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Introduction

In 1971, Kac discovered that, for the free boson gas, the canonical

and grand canonical ensembles are not strictly equivalent although they

give rise to the same equation of state. This manifests itself in the

fact that, above the citi.cal density, the grand canonical distribution

of the particle number density is not asymptotically degenerate ; in the

standard example (where the single—particle hamiltonian is a constant

multiple of the Laplacian with Dirichlet boundary conditions in a star—

shaped region and the thermodynamic limit is taken by dilating the region

about an interior point, holding the mean number density fixed) the

distribution is exponential ; in general, when the distribution converges,

it converges to an infinitely—divisible distribution.

For a full discussion of these aspects of the free boson gas, see [1] and

[2] ; using their terminology, we shall refer to the grand canonical

distribution of’ the number density as the Kac distribution.

Kac conjectured that the lack of equivalence of ensembles in the

strict sense was a pathology of the free gas which would disappear in the

presence of a repulsive interaction, however weak. To test this idea,

Davies [3] studied in great detail a mean—field model of an interacting

boson gas. He proved that, if the mean—field potential is strictly

convex, the Kac distribution is asymptotically degenerate. In [4], a

general result was proved, from which it was deduced that the Kac density

is asymptotically degenerate whenever the free—energy exists and is

strictly convex. It is often useful to enquire about the rate at which

the asymptotic distribution is approached ; this is referred to as the

problem of’ large deviations. In statistical mechanics, it has proved

valuable to do this in the framework of Varadhan [5] where a powerful

generalization of Laplace’s method is available ; this framework is

described in 2 of this paper ; applications to classical lattice systems
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are surveyed in Ellis [6], to models of an interacting boson gas are given

in [7], to quantum spin systems in [8]. In §2 of this paper, we adapt

the arguments of [14] to prove that the Kac distribution satisfies Varadhan’s

Large Deviation Principle whenever the free—energy density exists in the

thermcrdynamic limit ; in § 3, we provide an alternative proof to that

given in [7] of the result that the Kac distribution for the free boson

gas satisfies Varadhan’s Large Deviation Principle. The result proved

in 2 applies also to mean—field models, even when the mean—field potential

is non—convex ; in such cases, it is possible for the free—energy density

in the thermodynamic to be non—convex ; nevertheless the Kac density

satisfies the Large Deviation Principle, albeit with a non—convex rate

function (examples of such rate—functions were given by Ellis [6], see

also [9].’)

To illustrate the situation which can arise with a non—convex

rate—function, we investigate in § 3 of this paper the model discussed

by Davies in [3]. In § 14, we describe in detail possible asymptotic

distributions for the Kac distribution in this example.
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A Large Deviation Result

Varadhan’s Theorem [5] concerns the asymptotic behaviour of

integrals with respect to a sequence of probability measures satisfying

the Large Deviation Principle and extends Laplace’s Method to infinite

dimensional spaces. Even in the case of a one—dimensional space, it has

advantages over Laplace’s Method : it applies to a wider class of

measures and to a wider class of integrands.

Let E be a complete separable metric space and {K2 2= 1,2, }

a sequence of probability measures on the Borel subsets of E

let {v2 : 2 = 1,2, .. .} be a sequence of positive constants such that

V2 -‘ . We say that {K2} obeys the Large Deviation Principle with

constants {v2} and rate—function I C. ) if there exists a function

I : E ‘ [O, ] satisfying

(LD1) : I C.) is lower semi—continuous on E.

(LD2) : For each m < , the set {x : I Cx) < m} is compact.

(LD3) For each closed subset C of E

lim sup in K [C] < — inf I Cx)
2—’ 2 2 — C

(LD14) : For each open subset G of E

lim inf 1 1-ri K [G] > — inf I (x)
2-’ V2 2 - G

A version of Varadhan’s Theorem adequate for many applications in statistical

mechanics is the following

Varadhan’ s Theorem

Let {K} be a sequence of probability measures on E satisfying

the Large Deviation Principle with constants {V } and rate —function

I C) Let G : E - R be a continuous function which is bounded above

on the set U supp K Then

I V2 GCx)
lim 1 ln e K [dx] = sup {GCx) — ICx)}

J 2 E
2



In [4], we proved a large deviation result whose main hypothesis

was the existence of the free—energy in the thermodynamic limit ; at the

Let : 1,2, ...} be a sequence of functions f2 : [O,)—’ B

satisfying
L 0 ; the grand canonical pressure

by f ià defined by

I {i.ix — f2(x)}

L
(ii) in J e

V2 [0,)

where, for each Borel subset A of [o, )

m [A] [A]
n>0

—

xc A,

[A]
xc Ac

and {v} is a sequence of positive constants, V -‘

For each 11 for which (11) is finite, the Kac distribution

is defined on the Borel subsets of [0, ) by

_BVf p(P) ( {i.tx — f2(x) }
K2[A] = e Je

and a
x

m2[dx]

time we were not aware of Varadhan’s work and so our result was not

formulated within the frame—work which we have just sketched Here we

reorganize the proof given in [14] to establish a result within the

Varadhan scheme ; this enables us to give a simpler proof of the free—

boson gas result proved in [7]

________________________

Cii) determined

_________________

determined by

A

m[dx]

We prove the following theorem

Theorem 1

Suppose that, on each compact, the sequence : = 1,2,

is bounded below and converges uniformly to a lower semi—continuous

function f . Let ii1, be defined by

inf fClim inf C
xt

lim
.tc

Cx) ) )
x k>2 k
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Then for each jl<jl the grand canonical pressure p (p) urn p ()

exists and is given by the Legendre—Fenchel transform of f

* rjt+
p (ii) f (ti) sup { tix — f(x) }

x>o

Moreover, the sequence {K : 2 1,2, ... } satisfies the Large Deviation

Principle with constants { } and rate—function I () given by

I (x) = p (ji) + f(x) —

Proof

Put g2 Cx) = px — f Cx) and g(x) = iix — f Cx)

so that we can write

1 1 V g Cx)
p2(1) — ln J e a [dx]

[o, )

Choose A such that i < A <jim; choose m such that

urn inf (i inf f Cx) ) > A
xt xk>m k

then there exists x1 such that £ Cx) > A x

for all x > x1 and all 2 > a ; hence

gx) < — CA — i’)x for all x > x1 and 2 > m, and g(x) < CA - ji) x

for all x > x1 . But gCO) 0 so that

sup g(x) sup g(x).
[0, ) [0,x1]

Now g is upper semi—continuous and bounded above on compacts, so that the

supremum of g on [0,x1] is attained at some point x0 in [0, x1

hence

f Cji) sup gCx) g(x0) <

[0, )
Furthermore, given > 0, there exists 6 > 0 such that gCx’) g(x) < for

2

x in [x, — 6, x + 6] ; by the uniformity of convergence on compacts

which was postulated for { f2 }, there exists & such that,

for all 2> m’ , g(x) — g2 Cx) < for all x in [x0 — 6, x0 + 6 ]
2



6.

Thus we have, for all L sufficiently large,

ç V2g(x) V2 g Cx) V(g(x0) —

J e mf [dx] > J e m[dx] > e

[0, ) Lx — 6, x + 6]

since eventually Lx — 6, x + 6] contains at least one point of

n 0, 1, 2, ... } . Since E > 0 was arbitrary, we have

1 1 Vg2(x)
lini inf - In J e mL [dx] > g(x)

[o, )

On the other hand,

f g2(x) {g(x [ ( -V(A -)x

J e mL [dx] < e ° J m[dx] + rr[dx]
[o,) [0,x1] (x1,)

v {g(x )+E +
0 r }< e i(Vx +1)÷e

— 1
1

- (A -

for all € sufficiently large ; hence, since g(x0)> 0 and (A — )x1 >0

we have
1 ( Vg(x)

lim sup — In e m [dx] = g(x ) +
0

- LU,)

and the statement concerning the pressure is proved, since e>O was arbitrary

We turn to the proof of the assertion concerning the sequence

= 1,2, .. . }

(LD1) holds by the hypothesis that x f(x) is lower semi—continuous.

It follows that, for each the set L = { x : I’ < m } is closed
m x—

forx £L , wehave
m

f(x) < m—p(i) +ix

on the other hand, we have shown that, for x>x1 f(x) > Ax . Hence,

either x < x or x
< m — so that L is bounded and (LD2) holds.

—1 — m
A— p
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For a closed set C, we have, given > 0,

—Vp(11) (
[C] < e exp {up g(x) + e } j m2[dx]

Cfl[0,x2] Cfl[0,x2]

I -V2 (A -
+ J e m2[dx]

Cfl[x2, )

for all .€ sufficiently large and all x2 in (0, )

Since sup g(x) < sup g(x) , we have
Cfl[0,x1] C

{p2(ii) + sup g(x) ÷ E}

[C] e C { (V2x + 1)

sup g(x) + + (A — 1’)
C

1—e

for all sufficiently large. Now choose x2 > x1 such that

sup g(x) + (A — ji) x2 > 0
C

Hence

lim sup ln K [C] < — pa’) + sup g(x) = — inf Ii” Cx)
C C

and (LD3) holds

Let G be an arbitary open subset of [0, ) ; given E > 0 and r’ in G,

choose 8 such that ( - 8, + 8)
- 88 C G and g() - g(x) <

2
for all x inG (this is possible since g is upper semi—continuous)

Thus, for sufficiently large,

a —Vp2() ( V2g(x)
K [G] > e J e m[dx]

—Vp2(it) BV2(g(’y) E)

> e e m[ ].
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But eventually contains at least one point of

n = 0,1,2, ... } so that m2 J > 1 and hence

lirn mt 1 ln K [G] > — pCi’) ÷ g(y) = — I’ (y)

2—’

since this inequality holds for each point of G,

we have

urn mt I ln K [G] > sup C— I’ (y) ) = — mt i’ ()
-‘ C C

and (LD14) holds.
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§ 3, Mean—Field Model of Davies

The basic probability space for the class of models of boson systems

which we consider in this paper is the space of terminating sequences

of non—negative integers

= {w : ((1)1W2 ._), w u.

The basic random variabales are the occupation numbers {c

defined by G (w) w• ; the Hamiltonian H associated with a
J 2

is given by

where {A2( j) : j 1,2, ....} are the energy levels, labelled

ascending order with the lowest taken to be zero : 0

The volume of the region A2 is denoted by V2 ; it is assumed that

sequence {v2} diverges to + . To state the conditions placed

double sequence { A2Cj) }, we define

1 Y— e
V2 1

we shall assume that the following conditions hold

(Si) The limit ‘() = urn 2(P) exists for all

(S2) There exists in (0, ) such that (Bc)

It then follows that the sequence of distribution functions

{F2 : 2 1,2, ...} defined by

F2(A) i z { j :
‘2 () A } (3.Z)

V2

converges to F, the integrated density states (at least at the points of

continuity of F) which is determined uniquely by its Laplace transform

= f e”’dF(X) . The critical denisty P is defined by

-‘[0, )
C

(e - 1)1dF(A) , if A ‘ (e 1
)1

is integrable.

PC

( , otherwise.

H , (w)

j = 1,2, ...J
region A2

Z A2(j) (w) (31)

=

in

A2(2) < .

the

on the

3j(0, )

0.
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Let N () Z G (w) denote the total number of particles in the
j>1

configuration w , then the canonical partition function Z2(n) is

defined by

1 ,n = 0,

6H (w) (‘3,3)
Z2 (n) e 2

{w N(w) n}

The free—energy density f2 : [0, ) -‘ B is defined first on the

set { 2 : n = 0,1, ...} by f ( ) = ln Z2 (n) , then
V2

extended to the whole of [0, ) by linear interpolation. Using the

methods of [10] and the results of [1] one may prove (see the Appendix).

Theorem 2

Suppose that (S 1) and (5 2) hold ; then on each compact

subset of’ [0, ) the sequence {f’2} is bounded and converges uniformly

on compacts to a convex function f satisfying f’(0) = 0

moreover, 1I 0.

Putting together this result with Theorem 1 of the previous section, we

have

Corollary

Suppose that (5 1) and (5 2) hold ; then, for each i < 0 , the

sequence {K : 1 1,2, ...} satisfies the Large Deviation Principle

with constants {v2} and rate—function 1P(.) given by

1 Cx)

=

(ii) + f(x) — px
, (34)

ji_ p(11) = f’

It may seem surprising that no use appears to have been made of the

special features of the free boson gas, while the earlier proof of this

result [7] made fairly delicate use of the fact that the occupation numbers

{ 3 = 1,2, } , in the grand canonical ensemble, are independent
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geometrically distributed random variables. It is worthwhile, perhaps,

to examine this point further. The grand canonical measure is
_SV2p2(11) {j1N(w) — H2(w)}

defined by P [wJ = e e

for each 1 < 0 ; an easy calculation, see [1] for instance, yields

1.1
m(ii — A2 (j) (, 5j

P2[cY.>m] = e

By expressing N as + (N - and using (3.5) a lower bound was obtained

for P’ [X e 1 , where X = N/V and y E [X I ; this was
2 2 y 2 2 2

required for the proof in [7] that (LD4) holds. However, the use of

(3.5) can be detected in the proof of Theorem 2

the convexity of the functions x-’ f Cx) was used to prove the

uniform convergence of the sequence f2 on compacts ; the proposition

that f2 is convex is equivalent to the proposition that the inequality

Z2 (n)2 > Z2 (n + 1) Z2 (n — 1) for each n > 1 , but this is”

equivalent to the proposition that n P’2 [c’ > mIN = n] is an

increasing function in view of the result, proved in [91 , that

—mBA (,j)
2 Z (n—m)

pP [a-.> mIN =n] =)

____

, m<n
2 ) Z2(n)

0 ,

Following Davies [3] , we consider the hamiltonian

H2 H2 + V2 w(X2 ) , (3.6)

where H2 is the free—gas hamiltonian of (3.1) and X2 N/V2 is the

particle number denisty ; unlike Davies, we require only that

w [0, ) -e B be lower semi—continuous and satisfy

w(x)
w(0) = 0 , liminf — + . (3.7)

Define f2 by ?‘L Cx) f2 Cx) + w Cx)

it then follows that

“4

‘) ... 3’
f2 (n ) — 1 ln L_ie

2 v2 {w:N(w) = n}
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Using Theorem 2 and (3.7), we verify that : 2 1,2, ..

satisfies the conditions of Theorem 1 with = + , we conclude

that the following result follows from Theorem 1

Theorem 3

Suppose that (S 1) and (5 2) hold and that the mean—field

hamiltonian (3.6) satisfies (3.7) ; then for each 11 < the grand

canonical pressure P01) = lim p2 (ii) exists and is given by the
2

Legendre—Fenchel transform

‘\*

f of f, where

(x) f(x) + w(x) (3A)

and f is the free—energy density of the free boson gas, and the

sequence {K 2 : 1 = 1,2, ...} of Kac distributions determined

1 1,2, } satisfies the Large Deviation Principle with

constants {v2} and rate-function I () given by

(x) = p Ci’) + f’ Cx) — 1.’x . (3.w)

vJ* ft,
It follows that p = f = cony f , where cony g denotes the convex

envelope of g , hence the intervals [‘ (ii) , Ci’) ] of discontinuity

of the derivative of correspond to the linear segments in the convex

envelope of . We conclude once more that is asymptotically

degenerate whenever w is strictly convex.
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& 4 The Asymptotics of the Kac Distribution

In this section we examine the consequences of the non—convexity of

I’,

f for the asymptotics of the Kac distribution. We consider the case where

cony f has precisely one linear segment [pp] and f Cx) > cony f(x) for

x in (pp) ; the general situation should be clear from this discussion.

We recall that the asymptotic Kac distribution K’ lim K gives the
l-,

decomposition of the grand canonical limiting state into extrernal

(canonical) limiting states < >

<.>“ = .1 <.> K [dpi . (4.1)
[O,) ‘

In general, if K = urn K exists its support is contained in the
l-e

set {x : i Cx) = o} ; however, if this set consists of more than one

point there is no guarantee that the sequence {K11: 2 1.2. ...}

converges Nevertheless, by the Helly selection principle, {K112 2 1,2, }

contains at least one convergent subsequence ; in the case under consideration,

where cony f has precisely one linear segment [pp] and f is non—convex,

we have three cases determined by i which is defined by =

(and hence (ii) = p) so that i- is the slope of the linear segment of

conv

I :
< c ; 2

K - ö() , i(ii) p (j.i) . (4.2)

II : 11 = P ; there exists U. : j = 1,2, ...} such

‘JP

that lim K 2 = K exists and

j

+ (1 -) ö , o<a< 1 (43)

III : P >
c

K -+
11::
6(P) = ‘ ° (4.4)
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We sketch the proof’ of’ II ; the proof of’ the remaining cases should then

be clear. Choose such that < <

Let A [O,P0) and A ).

Then

K [A ] 3 is a bounded sequence of’ real numbers and hence contains a

convergent subsequence { [A] : k = 1 ,2 ... }

Consider the case in which

lim K [A] = , O<< 1.
k-’ k

Then

-tx ‘c ( -tx

J e KLc [dx] KL [A] J e L [dx]

[o,) k k

11 1 —tx +

+ (1
- c

[A ]) e Lk [d i]

k J

K [ArIA] K [A fl A J
where L. [A]

= k
, L [A]

k +

k 1c
[A]

k c
[A]

1< - k +

Now {Lk} _and tL satisfy the large deviation principle with rate—

functions I and I respectively, where I (I ) is the restriction of

+ ft

I to A (A ) . Now I has a unique minimum at P and I has a

unique minimum at p,

hence

r —tfl y —tP... — tp

Je K: [dr1] ‘e ÷(1—c) e +

[o,)

So that { K: converges weakly to

6
+ (1—a)

The remaining cases are clear
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It remains to consider case II in more detail : we investigate the possible

dependence of’ o. on the subsequence {.i j 1,2, } We remark, in

passing, that if we adopt the quasi—average approach of’ Bogoliubov [11], we get

urn KL o, urn K
=

6, ; (5)

On the other hand, the generalized quasi—average procedure [12] enables us to

scan the whole interval 0 < < 1 : here we put

÷ , ‘ > 1 , and get the following limiting values

K urn
k

= 1 : A6 + (1 — A6) 6 (z,4)

where A6 - * (4.7)

+ (1 — c) e

Ii

Y> 1: Kc= A0 6 + (i—A0)6
‘y,ô

Note that

( -tx I -(t -ô9x
Je K [dx] Je [dx]

[o, ) [o, )

1’t_ ‘1”C ÔV

J IC[d]

[0, ‘)

Now we can choose B and sufficiently large so that
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critical density
PC

lies between P_ and P . In this case we have,

in the standard example described in the introduction perturbed by the

mean—field term V2 w(X2) , the following result for the occupation of

the ground state.

lo ,1-t<p

- ‘
(4.9)

V

—‘
p >

Appendix : The free—energy density of the free boson gas

Here we prove the results about the free—energy density of the free boson

gas which we used in the body of the paper. First, we remark that, as

A2 (1) 0
, 2 (ii) > — (V2)1 ln Ci — e

so that 2(p) as P increases to zero. Moreover, it was proved in

Li] that when (Si) and (S2) hold we have p(p) lim p2 (ii) exists

for p < 0 and is given by p (p) J p (p A) F (A)

[o,)

where p(iJ A) 1 (1
- _(A_

It was proved also that

p(x) sup { lix - p(P) }
p <0

is given by

*

p (x) = xP Cx) — p(P(x)

where p(x) 0 for x > p and p(x) is the unique real root of

x = p’(P) for x < ; the function p(p) , defined on (— , 0)

is extended defining p(O) = lim P(p) =J P(0 I ) d F (A)
ptQ [Q,)



Lemma 1

The function x -. f Cx) is convex

Proof It is enough to prove that, for each n

n 1 n-i 1 n+i
L ) + v -)

that is, that

ZL(n) > Z2(n - 1) Z2(n + 1) ‘
(#)

where

Z (n) 2j e
X1) + C2) +

{w NCw) n}

We proceed by induction on the number of levels , Let

Cn) e + ...

+ XCk)w
k

{w : NCw) n }

For k = 1, the result C*) holds trivially.

Assume that

ZCn)2 > Z(n—i) ZCn÷1) foralln>1

so that

z Cn) Cm) > Cn + 1) Cm — 1)

Now
Z + 1Cn)

n-m z Cm)

where

+ 1)
Z = e sothat
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Lemma 2

For the free boson gas, the finite—volume free—energy density is

a decreasing function

f2(x) < f(y) for all x > y

Proof

Since x -‘ f (x) is convex, it has a line of support at each

point : for each y , there exists a(y) such that

fL(x) — f2(y) > a(y) Cx — y) for all x

Suppose thereXisa poiotx0 where a(x0) > 0

then, for each i < 0 , we have

p (ji) —f3V2 {f Cx) — Jlx}
e e m[dx]

[o,)

I (x) - f (xf4VLaL(xO) (x-x0)

< J e m [dx] + e e mLdx]
[0,x0) [x0,)

< , since a(x0) > 0

But p(j.t) - as i t 0 ; contradiction. Hence aL(y) < 0

for all y and

f(x) — ff(y) < 0 for all x > y
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Lemma 3

For all x > 0 , lim inf f(x) > p Cx) sup — p(JA)}
1t<0

Proof : We h&ve

p(.t) ( —V {f(x) ix}
e e m[dx]

[0,)

—V {f2(x) —

> e for 0<x<co.

p(i) V2
—

n>0

Thus (P) > f () + for each n

Since f2(x) is defined for all x in (0,) by linear interpolation it

follows that

p2(11) > — f(x) + .i for all x in (0,)

thus fL(x) > 11 x
—

so that lim inf Cx) > i x
—

p(.t)

Hence urn inf f2(x) > sup hi x
-

13

p(x) S
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Lemma 5 For all x >
PC

urn sup f(x)

Proof : By Lemma 2, for every E > 0 and x ?. , we have

f2(x) —

hence

urn sup fL(x) < urn sup f(P —

But, by Lemma 14, we have

lim sup .€ (

so that

lim sup f2(x) < p*(p )
C

since is arbitrary and p is continuous I

*Sincep Cx) p (P) forx>P
by C C

we have Lemma 14 and Lemma 5 that

lim sup ff(x) <
p* Cx) for x > 0

Combining this with Lemma 3, we establish Theorem 2 urn f Cx) p*(x)

{f2} is bounded on compacts by Lemma 2.

Since f(x) < 0 , 11!,< 0 . From the inequality

fL(x) > p — p2(i) for p < 0 in Lemma 3 we get p > 0
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