.

Proof:

Since x —> f(x) is strictly convex for 0 < x < p. and constant for

a
pc $ x <= and x —> EXZ is strictly convex for 0 ¢ x < =, the function

~ a
x —> f(x) = f£(x) +-5x2 is strictly convex for 0 ¢ x < =; hence there is no

first-order phase-transition segment; equivalently, g —> 5(#), the Legendre
transform of x —> f(x), |is differentiable for ¢ < =. It follows from Theoren 1
Oﬁ. [1] that Zﬁf ~ 8,, Where p = p'(z), and from Theorem 4 of [1] that
{Kf:2 = 1,2,...} satisfies the Large Deviation Principle with constants ({V,}
and rate-function IHK(‘) B

Although the first-order phase-transition segment, which was present in the free
energy function of the free-gas, has disappeared, the phenomenon of condensation

persists:



THEQREM 3
Suppose that (S1) and (S2) hold; then, for p. finite, we have

i

lig 1in Ef(X 001 = (p-pc) (2.8)

where fﬁ’j{[‘] is the mean-field expectation functional and p = 5' (e).

Proof:

First, we remark that an elementary exercise yields the following alternative

formula for the mean-field pressure E(u):

- (- a)?
plu) = égg{ >a + p(a)}, (2.9)
where pla) is the free-gas pressure. The idea of the proof of (2.8) is that we

compute the cumulant generating function of X,()); since
VX (W) = VX, - z o; (2.10)
20 249
{Jaxg (GO>X} J

we get
]E‘;[est!xﬂ()\ﬂ - ﬁ(flx)'u[eBSV2X!],

where Zﬁés'X)'“['] is the mean-field expectation functional for which the free-gas

hamiltonian has been modified by the addition of the term T soj . These
jixg (JION)
considerations yield the formula g

= a -~
%immE%[X!(x” - -é;p(u+s:s,x)|sno, (2.11)

where

~ . (u+s—a)2
iS,\) = e 1S, '
plu+s:s,\) égg{ >a + plass )}

and

plass,)) = J.p(alx)dF(X)+ Ip(a|s+x)dF(x).
[0.)) [x,=)

A standard arqument, using Griffith's Lemma, yields the result. ®

§3 FLUCTUATIONS IN THE MEAN-FIELD MODEL

Fluctuations in X, = N/V, in the mean-field model in the thermodynamic limit



were studied for the standard example, described in §3 of (2] in this volume, by
Davies [4], Wreszinski [5], Fannes and Verbeure [6] and Buffet and Pule [7]. The
mean-field model in the general situation, where the only assumptions about the
single-particle spectrum are that (s1) and (S2) hold, was investigated in [8]; we
have summarized the results of [8] in 82 and now go on to investigate the
fluctuations in Xj. In fact, we do rather more; we regard » —> Xg(\) as a

stochastic process and prove a central limit theorem:

THEOREM 4

Let Z,(\) = V}/z{X!(X) - ]E%{Xn(x)]}; then, for < aps Zy(\) -(—dg Z(\), where

Z(\) is gaussian with mean zero and covariance T(\y,Xp) given by

" aJ{ Ji
T(hy, %) =17 N , (3.1)
172 M2y aJk
where

T = J'p"(am)mdr(x) , (3.2)

(0,»)
: . C(le-w)? ‘ ‘

and olp) is the value of « at which  inf {-—-—-—— + p(c:)} is attained.

o<0

Sketch of proof:

The result follows from a routine, but somewhat tedious, calculation of

1

1i B(Slzn(xl)+5221()\2))]
2-)

m,,,f% [e

along the lines of the proof of Theorem 3. |
It is interesting to identify the process Z(*) in terms of a standard process.

THEOREM 5

Let B(*) be a BM(1), a brownian motion in Rl starting at zero; then, for

© < ape

aJ
Z(x)(g)B(J’;) - ———i—— B(JE+1/a). (3.3)

1+ aJk



Proof:

A routine computation shows that the mean of the right-hand side of (3.3) is
-ero and the covariance is the same as that of Z(-), given by (3.1). Hence the

two gaussian processes are equal in distribution. &

The process (3.3) is a modification of a time-changed brownian bridge:; it never
reaches the point at which it is tied-down but, as a increases, that point conmes
closer to JE. This shows how, as the strength of the interaction increases, the
fluctuations in Z(=) are damped down.

It is a little more difficult to deal with the case u > ap.; we introduce

ul()‘) = z!(a) - Z!(X) (3.4)
and prove in analagous fashion:
THEQREM 6

(d
For u > aps, Wo(\) —; W(\), where W(\) is a gaussian process with mean zero and

covariance T (\y,)\p) given by

T(h, %) = Kﬁfl\”2 , (3.5)
where
kg = [promdrn). (3.6)

[y, =)

In this case,

w(x)(g)KﬁfB[&]. (3.7)
1

The method by which we discovered the representations may be of some interest.
The stochastic differential equation satisfied by a process (Xt)tao with
filtration (Fy) is discussed by Nelson [9]; see also McGill {101].

Suppose that a process (X¢,Fy) satisfies the stochastic differential equation
t't

t t
Xg = Xg + j o(u,X,)dB(u) + J T (u, X )du; (3.8)

s
then



E [X; - XgIFg] (3.9)

[

— E [ -Xg)? 1751 (3.10)
Assuming that the processes Z()),W(\) satisfy stochastic differential equations,
the corresponding coefficients o and T can be computed using (3.9) and (3.10);
this is a routine exercise starting from the expressions (3.1) and (3.5) for the
covariances since the processes are gaussian. Obvious time-changes then give the
stochastic differential equations for a brownian bridge and a brownian motion
respectively.
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