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G.A. Raggio

ML Troditote Lon ddvanced Fiudiens,
10 Peatington, Road, Zudlin 4, Treland.

Abstract : For n spins + coupled linearly to a boson field in a
volume Vn‘ the existence of the specific free energy in the limit
n -+ o, Vn - ™ with n/V:n = const., 1is proved under specified
conditions on the Hamiltonian. A variational expression 1s
obtained for the 1limiting specific free energy, and a critical
temperature is identified, above which the system behaves as if

there were no coupling at all.



§1. Introduction, and main result

Consider the Hamiltonian

H = (v)a2a, +v7 {xjua*-x-x(ju)a}s
n u}z:1n ugl jzl (3)

do
J

He-as

¥4
ENEIL TR

for n spins » - described by the spin operators {S?j):jal,z,--,n;
«=x,y¥.,2}, with [S(j)' (k)] iajk (j) and cyclic permutations -
interacting linearly with a countable number of bosonic degrees of
freedom described by creation/annihilation operators {a;.av iw2l},
with [ap,a;,] c 5»,»" The +tuictly nositive bosonic frequencies
wn(u) are assumed to satisfy

T e PVl 5 for g >0 ;
vzl

the coupling constants {kn(j;v):uzl, j=1,2,--,n} are complex
numbers satisfying

) A (3 u)l < ® , for every j=1,2,,:-,n ;
vzl

and the {en(j):jsl,z,'-,n) are real.

The problem is to determine the specific free energy of the

system in the thermodynamic limit n - o , where Vn - the volume
of the system - is proportional to n, that is to say p=n/Vn - the
density of the spins - is constant. This problem has been solved

in a number of particular cases. Firstly, Hepp and Lieb (8),
treated the case of 1 bosonic mode using a rotating-wave
approximation for the coupling (Dicke Maser Model). These same
authors then (9) removed the latter approximation and treated
finitely many bosonic modes in the fomogenecus case where the
coupling constants and spin frequencies are independent of the

spins: xn(j;v)-xn(v), and en(j)=en for every j=1,2,--,n. Hepp and



Lieb , also obtain results on thermodynamic stability for the
general (1.e. Aeterogenecus) model, leaving open the question of
existence of the thermodynamic limit (9). Subsequently, the
"Approximating Hamiltonian Method" has been put to work on the

Hamiltonian H_ and its variants (2,3,12)
with countably many bosonic modes has been treated in detail

The homogeneous case
(10)
using large deviation methods developed in ref. 4.

Here, the problem is solved for the heterogeneous model using a
method developed by Duffield and Pulé in their treatment of the
B.C.S. model (6), supplemented with an idea of Bogoljubov (jr.)
and Plechko (3). It 1is shown that under certain specified
conditions Hn is thermodynamically equivalent (in the sense that
the difference of the specific free-energies vanishes 1in the

thermodynamic limit) to the Hamiltonian
n n
X X

S~ z -1
Hy = Toqaja, + 1 €n(3S(y) = Voo L A(3:KIS (580

nooyz j=1 j. k=1

where the spin-boson interaction is replaced by an effective

quadratic spin-spin interaction:

—1 - " 9
An(j,k) = Re u§1u“(u) xn(j;u)xn(k;u) , j.k=1,2,--,n

~

Moreover, Hn is thermodynamically equivalent to the Hamiltonian

- n n
z _naX
H (x) uglun(u)a;au +j§15n(j)s(j) +j’E=lAn(j,k)xj{ank1 2s(k)) .

if the real n-vector x is <chosen so as <o minimize the

corresponding specific free energy.

The result is then the following:

Theorem 1: Jfunnose LtRere eziots reald-ualued comtAnouo furctions €
on [0,1], and A on [0,1]1x[0,1], ouch that

lim sup Een(J)—E(J/n)l =0 , (C1)
n~® je{1,2,--,n}



lim sup IAn(J,k)-A(J/n,k/n)i=° ; (C2)
no 3j,ke(1,2,--,n}

it
£° = lim (-an)'llog tr exp{-B 7} wn(V)a;au} p (C3)
n-+o vzl
p=const.

ezioto fon oome B > 0, and if

-3/2 -7 o
lim n )X 0 (V) ) ;xn(j;p)l =0 , (C4)
n-® vzl =1
then
1
-1 o £ ool -1
lim (-an) log tr exp{-—BHn} = £ - o] sup { J{B I(r(t))
n—+o ®
p=const. r,SELR([O,ll) o
is] sr <1
‘ 11
et s (0 21f]ac + to [ [a(ew)s()s(uidtau } ;
oo
whene I(x) = —¥(1+x)logl¥(1+x)] - F(1-x)log[F(1-x)] for 0 < x < 1.

This is proved in §3, after introducing notation in the
following section 2. The solution of the variational problem,
following Duffield and Pule (6), is presented and briefly
discussed in §4.

§2. Notation, definitions

It will be convenient to use Fock-space notation. For each
n=1,2,3..., let sin be a bounded region 1in Rd
Lebesgue measure) Vn. Let bn be a positive <injective selfadjoint
operator on Lz(dn) such that exp(—an) is trace-class for 8 > 0.
It follows that bn has a bounded inverse. Write Rn for the n-fold

2 and let S be a copy of of the Spin

of volume (i.e.

tensor product of C (§)



operator of magnitude - acting on the j-th component of R

(j=1,2,...,n). Let Sn be the symmetric Fock space over Lz(dn) and
consider the Hamiltonian !

= ar + 5 L) T ()+a0 ())8T e ()8 2.1
H = dr(b) 321 (Vp) “{a*(d, A, (NNS(5yrepAIS(yyp (2.1)

acting on Gngﬂn, where {en(j)} c R, {xn(j)} c Lz(dn), a(-) is the

familiar annihilation operator, and dr denotes the

second-quantization map. The quadratures formula (see ref. 5)

W[f]‘dr(b)W[f] = dI'(h) + a*(bf)+a(hf) + <f,bf>-1 , (2.2)

valid for f € Dom()) where W[fl=zexp(a*(f)-a(f)} is the unitary
Weyl operator, enables one to write

n ' .
_ -1 * z , -7 2
Hn—jgl{n Un(J) df(bn)Un(j) + En(J)S(j) - IPHDn Xn(J)" 1} . (2.3)
where the unitaries Un(j) , j=1,2,--,n, are given by
.= -7,-1 + ; -7,-1 -
UL () s= WOER(V) IO A (D) 1B )+ WIER(V ) PO AL ()] P gy, (2.4)

where Pfj)is the spectral projection of S?j) to the eigenvalue =¥.
Formula (2.3) can now be used to prove the self-adjointness of Hn.

Two free energy densities are associated with Hn:
exp(-BV £} = try .o (exp(-BH_ }) . (2.5)
nn
exp(-BV_f0) = try (exp(-Bdl(H )}) . (2.6)
n

Of interest is the 1limit n -+ ®, such that Vn diverges but

Tensor notation for operators is not used, 1.e. s(j)=1®s(j)’
a(e)=a(-)®1 etc.



p=n/Vn, remaihs conotand.

The Hamiltonian (2.1) has the following symmetry. Let the
self- adjoint unitary operator Ln on § @R be given by an

. = g2 - _gX
F(—l)(jilzs(j) then L S(j) n S(j)' and L S (§) n S(j) for

every j=1,2,:--,n, and Lndf(°)Ln = dl(-), Lna(°) n = -a(:). In

particular, Ln commutes with Hn

Consider the Hamiltonian Hn(h), hemn, defined by
H = 'l 2-7
(Pl = Hy ¥ Z REEY (2.7)

where the symmetry of Hn implemented by Ln is bwoken 1if the
external field vector h is non zero. The free energy density
associated with Hn(h) is written fn(h), and is a concave function
of each of the n components of h. Expectation values with respect
to the canonical state associated with Hn(h) are denoted by <o>h.

The (nxn)-matrix An is defined by its matrix elements

_ -1 .. .
An(J,k) = Re<xn(j),13n xn(k)>L2( j,k e {(1,2,--,n} (2.8)

dn)
it is readily seen that An is nositive oemi —definite and the
multiplicity of the eigenvalue 0 is equal to n minus the number of

vectors in {xn(j):jal,z,--,n} which are real-linearly independent.

§3. The proofs

Introduce a bosonic Hamiltonian Hg(x), X € Rn, on Sn by

HO(x) = dr(p) + V, ngx {vifaro,m+a0,000)

+ Z A (T k) 1} ’ (3.1)
k=1



- iy !
and two spin Hamiltonians H:(h) and H:(h;x), h,x € R", on 8 by

~s a z X -1 2 k) 5% X l

Hn(h) = jgl {en(j)s(j)+hjs(j)-vn k§1 An(J, )S(j)s(k)J . (3.2)
~g n z r n x®
Hn(h;x)=j§1{€n(J)S(j)+ihj—2k§1 An(j,k)xk}s(j)} + V_xA x1. (3.3)

Write Ei(h), and %:(h;x) for the free energy densities associated
with (3.2) and (3.3) respectively. Expectation values with respect
to a canonical state will be written as angular brackets indexed
by the corresponding Hamiltonian or distinctive parameters
characterizing it.

Lemma 1

(—BVn)_llog trgnexp{—Bﬂg(x)} = fg , for every x € R® ;

=S
fn(h.x) = xAnx

-1 n
- (v 8 L

log{2cosh{%ﬁ{e (j)2+(h -2 E A (3. k)x )2151}
j=1 L n 3 T2y n k J J

Proof: An application of (2.2) shows that (3.1) is unitarily
equivalent to dr(bn) for every xeR™ (see the proof of Lemma 2A).
Up to the constant term anAnxl, the Hamiltonian (3.3) is the sum
of n pairwise commuting operators

o X

Z
En(j)s + (hj 2y

2

n .
on €2, each of which has i&[en(j)2+(hj-2kz An(j,k)xk)zlz as its
a1

eigenvalues.a



Lemma 2A : f (h) - inf_ f (h:;x) s f + f:(h) - £_(h)
XER

Proof: Equivalently,

o =S

. - b . *
£- 0+ igénfn(h.X) £ (h) 0 (*)
By the first part of Lemma 1, f§+f§(h;x) is the specific free
energy associated with the Hamiltonian Hn(h,x) = H (x) + Hn(h X);
by Bogoljubov's inequality (see ref. 7 for a proof)

o -s -1 7 -
fn + fn(h,x) fn(h) 2 Vn <Hn(h'x)’Hn(h)>Hn(h:x)

(**)

Now by (3.1),(3.2) and (2.7), the right-hand gide of (**) is given

by
§ f(v “Tean +a(x >.b + 2 2 A (3 k)%
L3 a* (A, (3))+a(x (3))>40 o)
= n k=1
xlx., - v'1es®, >-g }}
3T Tn TT()TH (hix) )
7 3 7
By (2.2), H (x)=W[-V_ Z jb ! n (3110 (s IWVE L ox jb I n(3)1. Using
P y= j=1

the formula W[f] a(g)W(f]=a(g)+<g £f>1 and (2.8),

<at(xn(k))+a(kn(k))> (x)— <W[v7j§1x xn(j)]

.{as(xn(k))+a(ln(k))}W[-ngélijglln(j)]>df(bn)

= - v T x [ (k) 520 _(3)> + <xn(k),b;1xn(3)>}

Py=1 It
"Z n
* = =
+ <ar(A (k))+a(r (R))>4pp 2vn.§ Ap (3. k)%
n j=1
Thus, the right-hand side of (**) is zero for every xeR'; (*)

follows by taking the infimum with respect to X.®



Bogoljubov's inequality also gives an upper bound on

0,48 _ .
fn+fn(h) fn(h), this involves

n
-3/2 _ — x
v, Ugl j§1<<xn<1,u>a; + A (Fiv1a)s iy (3.4)

Bogoljubov and Plechko (3) have devised an alternative method
which avoids the problem of estimating (3.4). Fix an arbitrary n,
and consider an arbitrary finite number N of boson modes with
strictly positive frequencies {mn(u):lsvSN}, and associated
coupling constants {xn(j;v):lsusN, j=1,2,+-,n}. The Hamiltonian
Hn(h;N) is that obtained from Hn(h) by considering only these N
modes, and the associated specific free energy will be written
£ (h;N); accordingly, write £O(N), and £3(h;N).

Let A={v:1svsN, kn(j;u)=0 for every j=1,2,--,n}, and
B={1,2,--,N})\A. For any set r={ﬂfu€B} of real numbers in the open
interval (0,1), one has the identity

* =S
+ L (1-t))e_(v)a,a, + H (h;N;T)

b ]
H (h;N) =} o (v)a,a,

VEA vEB
b 3
+ ugBtvwn(u)bu(r) b(t) (3.5)
where
-8 a z X -1 a N b 4 b 4
Hn(h;N;r)ajgl{en(j)S(j)+hjS(j)-Vn kglAn(j,k;r)s(J)s(k)} ,  (3.6)
N -1
A (3 kiT) = Reuga(ruwn(u)) A (i) (ki) (3.7)
- - -1 o . X
b,(T) a, + V_“(t,0 (V) jglxn(j,u)s(j) . (3.8)
Let f£f°(N;t) be the specific free energy of ) o (v)a‘a +
n . . VEA n v v
T (1-t,)u_(v)a,a, , and write £2(h;N;t) for that of (3.6). Since
Ve

the last term in (3.5) is positive, fg(N:r)+fi(h;N;t) s £ (h;N) by



Bogoljubov's inequality. Thus
o S . _ . o _e9 /.
£(N) + £ (hiN) - £ (hiN) < (£ (N)-£ (N:T))
+ {(E3(hiN)=£1 (hiN:T)) . (3.9)

Using Bogoljubov's inequality, and the familiar formula for
£9(N;T)
n

) O/y. -1 *
fn(N) fn(N't) < Vn vgiBern(u)<avaV>(N;'5)

- - ° ) = y-l B(1-T )o_(v)_, -1
= ngtu{afn/atu}(N,r) = Vn ugmtuwn(u)(e vion 1)

< (v ) EBrv(l_ru)-l : (3.10)
v

Also using Bogoljubov's inequality and -r1l s s* < 1,

p- S - -2« j, =1_ -1
£ (h;iN) fo(h;N;T) s V) UEBi‘tv e (v)
o X X
.Rej'§=1ln(j;u)kn(k;u)<s(j)S(k)>(h;N;r)}
s (2v) 72 T (1-t,)7) (u)‘l{ T (j;u)l]z : (3.11)
veB n j=1 ®

Inserting (3.10) and (3.11) into (3.9),

o] =S -1 -1
(fn(N)+fn(h:N)} - fn(h;N) s (BV,) uggt“(l_t”)

n
+ (2v )72 ZB(l—ru)t;lwn(v)_l[jz lxn(j;v)i}z . (3.12)
Ve =]

The infimum of the right hand side of (3.12) with respect to ¢ is
assumed at



I 4 n
7 -7 )
BZ w_(v) jéllln(J,u)I

T - n ; (3-13)

7 v4 - o .
2ve + B wn(u) jgl,xn(j,u)l

which lies in (0,1) by virtue of the definition of B. Thus,

- . N ,
..1 - -
£2(N)+£2 (h;N)=£ (h;N)s V_"(BV_ ) 7 T o (») z

IA_(J:v)l . (3.14)
vzl 3 n

1

ne-as

For fixed n, it follows that fg(N). fi(h:N) and f_(h;N)
converge to fg, fg(h) and fn(h) respectively, as N -+ ®, so that
the following result is proved.

o

e e s n
Lemma 2B : f_ + fz(h) - £ (h) s vgl(ﬁvn)'f )X 0 (») T )X A (3:0)]

vzl j=1

The limit of Ei(h) has been recently obtained by Duffield>and
Pule (6) in their analysis of the B.C.S. model. Their result,
which combines large deviation methods with Berezin-Lieb bounds,
is the following

Theorem 2 (Duffield & Pule) : 7£ conditione (C1) and (C2) ane
satiolied, and there eziots a eal —valued continows function h on
[0,1] ~uch that

lim sup |h

j~h(j/n)l =0 , (CO)
nse® je(1,2,--,n}

then

~

£2(h) = lim Ei(h) =p ing

n—+o [o+]
p=const. r,seLR([O.ll)
|s] s r s 1

[—B_ll(r(t)) + Fh(t)s(t)

—
I N

[ury

- ile(t)l[r(t)z—s(t)zli]dt - 30 [ [A(t,t)s(t)s(t')dtdt" }

QO —
[

(o]

10



Remark 1: The proofs of ref. 6 apply without change under the

slightly stronger assumptions: hj=h(j/n) , En(J)=€(j/n) , and

An(j,k)=A(j/n,k/n); but can be adapted to accomodate (CO)-(C2).

inf f (h;x) 1s discussed in Appendix A; one has the following
xeR®
result:

Lemma 3: Under the assumntions (CO)-(C2),

lim inf f (h;x) = f (h)
n-o xeRn n
p=const.

Proof : Let M -infnfn(h x); by Lemma Al, setting sj=rjsin(8j),
XER

[ -1
M= inf {vn
Isjisr <1

3

ne-is

r--B-lI(J:' ) - +l¢ (j)i[r -8 ]Z + »h.s }*
3 11 37 T %' 37 373

_21'1
-V ) 2 Ap(3.R)sys k}}
j=1 k=1

Define L, by replacing en(j), hj’ and An(j,k) in the above
expression for Mn’ by €(3j/n), h(j/n), and A(J/n,k/n) respectively,
where €(¢), h(°), and A(¢,°) are the functions given by conditions
(CO)-(C2). As in Theorem 3 of ref. 6, one proves that Ln -+ fs(h)
as n -+ ® with p=const..Now,

Mnol s osup |vi Y {%(Is(j/n)l-lsn(j)l}[r§-5§lz
]sjlsrjsl

+ 7{h,-h(3j/n)}s } + TV Z Z {A(3/n,k/n)-A_(3.,k)}s,s }}
3 3 21k "k

< ypn~? {lle(j/n)l—le ()11 + Ihj—h(j/n)l}
3=1

11



n
L IAN3/nk/m) A (300 ]

n
+ ipzn 2 )
=1 1

k

so that, by (C0)-(C2), Mn—Ln + 0 as n ~ ® with p=const.=s

Remark 2 : One can prove lim {fi(h)—infnfz(h:x)}=0, directly by
n—+® X€eR

the "Approximating Hamiltonian Method" using an idea of ref. 1;

one has to assume that n-l[number of non-zero eigenvalues of An] -

0 as n - ® ; moreover, the positivity of A, is used (11).

The proof of Theorem 1 is obtained combining Lemmas 2A, 2B and

3, and Theorem 2.

One can recover the results of ref. 10 which are valid for the
homogeneous case: en(j)=en . kn(j;u)=xn(u) , and hjah , for all
j=1,2,--,n 2. Condition (CO) is trivially met; conditions (C1)
and (C2) demand the existence of real numbers €, and A (2z0) such

-1
that en -+ €, and <xn,bn ln>L2(dn) -+ A.

Lemma 4 : Tn the Aomogenecuo case

£2(h) = -p sup B lr(u) + ilhlu(l—zz)z + rleluz + &pAuz(l—zz)}
O0sz,usl

Proof: By Theorem 2, choosing r(t)=r and s(t)=s a.e.,

-t%(h)/p = sup (87 l1(r) - ths + ileltrz—sz}i + tphs?)

|s|srs1
= sup {BnlI(r) + Flh|lrx + ﬂ'zlsir[l-xz]Z + ipArzxz)
0sx,rsl
For r and s in L;([O,ll) with |s|sr<l, (all integrals are over

(0,11)

g Condition (C4) is not needed for the results of ref. 10.

12



!

f[r(t)z—s(t)zlidt = [lr(t)-s(t)]Z[r(t)+s(t)]1% dt

k4 '
< [I[r(t)—s(t)]dt'f[r(t)+s(t)] dtJ =[(fr(t)dt}2—{f3(t)dt}2}Z '

by the Schwarz inequality; since I is concave,

~t%(h)/p s sup {B—ll(fr(t)dt) - yhfs(t)dt + zpA{fs(t)dt)>
fo +]
r,s€L,([0,1])
R
is] s r s 1

+ %&EI[{Ir(t)dt)z-{fs(t)dt)zJ% }

= sup (B—ll(r) - zhs + ilel[rz—szlz + %pAsz} .|
i8] sr<i

§4. The phase transition

The variational problem determining Es(h), and thus f(h), is

: 1
#(h) = sup { [[etaeion slete)ltr(o)2-s() )7
r,s€Lp([0,1]) o
is| srs1

11
- fh(t)s(t)}dt + #p j JA(t,t')s(t)s(t')dtdt' } . (4.1)

o O

For A(t,t') 2 0 (and h=const.) this problem 3, is solved by
Duffield and Pule (6); most of their arguments apply to the case
of arbitrary A.

Notice that if h=0 and (r,s) is a maximizer for (4.1), then so

? our kernel need not be positive; it defines a positive operator.

A(t,t') > 0 is used in the uniqueness results of ref. 6.

13



is (r,-s). The function I is concave, with derivative -arctanh.
The r-variation can be done as in ref. 6; for s € L;([O,lj) with
s £ 1, let rs:[O,l] + R be defined (a.e.) to be 1 where |s|=1,
and otherwise as the {awgest zero in the interval [[s(t)[,1] of

the function

x -+ rBle(t)|x - [xz—s(t)zltarctanh(x) * ; (4.2)

then, if 3 denotes the unit ball of L;([o,ll), one has

f(h)= sup (V(s:h)} , (4.3)
s€3l
where
1 ‘
V(s;h) = J[B"II(rs(t)) + iIE(t)i[rs(t)z—s(t)2]Z~ %h(t)S(t)}dt

o

11
+ 1p J f/\(t,t')s(t)s(t')dtdt' . (4.4)

Qo 0

For h=0, one has inversion symmetry 7(s;0)=¥(-s;0). Let K be the
selfadjoint, integral operator on Lé([o,ll) defined by the kernel
A; K is compact. Consider the continous function gB on [0,1] given

by

(B/Z)i , 1f e(t)=0
(4.5)

gglt) = tanh($Ble(t) )1 ¥ '
[ } , if e(t)=#0
le(t) |

and let Gg be the (bounded, positive) operator on Lé([O,l]) of
multiplication by gB. Let U§=pGBKGB, i.e.

* Notice that ro(t)atanh(%ﬁle(t)[) a.e., that T_g=Tg- and that

rs=ls] on the set where c(t)=0.

14



i
(UGp) (€)= pgg(t) j gg(t! )AL, £ )p(e)dE! . (4.6)
o

Define ¢§(s;t) (a.e.) by

28" larctanh(s(t)) , e(t)=0

¢§(s;t) = p{Ks}(t) - i ‘ (4.7)
o s(e)/ir (0)2-s(0)217 ()0

and notice that ¢g(-s;o)=—¢§(s;o).
The solution of (4.1) for h=0 is obtained from the following
two results which will be proved in Appendix B by adjusting the

arguments of ref. 6 :

Theorem 3: 74 HUSH < 1, +then

1
#(0) = ¥(0;0) = '] logl2cosh(zBe(t))]dt
o

Theorem 4: J£ ilUgi] > 1, then thene ezioto a NON-zewW S,€3  such
that  $(0)¥(s,;0)=V(-s,;0). s, and -s, oe oolutione of fthe

Sulen ~Lagrange equation fb‘g(s;o):o. Moneoven

1
£(0) = V(£8,:0) = s‘lj log[2cosh(i8{s(t)2+kB(t)2}7)]dt
Q
y 2 2,7
1 tanh(zB{e(t) +kB(t) 1<)
=3 ko (t)2 dt
2 2.7 B
D e Bag(n)?)
whene kB # 0 »atisfies
1 tanh (36 (e (t1) 24ky(t) 2)7)
k(t) = p| A(t,t") k (t')dt!
B i (et 2o e 27 B

18



Remark 3 : Most likely, s, and -s, are the ondy4 non-zero solutions
of the Euler-Lagrange equation if K is positive, but I am unable

to prove this.

The map B - HUgH is strictly increasing with lim HUZH = 0, so
8.0
that one can identify a possibly infinite critical reciprocal

temperature Bc such that {; B < Bc then HUZH < 1, and if B > Bc
then HUZ“ > 1. For B < Bc’ £% - and thus f - is independent of the
interaction: the system is thermodynamically equivalent to a
non-interacting system of bosons and spins. Qualitatively, the
results are identical to those of refs. 9 and 10.

As an illustration, in the homogeneous case, one has

7B , 1f e=0
gl = oA { .
L tanh(¥Blel)/lel , if e#0
and thus, as in ref. 10,
2arctanh(|e|/pA)/le|l , 1f €20 and |e|] < pA
Bc = + ® , 1f €20 and |e| 2 pA .
2/(pA) , 1f €=0
Finally, one can proceed as in ref. 6, to obtain the

thermodynamic limit of the equilibrium expectation of the average
spin-polarization in x-direction when h(t)=R (by symmetry this
limit is zero for #=0); and then consider the limit A - 0. The
result is qualitatively the same as that for the homogeneous case
(10), namely: the limit is zero for 8 < Bc' and not zero if B > Bc
with different sign depending on whether R*0 or A,0.

Appendix A: Discussion of inf ts(h;x)
xeR® B

Lemma Al : fet I on [0,1] be defined as in Theorem 1. Then,
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r

-1

n
pt-} _a-1
iggn fn(h;x) = inf { Vi jgli B I(rj) + fsn(j)rjcos(aj)
x rjefo,ll
336[0,2n]
N “ -1n
+ zhjrjsin(ﬂj) - xvn kElAn(j,k)rjrksin(\?j)sin(ak)}}

-1 2 -1 .
= inf {V {—B I(r,) - ¥le_(J)lr cos(3,)
rye(0.1] n 321 J n 3 3

8je[—iu,%n]

n
1 A "1
+ zhjrjsin(ﬂj) - tVn kélAn(j,k)rjrksin(ﬂj)sin(ﬂk)}}

Proof : One verifies that for a and b real,

inf (-8"'I(r) + ¥ arz + ¥bry} = 8~ 11og(2cosh(3Bla+b2]1T))
re(0,1]

Y2+22=1

Thus, by Lemma 1,

- n
£3(h;x) = v} inf ¥ {-a‘lx(r ) + 7€ (J)r.z
n n rje[0,1]j=1 ] n 373
2 2_
zj+yj 1

n
+ irjyj[hj-zkélAn(j,k)xk}} + ®A_X

The variation over X € R™® can be done explicitely (for this, it is
convenient to diagonalize An); it follows that

- n
inf_ £3(h;x) = v} inf {-B’lx(r ) + ye_(J)r.z
xer® B n r,el0,1] j§1 J n 373
z§+y§=1
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n
. 4 -'1
*ghyrgyy - Va0 L PRRNNER] I

which proves the first claim upon setting zj=cos(83), aj € [0,2n].

The second claim is obvious.a

Appendix B : Solution of the variational problem following
Duffield and Pule (°),

Write ¥ for ¥#(0), and 7(s) for 7(s;0).

Proof of Theorem 3 : This is a minor adjustment of the
corresponding result of ref. 6, to accomodate the fact that our
variation is over 3 and not its positive part. Let A be the
support of €. For arbitrary s € 3 and 0 < p < 1, put F(p)=V(ps). F
is differentiable with derivative (integrals with unspecified
domain are over [0,1])

F'(p) = +pp [JA(t,t')s(t)s(t')dtdt’

0

- o Jle(t)is(0)r (t)2-p?s (1) *1 7ar
A

—B'lfcarctanh(pls(t)i)ls(t)ldt
A

Using the inequalities
Is(t)|arctanh(pis(t)]|) 2 p s(t)?
2 2.7 ‘
[rs(t) -s(t)“1% s tanh(zBle(t)]) .

one obtains F'(p) s %p<s,{Ug—1)s>L§([o,1]), where s(t)=s(t)/gB(t).

The assumption HUEHSI implies F'(p) s 0, so that ¥(ps) s 7(0), and
by continuity 7¥(s) s  7(0). 7(0) can be computed using
ro(t)=tanh(#fle(t)]).m

The proof of Theorem 4 is broken up into a series of lemmas all

18



of which have their origins in ref. 6.

Lemma Bl : TRere ezioto s € 3 suchk that F(h)=7(s;h).
Proof : See Theorem 5 of ref. 6.m

Lemma B2 : ?ﬁuugn > 1 tRen ¥ > ¥(0).

Proof : Let s € 3 with 7(s)=f. Since Ug is compact, ﬂugu is an
eigenvalue; let £ be a corresponding eigenvector. Define En €
Lp([0,11) by

g(t) ., if [&(t)| s n
En(t) - { 0 » otherwise

- nu‘;u—z (>0 !) as n -+ o,

Choose m such that <5m'(Uz—1}Em>Lz((0 11) > 0, and let ;=§mgﬁ‘ The
R [

It follows that <§n,<U§~1}5n>L2([o 11)
;R ’

proof then proceeds as in Lemma 3 of ref. 6 ®

Lemma B3 : 7£ s € 3 and ¥ = V(s), then (te[0,1]:|s(t)|=1} Rans
Zen0 Meaoule .

Proof : Proceed as in the proof of Lemma 2 of ref. 6, with the set
{te[0,1]:|s(t)[=1}.m

Lemma B4 : 7£ s € 3, and ¥ = V(s), uum.¢§(s;o)=o.

Proof : This is an adaptation of the proof of Theorem 6 of ref. 6.
Let 0 < & < 1, and take £ € L;([O,I]) with essential support
contained in Aaa(tefo,llzls(t)l<1-6)e For |[p| sufficently small,
sp=5[1+p§] lies in 3. Let F(t)=7(sp). Taking the derivative at
p=0, one obtains

s evs(nf(sinae = o . (*)
As

19



Now take Easo‘;(s;o) on Ag, and £=0 on Ag ; (*) implies that
sd(s;°)=0 on A5. Since & was arbitrary, Lemma B3 implies that
s¢g(s;°)=0. Thus, ¢§(s:o)=0 on B, the essential support of s; but
by the definition of ¢g(s;o), ¢g(s;o)=o on B.=

The first part of Theorem 4 follows from Lemmas B2-B4; the rest
of the claim follows as in ref. 6.
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