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§1 INTRODUCTION

In this lecture, we discuss the density of particles having energy less than X

in a boson system as a stochastic process indexed by X. The notation is that of

[1] in this volume. Recall that the hamiltonian for the free boson gas is given by

H2(w) •Ex1(J)a.(w), (1.1)
J1 J

where 0 x(1) x1(2) ... . For a system in a region of volume V1, the

grand canonical pressure p2(JL) is defined for j < 0 by

1 1
p(IL) — nZe j. (1.2)

In [2] in this volume, we recalled results (proved in [3]) on the existence of the

pressure in the thermodynamic limit:

p(L) limp1($L). (1.3)

In order to discuss the phenomenon of boson condensation, we introduced in [3] the

family of random variables {X1(;x):x 0 defined by

X (w.x) I. E Qj(W). (1.4)

V1 {j:k(j)X}
1

For the free boson gas, we have the following result:

THEOREM I

Suppose that (Si) and (52) hold; then, for c finite,

li lirn [X,(x)] —
(1.5)

[Conditions (Si) and (52) and the critical density are defined in §2 and §3 of

[2] in this volume. Here E[’) denotes the expectation taken with respect to

the grand canonical probability measure iPt] with g — j1(p), defined in 93 of



[2]; it is the expectation at fixed mean density p.]

Proof:

From the definition of X1(>.), we have

fp1(LL(p)I)dFI(X) p
- f p(u1(p)IX)dF,(x). (1.6)

[O,x) [x,)

But, for .L < X, the sequence

f fp’(Ix)dFi():1 -1,2,.. (1.7)

[x,)

converges uniformly in g on compacts to

fp’()dF(). (1.8)

[x,)

Hence, by Proposition 2 of [2], we have for X > 0:

limE[X1(x)] - p - Jp((x)Ix)dF(x). (1.9)

But, by hypothesis, p is finite so that we may invoke the dominated convergence

principle to conclude that

r IP P<Pc,

li JP’ (p.(p)IX)dF(X) — jP’ (ji(p)Ix)dF(x) —

[)
‘ P

Thus we have

iim:E[X,(X)]
—

In the free boson gas there is a second effect, discovered by M. Kac in 1971. We

saw in §3 of [2] that the free—energy has a first—order phase—transition segment

it follows that for p>pC there is no guarantee that the weak law of

large numbers will hold for the distribution IK’ — oXj1 of the number density

X N/V1. In fact, there is no guarantee that for, p>Pc, the sequence

{fl(:2 — 1,2,...) will converge; nevertheless, by the Helly Selection Principle, a

subsequence will converge, but the limit distribution will depend on the detailed

behaviour of the corresponding subsequence of the sequence {)(i:1 — 1,2,...). In

other words, it Is possible to have two sequences, {X,(i:1 — 1,2,...) and

{(i:1 — 1,2,...), each satisfying (Si) and (S2) and having the same integrated

density of states F(S) but having limit distributions EP and which are



distinct for p > (For p < Pc’ they must both be equal to S, the degeneratedistribution concentrated at p, by Theorem 1 of [11.) For example, Kac showed thatin the standard example (described in §3 of [21) the limit distribution is theexponential distribution supported on [p0) with mean p, for p > p otherexamples are investigated in detail in [31. We shall see in the next section that,in the mean—field model, this phenomenon disappears: there is no first—orderphase—transition segment, the grand canonical pressure exists for all values of gand is a differentiable function; the weak law of large numbers holds for X1 forall values of the mean density p; nevertheless, condensation persists. In thesecircumstances it becomes interesting to regard x --+ X1(;X) as a stochasticprocess and to enquire about the convergence in distribution of a re—scaled, centredversion of it. This we do in §3.

§2 THE MEAN FIELD—MODEL

To describe the mean—field model, we define a sequence of hamiltonians1,2,...) by

(w) — H1(w) + N2(w)
(2.1)

with a > 0. The term _?_N2, which provides a crude caricature of the interaction,
2V1

can be understood classically: it arises in an “index of refraction” approximationin which we imagine each particle to move through the system as if it were moving ina uniform optical medium and so receiving an increment of energy proportional to thedensity X2 N/V1; since a Is positive the interaction is repulsive.First, we compute the pressure p,(g), as explained in §4 of [11: writingu(x) — (JL—c)x — a straight—forward manipulation gives

— p1(a) + —1n
— p1(a) + —1n feE[dx] (2.2)

[O,)
for each a < 0, where 1K — PoX. But x —> u(x) is continuous andbounded above and {]c:i — 1,2,...) satisfies the Large Deviation Principle withrate—function Ia(x) — p(a)+f(x)—ax, by Theorem 1 of [2]. Hence, by Varadhan’sFirst Theorem, p(JL) — limp1(g) exists and is given by

— p(a) ÷ sup(u(x) — I%x)} — sup{gx — f(x)}, (2.3)where the mean—field free—energy f(’) Is given by
f(x) — f(x) + !2

(2.4)



Thus we have proved:

THEOREM 2

Suppose that (Si) and (S2) hold: then the mean-field pressure exists for all real u

and is given by

p(IL) — sup{JLx—f(x)}, (2.5)

where x —4. f (x) is the mean-field free energy, given by f (x) — f (x) + x2.

Next, we introduce the mean—field expectation functional E(’) defined by

E7eMhj/]E[eM1J
,

(2.6)

and the associated probability measure F[J, where

— Vu(X1).
(2.7)

COROLLARY

The mean-field pressure JL
—

p (g) is differentiable for all values of IL. The sequence

of distribution functions { )K — 0 Xj) converges weakly to the degenerate distribution

concentrated at p — p’ (IL) and satisfies the Large Deviation Principle with constants

{V} and rate-function IIL(x)
— p(IL) + f(x) — jix.

Proof:

Since x —4. f(x) is strictly convex for 0 x < p0 and constant for

p0 x < and x —4. is strictly convex for 0 x < , the function

x —4. f(x) — f(x) + Is strictly convex for 0 x < ; hence there is no

first—order phase—transition segment; equivalently, g —4. p(g), the Legendre

transform of x — f(x), is differentiable for g < . It follows from Theorem 1

of [1) that E -. s, where p — p’ (g), and from Theorem 4 of [1] that

i,2,...} satisfies the Large Deviation Principle with constants {V}

and rate—function IIL()

Although the first—order phase—transition segment, which was present In the free

energy function of the free—gas, has disappeared, the phenomenon of condensation

persists:



THEOREJ 3

Suppose that (Si) and (52) hold; then, for finite, we have

lii urn E[x,(X))
—

(p—pY (2.8)
XJ.L) 2-’

where :E[ I is the mean field expectation functional and p p (g)

Proof

First, we remark that an elementary exercise yields the following alternative

formula for the mean—field pressure p()

- .

______

p(,
2a

+ (2.9)

where p() is the free—gas pressure. The idea of the proof of (2.8) Is that we

compute the curnulant generating function of X1(X), since

V1X1(x) V,X, — I (2 10)
{j :X1(j )>x}

we get

—

where i4s1>)’f I is the mean—field expectation functional for which the free—gas

hamiltonian has been modified by the addition of the term I sai. These
{j :X (j )>)}

considerations yield the formula 1

lirn[X1(x)) — -p(Jh+s;s,X)1 (2.11)
s—0

where

p(JL+s;s,X)
— t. 2a

+ p(a;sx)

and

p(a;s,X) - fp(alx)dF(x) + j’p(als+x)dF(x).

[O,x)

A standard argument; using Griffith’s Lemma, yields the result. I

§3 FLUCTUATIONS IN THE MEAN—FIELD MODEL

Fluctuations in X1 — N/V1 in the mean—field model in the thermodynamic limit



were studied for the standard example, described in §3 of (2] in this volume, by

Davies [4], Wreszinsk]. [5), Fannes and Verbeure [6] and Buffet and Pule [7]. The

mean—field model in the general situation, where the only assumptions about the

single—particle spectrum are that (Si) and (52) hold, was investigated in [8); we

have summarized the results of [8) in §2 and now go on to investigate the

fluctuations in X1. In fact, we do rather more; we regard X — X1(x.) as a

stochastic process and prove a central limit theorem:

THEOREM 4

Let Z1(X) Vy2{X,(X)
- [X1(X))}: then, for g < ape. Z,(X) Z(x), where

Z (x) is gaussian with mean zero and covariance r (x1, > 2 given by

aJ J

r(x1,x2) 1AX2
- 1 2 (3.1)

1 + aJ

where

(3.2)

[O,x)
_a)2

and a(g) is the value of a at which inf [ g
+ p (a)) is attained

a<O 2a

Sketch of proof:

The result follows from a routine, but somewhat tedious calculation of

1 im
(X1)+s2Z1

along the lines of the proof of Theorem 3.

It is interesting to identify the process Z() in terms of a standard process.

THEOREM 5

Let B ( ) be a BlI (1) a brownian motion in starting at zero then for

g < ap

(d) aJ
Z(x) B(J) — B(J+1/a). (3.3)

1 + aJ



Proof:

A routine computation shows that the mean of the right—hand side of (3.3) j
zero and the covarlance is the same as that of Z(i, given by (3.1). Hence thetwo gaussian processes are equal in distribution. I

The process (3.3) is a modification of a time—changed brownian bridge; it neverreaches the point at which it is tied—down but, as a increases, that point comescloser to J. This shows how, as the strength of the Interaction increases, thefluctuations in Z() are damped down.
It is a little more difficult to deal with the case ji > ape; we introduce

W1(x) — Z1() — Z,(x)
(3.4)

and prove in analagous fashion:

THEOREM 6

(d)For g > ap W1 (x) —4- W (x). where W (X) is a gaussian process with mean zero and

covariance r
,

> 2 given by

r(x1,x2) — ,

(3.5)
where

fp”(OlX)dF(X).
(3.6)

[x ,

In this case,

W(x)KB[].
(3.7)

The method by which we discovered the representations may be of some interest.The stochastic differential equation satisfied by a process (Xt)to withfiltration is discussed by Nelson [9]; see also McGill [10].

Suppose that a process (Xt satisfies the stochastic differential equation

X - X + f a(u,X)dB(u) +
fT(u.Xu)du; (3.8)

then



r(s,X5) [X_XIT5) (39)

and

a2(s,X5) - U t s
[XtXs)2ITs). (3.10)

Assuming that the processes Z(x),W(.) satisfy stochastic differential equations,

the corresponding coefficients a and r can be computed using (3.9) an (3.10);

this is a routine exercise starting from the expressions (3.1) and (3.5) for the

covariances since the processes are gaussian. Obvious time—changes then give the

stochastic differential equations for a brownian bridge and a brownian motion

respectively
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§1 INTRODUCTION

In this lecture, we discuss the density of particles having energy less than X

in a boson system as a stochastic process indexed by X. The notation is that of

[1) in this volume. Recall that the hamiltonian for the free boson gas is given by

H(w) = •Z x(j)a.(w), (1.1)
p1 J

where 0 = x(1) x(2) ... . For a system in a region of volume V1, the

grand canonical pressure p2(n) is defined for < 0 by

1 1
p2(a) = — 1nZe 3. (1.2)

In [2] in this volume, we recalled results (proved in [31) on the existence of the

pressure in the thermodynamic limit:

p(g) = limp(g). (1.3)

In order to discuss the phenomenon of boson condensation we introduced in [31 the

family of random variables {X(;X):X 0} defined by

X ( •x) Z a•(w). (1.4)
V2 {J x(j )x}

For the free boson gas, we have the following result:

THEOREM 1

Suppose that (Si) and (52) hold then for finite

HITJ 1ITL)E )1 (PPcY’. (1.5)

[Conditions (Si) and (S2) and the critical density are defined in §2 and §3 of

[2] in this volume. Here ]E’[] denotes the expectation taken with respect to

the grand canonical probability measure [ I with j JL1(p), defined in §3 of



[2); it is the expectation at fixed mean density p.)

Proof:

From the definition of X1(x), we have

fp1((p)IX)dF1(X) p
-

p(2(p)lX)dF1(X).

[O,x) [x,)

But, for < x, the sequence

( fp’(Ix)dF1(x):1_12...

[)‘,)
I

(1.6)

(1.7)

converges uniformly in IL on compacts to

(gIX)dF(x).

Hence, by Proposition 2 of [2), we have for X > 0:

(1.8)

1imE[X1(X)) p - fp(IL(x)Ix)dF(x). (1.9)

But, by hypothesis, Pc is finite so that we may invoke the dominated convergence

principle to conclude that

IP P<Pc,

urn JP (IL(p)IX)dF(X) J’ (g(p)IX)dF(x) =

XL0 i

[x,°) [0,) ‘

Thus we have

iirn:E[X,(X)]
—

In the free boson gas there is a second effect, discovered by M. Kac in 1971. We

saw in §3 of [2) that the free—energy has a first—order phase—transition segment

[Pc,c0; it follows that for p>pC there is no guarantee that the weak law of

large numbers will hold for the distribution IK PoX1’ of the number density

X = N/V1. In fact, there is no guarantee that for, p>pC, the sequence

1,2,..} will converge; nevertheless, by the Helly Selection Principle, a

subsequence will converge, but the limit distribution will depend on the detailed

behaviour of the corresponding subsequence of the sequence {x( ) I — 12 } In

other words, it is possible to have two sequences, {X,(i:i — 1,2,...} and

{( ) 1 — 1,2, }, each satisfying (Si) and (52) and having the same integrated

density of states F( ) but having limit distributions XP and which are

I



distinct for p > (For p < they must both be equal to S, the degenerate

distribution concentrated at p, by Theorem 1 of [ii.) For example, Kac showed that

in the standard example (described in §3 of [2]) the limit distribution is the

exponential distribution supported on with mean p, for p > other

examples are investigated in detail in [31. We shall see in the next section that,

in the mean—field model, this phenomenon disappears: there is no first—order

phase—transition segment, the grand canonical pressure exists for all values of JL

and is a differentiable function, the weak law of large numbers holds for X for

all values of the mean density p; nevertheless, condensation persists In these

circumstances it becomes interesting to regard X —+ X1(;X) as a stochastic

process and to enquire about the convergence in distribution of a re—scaled, centred

version of it. This we do in §3.

§2 THE MEAN FIELD—MODEL

To describe

= 1,2,...) by

= H(w) +

with a > 0. The term _N2, which provides a crude caricature of the

for each a < 0, where

bounded above and {]K:i

rate—function Ia(x) — p(a)

:x PoXj1 But x —* u(x) is continuous and

1,2,...) satisfies the Large Deviation Principle with

+f(x)—ax, by Theorem 1 of [2]. Hence, by Varadhan’s

First Theorem, p(IL) — llmp1(g) exists and is given by

p(cc) ÷ sup{u(x) — I%x)} sup{ix —

where the mean—field free—energy f( ) is given by

f(x) — f(x) + x2.

(2.3)

(2.4)

the mean—field model, we define a sequence of hamiltonians

(2.1)

interaction,

can be understood classically it arises in an “index of refraction” approximation

in which we imagine each particle to move through the system as if it were moving in

a uniform optical medium and so receiving an increment of energy proportional to the

density X = N/Vs; since a is positive the interaction is repulsive.

First, we compute the pressure p1(jt), as explained in §4 of [1]: writing

u(x) = (—a)x — x2, a straight—forward manipulation gives

- p1(a) + —In = p1(a) + —2n feE[dxi (2.2)

[0,)



Thus we have proved:

THEOREM 2

Suppose that (Si) and (S2) hold; then the mean-field pressure exists for all real

and is given by

sup{JLx—f(x)}, (2.5)

where x —- f (x) is the mean-field free energy, given by f (x) f (x) + x2.

Next, we introduce the mean—field expectation functional ]E[ I defined by

E[eM1 jiifel3MhJ
, (2.6)

and the associated probability measure )P[’], where

— Vu(X1). (2.7)

COROLLARY

The mean-field pressure ji —* p(g) is differentiable for all values of ii, The sequence

of distribution functions { )K — 0 X) converges weakly to the degenerate distribution

concentrated at p p’ (ji) and satisfies the Large Deviation Principle with constants

V } and rate-function I1 (x) p () + f (x) — gx.

Proof:

Since x —- f(x) is strictly convex for 0 x < and constant for

a2
x < and x —- is strictly convex for 0 x < , the function

x —* f(x) — f(x) + x2 is strictly convex for 0 x < ; hence there is no

first—order phase—transition segment; equivalently, g —* p(,ñ, the Legendre

transform of x —+ f(x), is differentiable for < . It follows from Theorem 1

of [1) that -, si,, where p p’(g), and from Theorem 4 of [11 that

{:1 — 1,2,...} satisfies the Large Deviation Principle with constants {V2}

and rate—function 1g()

Although the first—order phase—transition segment, which was present in the free

energy function of the free—gas, has disappeared, the phenomenon of condensation

persists:



THEOREM 3

Suppose that (Si) and (S2) hold; then, for c finite, we have

urn urn :E’j[X,(x)] — (p—p ) , (2.8)
XJ.0 Q-’

where [ I is the mean-field expectation functional and p = p’(g).

Proof:

First, we remark that an elementary exercise yields the following alternative

formula for the mean—field pressure p(g):

- (g—a)2
p(g)

cc[ 2a
+ p(ct))0 (2.9)

where p(a) is the free—gas pressure. The idea of the proof of (2.8) is that we

compute the cumulant generating function of X1(X); since

VX1(X) VX — (2.10)
{j :X(j )>x)

we get

where ]E,sIL{.j is the mean—field expectation functional for which the free—gas

hamiltonian has been modified by the addition of the term sai. These
{j :X (j )>x}

considerations yield the formula

iirn][X(X)J L+s;sIX)I
S

(2.11)

where

p(JL+s;s0X)
=

+ p(a;s1x))

and

p(cE;s,X) - j’p(aIX)dF(X) + fp(als+X)dF(X).

[0,x)

A standard argument; using Griffith5sLemma, yields the result.

§3 FLUCTUATIONS IN THE MEAN—FIELD MODEL

Fluctuations in — N/V2 in the mean—field model in the thermodynamic limit



were studied for the standard example, described in §3 of [21 in this Volume, by

Davies [4], Wreszinski [5], Fannes and Verbeure [6] and Buffet and Pule [71. The

mean—field model in the general situation, where the only assumptions about the

single—particle spectrum are that (Si) and (S2) hold, was investigated in [8]; we

have summarized the results of [81 in §2 and now go on to investigate the

fluctuations in X. In fact, we do rather more; we regard x —* X1(x) as a

stochastic process and prove a central limit theorem:

THEOREM 4

Let Z(X) = V2{X(X)
- )E[X(X)]}; then, for g < apc, Z,(X) Z(X), where

Z (x) is gaussian with mean zero and covariance r
,

> 2 given by

aJ J
r(x1,x2) 1AX2

- 1 2 (3.1)

1 + aJ

where

= j’p’1(a()Ix)dF(x) ,
(3.2)

[o,x)

and a() is the value of a at which inf
- a)2

+ p(a)) is attained.
2a

Sketch of proof:

The result follows from a routine, but somewhat tedious, calculation of

urn
(X1)+s2Z1

along the lines of the proof of Theorem 3. I

It is interesting to identify the process Z(i in terms of a standard process.

THEOREM 5

Let B ( ) be a BM (1), a brownian motion in starting at zero; then, for

< apc,

(d) aJ
Z(X) — B(J) — B(J+1/a). (3.3)

1 + aJ



Proof:

A routine computation shows that the mean of the right—hand side of (3.3) i

zero and the covarlance is the same as that of Z(i, given by (3.1). Hence the

two gaussian processes are equal in distribution. I

The process (3.3) is a modification of a time—changed brownian bridge; it never

reaches the point at which it is tied—down but, as a increases, that point comes

closer to J. This shows how, as the strength of the interaction increases, the

fluctuations in Z() are damped down.

It is a little more difficult to deal with the case ji. > ape; we introduce

W(X) = Z2() — Z1(X) (3.4)

and prove in analagous fashion:

THEOREM 6

(d)
For g > ape, W (x) —4- 14(X), where W (x) is a gaussian process with mean zero and

covariance r (xi, >%2) given by

r(x1,x2) = K1v2

where

= j’P”(Olx)dF(x). (3.6)

[x,°)

In this case,

The method by which we discovered the representations may be of some interest.

The stochastic differential equation satisfied by a process (Xt)to with

filtration is discussed by Nelson [9); see also McGill [10).

Suppose that a process (Xt,Tt) satisfies the stochastic differential equation

+ Ia(uiXu)dB(u) + 1T(u,X)du;
(3.8)

then



r(s,X ) lim
1

[Xt-XIY5] (3•9)
S tst—s

and

a2(s,X5) — urn
1

JE [Xt-Xs)21T5J. (3.10)
ti.s t — S

Assuming that the processes Z(x),W(X) satisfy stochastic differential equations,

the corresponding coefficients a and r can be computed using (3.9) and (3.10);

this is a routine exercise starting from the expressions (3.1) and (3.5) for the

covariances since the processes are gaussian. Obvious time—changes then give the

stochastic differential equations for a brownian bridge and a brownian motion

respectively.

REFERENCES

[1] J.T.Lewis: The Large Deviation Principle in Statistical Mechanics: an

Expository Account (in this volume).

[2] M. van den Berg, J.T. Lewis, J.V. Pule: Large Deviations and the Boson Gas, (in

this volume).

[3] M. van den Berg, J.T. Lewis and J.V. Pule: A General Theory of Bose—Einstein

Condensation, Helv. Phys. Acta, 5j 1271—1288 (1986).

[4] E.B. Davies: The Thermodynamic Limit for an Imperfect Boson Gas, Commun. Math.

Phys. , 69—86 (1972).

[5] W.F. Wreszinski: Normal Fluctuations in some Mean—Field Models in Quantum
Statistical Mechanics, Rely. Phys. Acta, j, 844—868 (1974).

[6] M. Fannes, A. Verbeure: The Imperfect Boson Gas, J, Math. Phys. 1809—1818

(1980).

[7] E. Buffet, J.V. Pule: Fluctuation Properties of the Imperfect Boson Gas, J.

Math. Phys. , 1608—1616 (1983).

[8] M. van den Berg, J.T. Lewis, P. de Smedt: Condensation in the Imperfect Boson

Gas, 3. Stat. Phys., , 697—707 (1984).

[9] E. Nelson: Dynamical Theories of Brownian Motion, New Jersey: Princeton

University Press, 1967.

[10] P. McGill: Seminaires de Probabilits, XX, LNM 1204, Springer: Heidelberg 1986.


