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Abstract:

The Lagrangian Euclidean Quantum Field Theory of @ two
interacting vector fields is found, which 1is equivalent to a

special Gibbs system with three body potential.
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1.Introduction.

The Sine-Gordon Trepresentation for the grand canonical

partition function and correlation functions of an r-component

Gibbs system with the potential energy

n
UO((x, o)n) = E; Gkojc(xk—xj), oje R , xje R
kej=1

plays an important role in modern statistical mechanics. With its
help the rigorous results for charged systems were obtained [1-6].
The analog of the Sine-Gordon representation for the Gibbs systems
with manv-body potentials has not been found yvet. In this paper we

derive this analog for Gibbs systems with two types of three body

potentials
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Gjis the charge of the j-th particle, and the coefficient is

Ly k=

introduced for later convenience.

The second expression for the potential energy appears in the
heat equation, to which the Smoluchowski equation is reduced by

the substitution

¥(x ) =exp ( - Sux) ) ¥ (x) ;

the Smoluchowski equation is the forward Kolmogorov eguation for
the stochastic (Ghihman-Ito) eguation
-1
Lox, () =-2 ulxo) )+ B Zw, ()
dt 7j,0. 9x . "“'n J
where ({ Wj(t) } is the sequence of the independent processes of

white noise.

The discussed systems are not difficult to treat in the case
of an integrable smooth potential c¢(x), since they can be reduced
to the Gibbs systems with a complex pair potential with the help

of the transformation
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If c(x) is an integrable function the thermodynamic limit of
the correlation function can be found as the solution of the
generalized Kirkwood-Saltsbourg equation; these egquations do not
help much when c(x) is not an integrable function, and in this
case we <cannot pass to the thermodynamic 1limit. The proposed

Sine-Gordon type representation shows a way of dealing with this



limit not only in the case of the charged equilibrium system with
the potential energy (1.1} but also in the case of the
non-equilibrium diffusion system, mentioned above, when the
initial distribution is Gibbsian. It ‘establishes the
correspondence between the Gibbs systems (1.1) and the Quantum

Euclidean system of two interacting scalar fields o¢(x), P, (x) in

the case (i) and two vector fields ¢(x) = { wl,...wd Y P (x) =
{ w*l,...,w*d } in the case (ii) with Lagrangians, respectively
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with
(1) b(x,9) = o(x) C =1c(0) , z.=exp { B 0% c(o) b 2
' ' R 2 ] J
resp.
. A _ - _ I 2 1
(ii) ¢(x,p) = div ¢(x), C_ = Vc(0), z_.=expy; 0,(-Ac)(0), 2z, ,
o J 2 3 J 3
where (.,.) 1s the scalar product in Lz(Rd) or Lz(Rd)®Rd, C“1

is the inverse of the operator

(Ch)_(x) = j c(x-x') h(x') dx',

and c(x) is a positive definite smooth function



The most remarkable and unpleasant feature of the Lagrangians
is that they are degenerate in ¢, i.e. there are no duadratic

terms in ¢ in them,.

2. The main equations. Grand partition function.

To derive the introduced Lagrangians we start from the

following identities
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(ijO((x,o)n), qj) + E: ojok(—Ac)(xj—xk) =
1 kej=1
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Let us denote

(x ,oj) = ( X, O, ;...;%_ 0. ).

From (1.1-2) and (2.1) it follows that
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in the case (i) (g,C ) denotes qu' and we put

(1) €= c =c(0), (11) C,= (-Ac)(0)

Functional measures pu(de), p(dep,) define two independent
scalar random gaussian fields with the covariance c{.) in the
first case and two component-wise independent vector gaussian

fields with the same covariance in the second.

Integrating over Qn variables we obtain

_ = i
exp{ - BU(x ,oj)n } = f p(de) f pu(de,) :l;l?xp { 3 VB ojl¢(xl.¢>)
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Now let us consider the grand partition function EA
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where (x

With the help of (2.3) we derive the Sine-Gordon representation

for EA

[x]

N ACO EETR exp{ Li(9,0y) } (2.4)
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(1.3) follows from (2.4) 1if we <change the variables in the

functional integral, making the complex translation [5-6].

3. Correlation functions.

The correlation functions are defined by the following expression

-1 m r -1
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where xA(x) is the characteristic function of compact set A, and

Xn = (Xil),...,xgr)). (2.3) yields the representation
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Now let n, (x) € Cz(A’), A A’ m(x) = 1, if xeA. It is clear
that nothing changes if we multiply ¢ by nA. After this let us

make a complex translation [2,3]

P (X) > o (x) + 1 nA(X) p(x)

As the result we obtain

8, = jp(dw) exp { % (c'lnAw, nAw)} j n(dw*)exp{~i(0_1w*:WA¢>}X

{ = -
xeXpiLz(wlw*)}. pA((x,aj)m) =EA1fu(dw) exp {%(C 1nAw,w)}f p(de, )x
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xexpd =i (C T, ) + LY(9,0,) ¢ P (0,0, (%,0.) ), (3.3)
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where Pq is defined by the previous expression for the

correlation functions. Formally

- B
u(dp) exp { 2 (c lnAw,wA)j > M de(x)
AsRY  xer?

So we derived the Lagrangian from the introduction.

For neutral systems we have

Lo(o(n) 0,(x)) =

10



- 1z B 2 . =
zj cos{ 3 vB oj ¢(x,w)}exp{— i ojuw*(x)+iojico }, r=2k.
1
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In spite of the fact that the introduced Lagrangians are
degenerate the rigorous approach can be developed. It demands that
we integrate out first +the field ¢, to find the effective
Lagrangian LA(w). It can be easily found as a bounded functionin

the case of integrable potential.

It is worth remarking that the field div ¢(x) has a short

range covariance when

1 -1
c(x) = (2m) 2 [ exp ( i(k,x)) ( k2] (k24 m?) ) dk
s=1

NI

If we prove with the help of a cluster expansion that the
effective Lagrangian depends on div ¢(x) then the problem of the

thermodynamic limit is solved in the case (ii).
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