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Abstract : For n spins 4 coupled linearly to a boson field in a

volume V1, the existence of the specific free energy in the limit

n ‘o, V —‘ with fl/Vn = const., is proved under specified

conditions on the Hamiltonian. A variational expression is

obtained for the limiting specific free energy, and a critical

temperature is identified, above which the system behaves as if

there were no coupling at all.



§1. tntroduction, and main result

Consider the Hamiltonian

H =E()aa + vZ E(X(j;)a + Xfl(i;)aU}S)

e(i)S

for n spins - described by the spin operators

cxx,y,z), with [S’j)IS’k)]=i6jkSj) and cyclic permutations —

interacting linearly with a countable number of bosonic degrees of

freedom described by creation/annihilation operators {aIaL):l},

with fa,)I a I c 6,. The bosonic frequencies

are assumed to satisfy

E en < , for > 0

L) 1

the coupling constants (X(J;):1 j=1,2,,n} are complex

numbers satisfying

Z (i;’)I2 < , for every j=1,2,,..,n

u 1

and the n(jui2iuh1} are real.

The problem is to determine the specific free energy of the

system in the thermodynamic limit n - , where - the volume

of the system - is proportional to n, that is to say P=n/V - the

density of the spins - is constant. This problem has been solved

in a number of particular cases. Firstly, Hepp and Lieb
(8),

treated the case of I. bosonic mode using a rotating-wave

approximation for the coupling (Dicke Maser Model). These same

authors then
(9) removed the latter approximation and treated

finitely many bosonic modes in the case where the

coupling constants and spin frequencies are independent of the

spins: and for every j1,2,••,n. Hepp and
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Lieb , also obtain results on thermodynamic stability for the

general (i.e. rtei) model, leaving open the question of

existence of the thermodynamic limit Subsequently, the

“Approximating Hamiltonian Method” has been put to work on the

Hamiltonian H and its variants (2,3,12)• The homogeneous case

with countably many bosonic modes has been treated in detail
(10)

using large deviation methods developed in ref. 4.

Here, the problem is solved for the heterogeneous model using a

method developed by Duf field and Pulê in their treatment of the

B.C.S. model (6), supplemented with an idea of Bogoj.jubov (jr.)

and Plechko
(3), It is shown that under certain specified

conditions is thermodynamically equivalent (in the sense that

the difference of the specific free-energies vanishes in the

thermodynamic limit) to the Hamiltonian

= 1w(z)aa ÷Z £(i)S)
—

where the spin—boson interaction is replaced by an effective

quadratic spin-spin interaction:

An(jik) Re E n()’Xn(i;)Xn(k;v) , j,k = 1,2,’’ ,n
L) 1

Moreover, Hn is thermodynamically equivalent to the Hamiltonian

H(x)=1w(LJ)aa +Z1efl(i)S)+j1An(i?k)Xj{VnXk1_2Sk))

if the real n—vector x is chosen so as to minimize the

corresponding specific free energy.

The result is then the following:

Theorem 1: 5°trrt’-e tAe’te -L- ea -‘u&e4 cWiu- rcLrv

4?1t E0,1], and A art [0,1]x[0,1), -Dud LFaL

lim sup En(j)_E( j/n)J = 0 , (Cl)

n-. JE{1,2,. ,n)
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urn sup A(j,1c)—A(j/n,lc/n)iO ; (C2)

n- j,k€{1,2, ,n}

= urn (-V) 1log tr exp{-13 E c(v)aa,) (C3)
fl-4 L)1
p=const.

e4-& ‘t -rrte 9 > 0, art.d %

ai -3/2 E Z X(j;L)I = 0 p (C4)

fl-4 L)1 j1

L&er.

1

urn (—V)’1log tr exP{f3H} f°- p sup { j[hI(r(t))

p=const.
r,s€L([0,1)) o

jSJ r 1

+*J€(t)tr(t)2_s(t)2)]dt +P$fA(tU)S(t)s(U)dtdU}

w&e/ie 1(x) = -(1+x)log(1+x)) — (1—x)log[(1—x)) for 0 x 1.

This is proved in §3, after introducing notation in the

following section 2. The solution of the variational problem,

following Duf field and Pulé
(6), is presented and briefly

discussed in §4.

§2. Notation, definitions

It will be convenient to use Pock-space notation. For each

n=1,2,3..., let be a bounded region In of volume (i.e.

Lebesgue measure) V. Let be a positive ncL.Lv.e selfadjolnt

operator on L2() such that exP(-t)) is trace-class for > 0.

It follows that has a bounded inverse. Write for the n-fold

tensor product o
2 and let S(j) be a copy of of the Spin
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operator of magnitude acting on the j-th component of

(j=1,2,...,n). Let be the symmetric Pock space over L2() and

consider the Hamiltonian
1

H(b) +{(Vfl afl(i+a(Xfl(JS(j)€fl(i)S(J)} (2.1)

acting on
,

where {e(j)} c IR, {X(j)) c L2() a(S) is the

familiar annihilation operator, and dl’ denotes the

second—quantization map. The quadratures formula (see ref. 5)

*

Wtf) dI’()W[f) = &() + a*(f)+a()f) + <f,bf>’1 , (2.2)

valid for f E Dom(t) where Wf)exp(a*(f)_a(f)} is the unitary

Wey). operator, enables one to write

H=E{n_1U(j)*&()U(j) +e(i)SJ) _pIlX(J)lI21} , (2.3)

where the unitaries U(j) , j=1,2,”,n, are given by

U(j) : W(-n(V) lA(j))Pj)+W[*n(V)lX(j)]*Pj), (2.4)

where Pj)is the spectral projection of Sj) to the eigenvalue ±1.
Formula (2.3) can now be used to prove the self-adjointness of H.

Two free energy densities are associated with Mn:

exp( —Vf} — tr ® (exp{ -PH)) (2.5)
nfl

exp ( —Vf} tr (exp { -d ( t)) )) (2.6)

Of interest is the limit n -, , such that V diverges but

1
Tensor notation for operators is not used, i.e.

a(o)—a(o)®1 etc.
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p=n/V, remains c,ort-b2r,,L.

The Hamiltonian (2.1) has the following symmetry. Let the

sej.f-adjoint, unitary operator L on 5n&rL be given by L

then LnSj)Lfl = and LflSJ)L = _S) for

every j=1,2”•,n, and Ldr(iL = dr(), La(’)L = -a(). In

particular, L commutes with H.

Consider the Hamiltonian H(h), h€ll, defined by

H(h) H + EhJ&j) (2.7)

where the symmetry of H implemented by L is &W..efl if the

external field vector h is non zero. The free energy density

associated with H(h) is written f(h), and is a concave function

of each of the n components of h. Expectation values with respect

to the canonical state associated with H(h) are denoted by <>h

The (nxn)-matrix is defined by its matrix elements

A(i1k) Re<X(i)ILf1)(k)>L2() , j,k € {1,2,,n) ; (2.8)

it is readily seen that is ‘u -ew &re and the

multiplicity of the eigenvaJ.ue 0 is equal to n minus the number of

vectors in {X(3):J=12..n) which are real-linearly independent.

§3. The proofs

Introduce a bosonic Hamiltonian H(x), x E P, on i by

H(x) ar + v

+ E Afl(i$k)xkl} , (3.1)

k1
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and two spin Hamiltonians H(h) and H(h;x), h,x E on by

H(h) ={efl(J)Sj)+hS)_Vfl’EAfl(ilk)Sj)Sk)} (3.2)

H(h;x)E{fl(J)SJ)+{h_2E Afl(J?k)xk}Sj)} + ‘1xAx1. (3.3)

Write f5(h), and f(h;x) for the free energy densities associated

with (3.2) and (3.3) respectively. Expectation values with. respect

to a canonical state will be written as angular brackets indexed

by the corresponding Hamiltonian or distinctive parameters

characterizing it.

Lemma 1

(V)log trexp(-H(x)) = f , for every x E

f(h;x)

— (V)’E lo{2cosh{*rE( J )2+(h3—2EA( j ,k)x) 2]f}}

Proof: An application of (2.2) shows that (3.1) is unitarily

equivalent to dr(L) for every x€fl (see the proof of Lemma 2A).

Up to the constant term VnXAnXl the Hamiltonian (3.3) is the sum

of n pairwise commuting operators

E(j)SZ + (h —2 Afl(j,k)xk)SX
k1

on 2 each of which has ±-[€ (j)2+(h -2 A (j,k)xk)2)Z as its
n

eigenvalues .1
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Lemma 2A f5(h) - inf f(h;X)
n

f +
- f(h)

Proof: Equivalently,

os
first part of Lemma 1, f+f(h;x)

energy associated with the HamiJ.tonian H(h;x)

by Bogoljubov’s inequality (see ref.

11LL

By (2.2),

the formula W[f)

n

1=1
(2.8),

(**) is given

<W[V X (j)]
in n

1=1

x 1>dT(jn n n

n
=_VZEX

nl=1 I

7

every XE; (*)

By the

+ inf f5(h;x) — f (Ii)
XE

n

+ f(h;x) -f(h)

(*)

is the specific free

= Hb(x) +

(*9

7 for a proof)

H(h;x)

Now by (3.l),(3.2)

by

and (2.7), the right—hand side of

<a*(X(j) )+a(X(j)

—

n
>b +2EA(I
H(x) k=1

?k)Xk]

)>H(h;x) j

a(g)W[f]=a(g)+<g,f>1 and

Using

•{a*(Xn(k))+a(Xn(k))}WCV E
1=1

[<x(k) t’X( j)> +

+ <a*(X(k))+a(X(k))

Thus, the right—hand side of

>dT(b)

J

-2VEA(I ,k)x1

follows by taking the infimum with respect

(**) is zero for

to x.s



Bogoljubov’s inequality also gives an upper bound on

this involves

v;32 E <(i;)a + (i;)av}S(j)h (3.4)
L)1 j1

Bogoljubov and Plechko
(3)

have devised an alternative method

which avoids the problem of estimating (3.4). Fix an arbitrary n,

and consider an arbitrary finite number N of boson modes with

strictly positive frequencies ((L.’):lJ)N} and associated

coupling constants (X( j ;v) 1z.’N, j=1,2,. ,n). The Hamiltonian

H(h;N) Is that obtained from H(h) by considering only these N

modes, and the associated specific free energy will be written

f(h;N); accordingly, write f(N), and f(h;N).

Let A=fv:1t.’N, X(i;)=O for every ,n}, and

B={1,2,•• ,N)\A. For any set t{tL.,:€) of real numbers in the open

interval (0,1), one has the identity

H(h;N) = E (L’)aa + (lt)fl(z)a,aL, + H(h;N;t)
L)E:A vEIB

+
t(L.)b.,(t)*b,(t) (3 5)

L)E

where

t)Sj)Sk)} (3 6)

Re (t (L))1X(J;z.’)X(k;z.) , (3.7)
L)€B

b(r) a, + Vfl(tfl(L))’Xn(i;v)Sj) . (3.8)

Let f(N;r) be the specific free energy of (v)aa +

*

E (1—t,.,)w(i.’)aa . and write f5(h;N;r) for that of (3.6). Since

the last term in (3.5) is positive, f(N;t)+f(h;N;t) f(h;N) by

8



$4
-
%

-
En

a)
0

0
v-I

C
d

9
4

v
-i

(1
,

Cr)
Cr)

(ES
0

‘-1

4-’

$4
U

o
v-I

v-i
U)U)

—
%

3
p

rI

5
—

-
‘
-
I

-
C

d
4
J

r1r1
p

3
j

,C
d

r
-
T

h

I
E

Iv-I
—

_lw
-

9
4

V
I

A

V
U)

_

C
d

v-i

U)
v-I

-

4-4
5
-—

.c
‘

(I)
Cr)

4-’

V
I

3
$

v-I
3

I
X

—
-

ct—
-

p
c-i

U
)

-
r

VI
-

0
v

—
-
-
-

•

E
1
W

‘-I
v-I

4-)
•

-
I

v-I
0

U)
u
c

“-4
‘4

-I
(ES

I-
I

4-’
VI

II
r—

.iw
_
“

z
‘-I

v-I

‘-I
-
-

L
z

-
I-

I

-
-

Z
•
-

r1
-

v-i

(U
—

z
I---

•
4-’

“-4
-

-
,r

-
I

Q
)
‘

-
f

O
s::

U)
‘9

4
p

P

v-I
v-I

-ri
I

v-I

(El
+

+
U)

‘
—

$4

.0
-

t—
_
l_

4
—

-
-

r
—

1_S-_lw
,

.
5
-

C
d

(U

0
—

‘-I
.

I
-
-

_

I

os:
0

—
0

0
‘I-I

t3)
(1)

v-I
Z

II

U)
p

0
‘4

-4
oTh

0

U
)

C
i

C
’)

C
d

o
f_-S_lw

—
-

5
-
,
-
-

5
4
J

o
0

I
1

VI
+

(U

.0
U

)
-
i

-‘-I

II
U)

.v-j

•1
4-?

(U

v-I0
0

t))
El)

(I)
(U

11)

0U
)

,
_

,



4n

() E X(i0)J
n

tL) =
(3.13)

2V ) E X(j;L’)I

which lies in (0,1) by virtue of the definition of tB. Thus,

f0(N)+f(h;N)-f(h;N) V’(PV)Z w(v) X(i;)J . (3.14)
jl

For fixed n, it follows that f°(N), f(h;N) and f(h;N)

converge to f, f(h) and f(h) respectively, as N - , so that

the following result is proved.

Lemma 2B : f° + f5(h) - f(h) V1(V) E L) E IX(J;L)l
L)1 J1

The limit of f(h) has been recently obtained by Duff ield and

Pulê
(6)

in their analysis of the B.C.S. model. Their result,

which combines large deviation methods with Berezin-Lieb bounds,

is the following

Theorem 2 (Duff ield & Pulé) (Cl) 2nd (C2) ai-e

2-aed, and Je’te €z->L- a ‘i-e -va&L.ed h )rt

tO1)

lim sup Ih—h(J/ri)1 = 0 , (CO)
fl-4D j€(1,2,.. ,n)

f9(h) = Urn f(h) = p inf { S[_’I(r(t)) + h(t)s(t)

r,s€L O,1]) 0
p=const P

1st r . 1

_1e(t)Itr(t)2_s(t)2)]dt _IPSJA(t,t’)s(t)s(tt)dtdtl }

10



Remark 1 The proofs of ref 6 apply without change under the

slightly stronger assumptions: hh(i/n) , E(i)(i/n) , and

A(j,k)=A(i/fl,k/n); but can be adapted to accomodate (CQ)-(c2).

inff(h;x) is discussed in Appendix A; one has the following
X€IR

resu]. t:

Lemma 3: Wi4e’ ,&e am (CC) - (C2),

urn inf f5(h;x) f5(h)

p=const.

Proof Let M=inff5(h x), by Lemma Al, settings4r4sin(L),
XER

Mn = inf {v’{-’I(r) - + hs}

n n
- E Z A(i1k)s

j1 k1

Define L by replacing E(i). h1 and A(J1k) in the above

expression for Mn? by €(j/n), h(j/n), and A(J/n,k/n) respectively,

where (o), h(o), and A(o,o) are the functions given by conditions

(CO)—(C2). As in Theorem 3 of ref. 6, one proves that L -‘ f5(h)

as n -. with p—const. .Now,

sup

Is1 I

+ *{h -h(j/n))s } + (A(i/nk/n)-A(i1k)}s
j=lk=l

pn1 {IIEi/nI_IuII + Ih
j=1

11



+ p2n2 Z A(j/fl,k/fl)-A(j,k)i

j=1 k1

so that, by (CO)-(C2), M-L -. 0 as n - with p=const.

S S
Remark 2 : One can prove urn {f (h)-inf f (h;x)}=O, directly by

fl— XE

the “Approximating Hamiltonian Method” using an idea of ref. 1;

one has to assume that n[number of non—zero eigenvalues of A ) -

O as n -‘ ; moreover, the positivity of A is used

The proof of Theorem 1 Is obtained combining Lemmas 2A, 28 and

3, and Theorem 2.

One can recover the results of ref. 10 which are valid for the

homogeneous case: , , and hh , for all

jsl,2,.’,n 2
ConditIon (CO) is trivially met; conditions (Cl)

and (C2) demand the existence of real numbers £, and A (0) such

that e -, €, and <X > 2 -‘ A.
n nn nL()n

Lemma 4 : LF..e ocgene- ce

f5(h) = —p sup fI(u) + IhIu(1_z2)Z + -Ejuz + pAu2(1—z2)}

Oz , u 1

Proof: By Theorem 2, choosing r(t)=r and s(t)=s a.e.,

sup {I(r) — hs + I€Itr2_s2 + pAs2)
Jsjrl

— sup (‘I(r) + jhlrx + IIri_x2 +

0x, r1

For r and s in L(t0,1)) with IsIrl, (all integrals are over

£0, 1])

2
ConditIon (C4) is not needed for the results of ref. 10.

12



ffr(t)2_s(t)2JZdt =f[r(t)-s(t)) [r(t)+s(t))dt

[f[r(t)-s(t))dt.f[r(t)+s(t)] dt] =[(fr(t)dt)2_us(t)dt)21f

by the Schwarz inequality since I is concave,

-f9(h)/p sup {1I(fr(t)dt) - hfs(t)dt + ipA{fs(t)dt}2

r,s€L( [0,1))

Isi r 1

+ iEi[{fr(t)dt}2_{f5(t)dt}2]* }
= sup {‘I(r) — *hs + i[r2_s2]’2 + pAs2)

S r1

§4. The phase transition

The variational problem determining f5(h), and thus f(h), is

sup { J[’I(r(t)) +(t)J[r(t)2_s(t)2J

r,sEL([0,1]) 0

sJ r 1

_h(t)s(t)]dt +*p$$A(t1tI)s(t)s(tI)dtdtt } (4.1)

For A(t,t’) 0 (and hconst.) this problem
,

is solved by

Duff ield and Pulè (6); most of their arguments apply to the case

of arbitrary A

Notice that if h=0 and (r,s) is a maximizer for (4.1), then so

Our kernel need not be positive, it defines a positive operator

A(t,t’) > 0 is used in the uniqueness results of ref. 6.

13



is (r,-s). The function I is concave, with derivative —arctanh.

The r-variation can be done as in ref. 6; for S E L(f 0,1)) with

si 1, let r5:(O,i] -. be defined (a.e.) to be 1 where ls!=1,

and otherwise as the içe- zero in the interval [s(t)i,1) f

the function

x -, *I€(t)Ix — [x2—s(t)2]arctanh(x) (4.2)

then, if denotes the unit ball of L(tO,1)), one has

Y(h) sup {Y(s;h)} , (4.3)

where

1

Y(s;h) =${‘I(r (t)) +I€(t)j[r(t)2-s(t)2 ih(t)s(t)Jdt

(4.4)

For h=O, one has inversion symmetry T(s;O)T(-s;O). Let K be the

selfadjoint, integral operator on L(EO,i)) defined by the kernel

A; K is compact. Consider the continous function on £04) given

by

if €(t)=O

g(t) —
tanh(1(t)1

, (4.5)

if £(t)O
1E(t)J

and let be the (bounded, positive) operator on L((O,i)) of

multiplication by g. Let U=pGKG, i.e.

Notice thatr0(t)=tanh(*I€(t)I) a.e., that r=r5, and

on the set where e(t)O.

14



{U}(t) =pg(t) g(t’)A(t,t’)(t’)dt’ (4.6)

Define s;t) (ae.) by

I21arctanh(s(t)) ,

(s;t) = p{Ks}(t) (4.7)

L (t) Is(t)/Er5(t)2_s(t)2)r

andnoticethat(—s;’)=—(s;o).

The solution of (4.1) for h=0 is obtained from the following

two results which will be proved in Appendix B by adjusting the

arguments of ref. 6

Theorem 3: iIU1I 1,

(0) = T(0;0)
= 1j log[2cosh((t))Jdt

Theorem 4: jIU1j > 1, L&e’e €L- a rr’-zi

5°(0)=T(s;0)=T(—s;0). s and

e’t -aane qu&An. (s; ) =0.

Y(0) = V(±s;0) log2cosh({e(t)2+k(t)2 )]dt

1 tanh(P{E(t)2+k (t)2}Z)

2 2-
k(t) dt

{e(t) +1c(t) }Z

0 -A€-

1 tanh((€(t’)2+k(t)2))

k(t) = p A(t,t’) 2 2
k(t’)dt’

{€(t’) +k(t’) }Z

15



Remai : Most likely, s and -s are the rtAj non-zero Solutions

of the Euler-Lagrange equation if K is positive, but I am unable

to prove this.

The map - IIUIJ is strictly increasing with urn = 0, so

that one can identify a possibly infinite critical reciprocal

temperature such that if
< c

then IUIJ < 1, and if
>

then > 1. For f5 - and thus f — is independent of the

interaction: the system is thermodynamically equivalent to a

non-interacting system of bosons and spins. Qualitatively, the

results are identical to those of refs. 9 and 10.

As an illustration, in the homogeneous case, one has

if cO

iIU1l = Pd’
tanh(!eI)/JEI , if EO

and thus, as in ref. 10,

2arctanh(lc1/pA)/EI , if e0 and IJ < pA

= + , if e0 and j€1 pA

2/(pA) , if =0

Finally, one can proceed as in ref. 6, to obtain the

thermodynamic limit of the equilibrium expectation of the average

spin-polarization in x-direction when h(t)= (by symmetry this

limit is zero for A0); and then consider the limit -. 0. The

result is qualitatively the same as that for the homogeneous case
(10),

namely: the limit is zero for and rL zero if
>

with different sign depending on whether MO or 0.

Appendix A: Discussion of inf f5(h;x)
n

Lemma Al : I (0, 1] e d.en.€d a- ri. T&e*,wm 1. &en,

16
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which proves the first claim upon

The second claim is obvious.s

Appendix B : Solution of the

Duffie].d and Pulé (6)•

rJrkYYkAfl(i 0k)}

setting zjcos(lj)i E fO,27c).

variational problem following

Write Y for Y(0), and Y(s) for T(s;0).

Proof of Theorem 3 : This is a minor adjustment

corresponding result of ref. 6, to accomodate the fact

variation is over and not its positive part. Let

support of e. For arbitrary s € and 0 < p < 1, put F(

is differentiable with derivative (integrals with

domain, are over [0,1))

F’(p) =ppffA(t,t’)s(t)s(t’)dtdt’

- p fI(t)Is(t)2Er (t)2p2s(t)2)dt
A p

of the

that our

A be the

p)r(ps). F

unspecified

Using the inequalities

arctanh(pls(t)I)ls(t)ldt
AC

Js(t)Jarctanh(pjs(t)I) p

[r5(t)2—s(t)2)tanh(I€it)J)

one obtains P’(p) p<sP(U1);>L2 0
where s(t)=s(t)/gg(t).

J)

implies F’(p) 0, so that T(ps) T(0), and

r(0). V(0) can be computed using
The assumption IIUI11

by continuity Y(s)

r0(t)=tanh(*j€(t)I) .

The proof of Theorem 4 is broken up into a series of lemmas all

18



of which have their origins in ref. 6.

Lemm : &e’i -L- s € 30 ( h) =T(s ; h).

Proof : See Theorem 5 of ref. 6.

Lemma B2 : Ti IUll > 1 Aert 30 > 7(0).

Proof : Let s € with Y(s)=Y. Since is compact, is an

eigenvalue; let be a corresponding eigenvector. Define

L([O,1]) by

(t) if 1(t)1 ‘ n
(t) = , a.e.

n 0 , otherwise

It follows that - 11U11—1 (>0 !) as n -. D

Choose m such that <çs{U.-1}ç>2([o1))> 0 and let s=ç1gp. The

proof then proceeds as in Lemma 3 of ref. 6 •

Lemma B3 s E and 30 = 7(s), LFeri. (tEtO,1):ls(t)1=1) a-

Z

Proof Proceed as in the proof of Lemma 2 of ref. 6, with the set

{tE[O,1) : js(t) 11) .

Lemma B4 : s E , andY = 7(s), LF.ert (s;o)=0.

Proof This is an adaptation of the proof of Theorem 6 of ref. 6.

Let 0 < 6 < 1, and take € L([0,1]) with essential support

contained in A62(tE(0, 1): ls(t) 1<1—8). For ipi sufficently small,

s=s[l+] lies in . Let ?(t)=7(s). Taking the derivative at

p=O, one obtains

(t)s(t)(s;t)dt = 0 .

19



Now take s(s;o) on A6, and 0 on A ; (9 Implies that

sP(s;°)O on A6. Since 6 was arbitrary, Lemma B3 implies that

s(s;o)0. Thus, cP(s:o)=0 on B, the essential Support of s; but

by the definition of c(s;o), (s;°)O on B .s

The first part of Theorem 4 follows from Lemmas B2-B4; the rest

of the claim follows as in ref. 6.
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