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Abstract:

Consider a one-dimensional lattice boson system with the

Hamiltonian in a finite box A, H= K,1+ Here K,.is the kinetic

energy (the discrete Laplacian) and u,is the potential energy

corresponding to a finite-range pair interaction. For a class of states

of the infinite system, we prove the existence of the limit

(A) = Lim (e Ae ‘“ ) for any t and any local

observable A. Thereby a family , tEIR4} of locally normal states

is determined which describes the time-evolution of the initial state ‘.
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1. Introduction

The problem of constructing time-dynamics for an infinitely

extended system is a major one in statistical mechanics, both classical

and quantum. So far, in quantum statistical mechanics this problem has

been solved in a satisfactory way for a particular class of systems

only, namely, for quantum spin systems. Here Robinson’s theorem

1 3 (see also t2 3) asserts that, given a “reasonable” interaction

potential of a general form, there exists the corresponding strongly

continuous *- automorphism group of the quasilocal C - algebra. This

provides, in particular, an elegant definition of an equilibrium state

via the KMS boundary condition.

However, for other types of quantum systems of interest,

e.g., for interacting particle systems in a Euclidean space, the problem

remains open (some results, both of a positive and a negitive character,

are available for free systems; see, e.g., £3) , 43 ). A wide-spread

opinion is that the “traditional” C* -algebras ( the CAR, the CCR and

the quasilocal algebras) are not appropriate for this purpose; by

analogy with the classical case, it is believed that trouble may arise

from singularities whichoccur in a system with infinitely many degrees

of freedom , such as uncontrolled “collapces” or “accelerations” of

particles.

From this point of view, it seems natural to consider the

time-ev lution of a state rather than the time-dynamics on an algebra

of observables. One such version based on time-dependent Green’s

functions was elaborated in 5 .3 , t 6 3 for equilibrium states and in

t 73 in a general set-up. However, to check the assumptions on an

initial state which were formulated in C,7 3 is not an easy matter.

The present paper deals with an alternative approach to the

problem. For an appropriate initial states we construct directly the

time-evolved state by setting

p (1.1)

for any local observable A. We consider a system of interacting bosons

on the one-dimensional lattice Z
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The (formal) Hamiltonian H of the infinite system is

H- Z ! (-j’i) . (1.2)

where stands for the second difference operator,

+ c+11-Z), € 7L

o. and o are respectively, the creation and annihilation operators at
k i

a point is a real-valued function on 7L+, the set of

non-negative integers, with bounded support and nk = a a is the

particle number operator at a point k7L In principA’, one can admit

infinite values for the potential (hard-core type interaction), but

to emphasize the “bosonic” character of the system under consideration,

we shall assume that (r’) < °‘O for any r € 7L
Given a finite “box” A (an interval, or a segment of the

lattice 7L1),one can consider the finite-volume version HAof the

Hamiltonian (1.2); more precisely, one takes the self-adjont

extension corresponding to a standard boundary condition onA , and

or definiteness we shall deal with the Dirichlet condition Then the
*

- automorphism group

tEIR1 (1.3)

determines the time-dynamics of an abservable A. For a class of states
‘ which we call diagonal, we establish th existence of the limit

(l.l),as?’7L4,for any local observable A. This yields the family

t IR of locally normal states of the C* -algebras of the

infinite system which describes the time-evolution of the initial state

In a separate paper we shall prove that the family }
provides a unique solution of the infinite-volume Tiouvi11e equation as

well as a solution to the corresponding BBGKY hierarchy.

The condition of diagonaiity on the initial state is used

to simplify technicalities;we hope drop it in a later publication.
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The method of proof relies heavily on the concrete form

(1.2) of the Hamiltonian as well as on the one-dimensional character of

the system. The problem of the recovering dynamics of continuous

systems of interacting quantum particles by passing to the limit when

the lattice spacing tends to zero is reserved for future study.

In conclusion we remark that the main idea of this paper is

inspired by Sinai’s approach to the construction of a cluster-dynamics

for classical systems (see [8] , [9]

2. Preliminaries and results
1

For any consider a copy of the separable Hubert

space € ( 7L) with standard orthonormal basis , s 7L.J’.
Letting be the C* -algebra of bounded operators inRk we set

The creation and annihilation operators a.’ and G., act in

a =(1 = S’Z€’, s E7L,(o..(0k)1s set

to be zero), k€7L. Given a finite lattice interval 1\c71..1 , the

Hamiltonian H, acts in the Hilbert space =@ and is defined via
‘

(1.2) with the Dirichlet boundary condition. Hence, e-’ i’s is unitary

and (1.3) defines the *_automorphism group onS3, the time-dynamics in

the volume A
A locally normal state ‘ of the C* -algebra J3is determined

by its values ( E” ), here A° is an arbitrary bounded interval the

lattice, x and x stand for occupation number configurations in A
k0 1 0 çjsQ

i.e., for functions i’ -i (we shall use notation x, x ci\ ) and E
+ ..

is the corresponding matrix unit in the standard or thonormal basis

ea A° in

(°) 0) .

E =.e. , provided that y = x
(2,1)

= 0, otherwise

A locally normal state ‘9 is called gauge-invariant if and only if

(E ) =0 provided lxi x’f where (yl is the total particle number

in y:iy:y(j). Likewise,is called diagonal if and only if (Et’, )
=0 providd x 4 x’ .

detailed C* -algebra background for this section may be found in

E 103 For details of a probabilistic character see, e g , t.n 3
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Diagonal states are in one-to-one correspondence with

probability measures on the measurable space (,tL,U) whereAtis the space

of occupation number configurations in 7L4, i.e., of functions

X : 7L-7’÷, andfl’is the c’- algebra of subsets of.A..Lgenerated by

“cylinders” (l\°

Is’°tXA,L XrI\
The correspondence between a diagonal state and the measure on

(JL,flt), which we denote by the same symbol f, is established by the

formul a

A simple, but useful, example of a probability measure on

(.kt,1R) (and hence, of a diagonal state) is the product (Bernoulli)

measure where is a fixed probability

distribution on 1with(0) 0 ( e.g., a geometric distribution

p () (1 - q) qS, s 7LA÷ , where q € (0,1)).

A Bernoulli measure has the following property which will

play an important role in the sequel : let Sm m 7L } be a monotone

increasing sequence of positive integers and set

(22)

I L- s 1, sm], I [Sm, ]
(all the space intervals considered here and below are on the lattice

7L). Denote and consider the event (from fl ) that

neither on 1 nor on 1 can one find a subinterval of length greater

than or equal (., &. which is free of particles. The

probability of that event does not exceed

ep( (Q)

If we assume that (Q°’ as ‘iaQ so that

L €.“p(-pco

then, by the Borel-Cantelli Lemma, for — one can find

‘n0.vi0(X) with the property that for any there exist

subintervals of length greater than or equal such

that X (,j) =0 for .j € JU J . MoreThver, the following bound holds:
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(0(X)’) ‘2 2 74. (2.3)

Now consider an arbitary measure 9 on ((,fll). We shall

suppose that the foregoing conditions hold forwith

S = , = 2 and where € (0.1) is

fixed. In that case we denote the property under consideration by (d*).

In probabilistic terms property (d*) means that, for a measure ‘f

( U fl W)) t) 1 (2.4)

Here (m) stands for the event

3 intervals J J±(X,P1) I’ . of

length such that Xo € 3— y
(2.5)

In what follows we shall think of 1T±as the longest intervals possessing

the properties listed (if such intervals are not unique, we take the

left-most (resp., the right-most) of them). So far we have checked that

the property (d*) holds for Bernoulli measures but the class of

probability measures on (JAJ1t) for which (d*) holds is in fact much

larger; it includes positively recurrent Markov chains and DLR measures

corresponding to classical superstable interactions (not necessary of a

finite range).

Another property of an initial state which will be used

heavily in the sequel is again inspired by the example of Bernoulli

measures. This property is denoted below by (d**) and is a combination

of the two conditions, (d *) and (d*).

(d *) There exists constants c, and a

value s E7L such that for any bounded interval Pc7L with1\[,swe

have

(1%) 1

where
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C,’)
and .fI.5 is the orthogonal projection inC,onto the subspace generated

by occupation number configurations xc i\ with L’czs
(d *) There exist constants C1 70 and €(Ol) such that

for any pair of finite occupation number configurations yy’ we have:

I —

‘ ( ‘ (2.7)

where R(y) ‘(y(j)l) and we have used the notation

x
the sum y + y’ means here and below summation of functions.

As before, the conditions (d *) and (d *) hold for a large

class of probability measures on (h{Jfl). Property (d *) establishes a

kind of limit theorem estimation while Cd *) gives a kind of stability

bound, both are natural from the point of view of statistical mechanics

Remark We have stated properties Cd *) and Cd **) in a form chosen

to emphasize their probabilistic character; as will be seen from what

follows, this is not necessary. For instance, the inequality (2.6) may

be replaced with the following relation: for any bounded interval 1\°

tv°,v4]c 7C
c ° ( Cs1aJ))

L?
)

.1)03

0 1where i\ (r) v -.r, v -J r€ /L÷.

We are now able to formulate the results of the paper:

Theorem 1. Suppose that a diagonal state has property
(d*). Then, for any bounded interval A°c2.1 , any pair of occupation

number configurations c,,c’c f%O and any t € the following limit

exi sts

(‘)) çE”’ ) (28)
t ,1b;q7l

where

A ) ç’ A C2.9)

1)
The symbol indicates the end of a statement The end of a

proof is indicated by the symbol C
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Theorem 2 Suppose that a diagonal state has property

(d**). Then, for any bounded interval and any t € the

following relation holds:

c fl))
(2.10)

From these two statements we derive immedately the following

result

Theorem 3 Suppose that a diagonal state has both

properties (d*) and (d**). Then, given teR4 , for any local E’33 the

following limit exists:

.(A), (2.11)

where () is defined by (2.9). The limit (2.11) determines a

locally rmal state of the C*a1gebra £.

Proof of Theorem 3 (given TheoremI and 2): Let A be

localized in an interval t\°c7L1 Writing

44(PA(UJi’)* c-RAc-J1

c
we estimate from above the first term in the RHS by f (fi ‘)and the

second and third ones by flb))t\J)4,’zS

Theorem 2 asserts that all these estimates may be made small uniformly

inAwhereas Theorem 1 says that the fourth term has a limit when J\,”

7L Hence, the whole RHS of (2.11) tends to a limit.

The problem of verifying that is a locally normal state

is reduced to checking the equality
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2
< c A°

for any bounded interval A°cZ4

for estimating the difference

we set

given a

the

Z N c)a
A (.*) A

(2.13)

(t4%O)

E ) 1 (2.12)

To do this, we again use Theorem 2

and then Theorem ‘1 for doing the same for

2.
ccA°t,cHs

These estimates vanish when -oo . This yields the assertion of

Theorem 3 0

The proofs of Theorems 1 and 2 are based on the

representation of the matrix elements in terms of

integrals over the paths of a Markov jump process on 71,1. Precisely,

let P’, j.€71.1, t - 0, denote the path distribution up to time tof

the processstarting at the point j which, after spending the mean one

eponential time at a given site, jumps to one of the nearest neighbour

sites, each with probability .

Suppose a triple of occupation number configurations a,

,y’c A with LjlI’is given By we denote the set of all

matchings between y and y’ . Every matching is identified with a

function rA°1\°— 7L, with the following properties:

provided (j)•’(j’) Q,,(::) 0rc3)k,..SJ(3) and

for any j4’€,’\°. Given’rO) let denote

product measure P’.x
(pt’)cj) This describes the

J
development up to time of1tcopies of the

process starting from the points occupied by y. Futhermore,

matching denote byW’’ the set of families 2{c*. } of

paths which start at the points occupied byand arrive, at the epoch,

at the corresponding points occupied byy’. Next, given a family 2.
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2. 1(’-4,)’)+ 2 iA,1)L, (2.14)
(,

w
where

N ) is the number of jumps of a path ci, (2 15)

1, if for any

, otherwise, (2.16)

)‘) 5 ct (Lø(u)-w’(uI), (2.17a)

(2 17b)

Finally, given a pair, £1 {(..) of families of paths we

set
1X(.4,ci’)+ 2 /

(2.18)
i) +

For later use, it is convenient to consider Hamiltonians of a slightly

more general formthose which include a term representing an external

field generated by a fixed occupation number configuration. Precisely,

let denote the operator in J-f. given by

(ào). + 2 +

(2.19)

z (z-kt) .Uç),
jLE1\

and be the operator in of the form
1\

(2.20)

where V is the cross interaction energy
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V 2 ‘(1kLh1)
(2.21)

kE

Lemma 2.1 Given a bounded interval AC7L., a quadruple of

occupation number configurations j)yy4,y. int’ with

I4 t i I and t 0 , we have:

a) the matrix elements of the operators are given by

QU1tt)t z S P(ctlyX, (.O.)’
A

(2.22)

b) the matrix elements of the operators are given

by

(Q
C,y4,c’

; (N (.i.) +Nccy)
5 pri)p(()L

A
?.Ufl1)).

W (2.23)
.11

Notice that if i141’j or lyL , the matrix elements of
4.

Q and vanish due to the gauge invariance of the

Hamiltonians and 1j
The proof of Lemma 2.1 is standard: Observe that for each

choice of sign the RHS’s of {2.22) and (2.23) obey the operator

semigroup rule and then calculate the infinitesimal generators.

3. Proof of Theorem I

For definiteness, assume that Notice that the RHS

of (2.8) vanishes if I’c1*1’i . Hence, we can assume that Ij=t’I.

Denote

) ,c ftcA) E .
t%fl

A,twi ,#



I is defined in (2 2)

Proof. Let (this will be always assur’ed in the

of intermediate assertions which follow). We have

i
° cE )l’ (-fl())

E -ft(’))) + j’
(ç flCt%))

(3 3)

E (%o)eN%n ())4 (fl km) E” &‘( -Si “ (v))) 1

The first term in the RHS of (3.3) is upper-bounded by (1_.fL(M())

whereas both the second and the third ones do not exceed((fl)(pi))(fl()(wb)))12

Finally, we get that the LHS of (3 3) is less than or equal to

(+
(ç)/2 (3•4)

wheredenotes the set-theoretical complement. Due to (2.4), this yields

the proof

The next approximation to f ( E )is provided by the

following quantity:

(E)(fl(!(vDL E
“Jb’

(3.5)

where (cf. (2.22) for the particular case

(11)

(ti)
where Si (ri)is the orthogonal projector in it onto the subSpace

generated by those basis vectors Q. for which the occupation number

configuration y belong to U(m) (see (2.5)).

Lemma 3 1 The following equality holds true

tz p
MOQ

where

proof

) 0, (3.2)
)(., cI



NUl)
L(±LT(2j)

(3.7)

Here, for a given path C’.) from a

() .1, if

family ...Q.€ldV_ , we have set

3uJ) for any

(3.8)

= 0, otherwise,

where the intervals 3
follows: if

+ +
_3 _(,)
C4 +,

‘/
— •j , then4) 2.

(see (2.5)) are defined as

(distinguish parenthesis for the integer part of a positive number from

that for an interval of the lattice 7C ). Recall that the lengths v—
+ -

— of 3 s are >, [r, ] . Likewise,

(12)

L/R. z
Wt (3.6)

r
L/R

(c2)

L R

New indicators and )are relating to free intervals 3
(see (2.5) ) . We remind that, because of presence of the projections

fl(i) in (3.5), we have when deal with DLand y’€AJ..(b”vl)
when deal with D . So,

L/R ()fl
cm)

r

+

4JLv4 3 ) Z —L ) ] (3.9)
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R

if ( v) for any

u (3.10)

= 0, otherwise,

+
where the intervals J C. J(,w) (see (2.5) again) are defined

in the similar way.

Physically speaking, in the integral in the RHS of (3.6) we

forbid the paths to go “too far” into free intervals . As a

result, the paths which are on one hand side of will not interact

with those which are on the other hand side. Such an interaction

breakdown means, as we shall see, that ( E’’ ) depends

“very weakly” on A . ,4hb1

We now want to estimate the diffeence between
A

and :i’
i W

Lemma 3.2 The following equality takes place:

cE
(3 11)

c 1 0.

Proof. Comparing (2.22) (where is taken to be zero) and

(3.6), we shall write the difference between Sin a form where

the integration over the trajectories which obey the taboo imposed in

(3.6) is separated from that over the trajectories which violate it.

Denote by the set of occupation number configurations in .A..

JXV X()O V
and set U()kj\Jv(M). To simplify the notations, we set (E )

and omit the indicator”,,in all the integrands.

Denoting by wf\ the restriction of a function w to a set f\ , we

have
° I

x

f\,t)Vn %;‘%‘

(OI+14,+ i
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etit+2D Cd1) .-N(1)

)
y1,y2: El, 2

+ + wt
ci

JCy +y ÷y1,m)= r1

)
.N(fl2)÷

2

wtr
2

i
exp C IUC2.1U2 iU(2U y ÷ y + y1). (3.14)

+ t ±
Here J stands for the length (v2v4)of an interval

+ tmrv v ] and T denotes,as before (cf, (3.10)), the
‘J*.L4, 2

corresponding taboo subinterval,

÷
- ] (3.1)

‘ 2*

,%J +Correspondingly, A’(J) is the indicator which vanishes provided at

least one trajectoryc from Q°’,12,obeys the taboo and
J)

the totally disjoint indicator which equals 1 provided all the

trajectories from obey the taboo. The sum Zaj
is now restricted to those pairs of occupation number configurations

+

for which the reference intervals are just the free intervals for

the full configuration .y0+.4+%y1

Now we estimate (3.15) from above by

t(21014i4i4?) I

Ze o(4X(
)

, )

t(11i+i -N(.ck1)
p(&Q’)

1)

P (a)(1;) r )r2
w

11

±)1I P () L
N(n)

A +

(3;)
V

(A)

(



0 CD

4—
0 -s

CD -5 CD

-f
;

-
7

> I 0 IL -1
-

—
7

n
(I

)
(A.)

P

pi
,

7
/

/

ji
L

7
c-

T
’

4.

o
—

,

/ 0

4-
J

-S
D

i

a— U
)

#
‘

‘- 0 /
c

/
D

i
c

-s
(—

1
>

c
I
) 4

(T

7
.

0
-

C
)

CD —
5

D
i

-
o _5

- CD
—J.

-J.
>

-
0

C
•%

__
E

D

IL
II

D
i

c-
F

0

0
0

U
)

CD 0 D
i

c-
F

0 c-
I

:3
-

CD -h
7-

0 —I
(_

0
+

:3
-

(0

4-
c-

I
(
p

-
o

D
i

‘—
2

C #
—

CD

‘—V.
3

4
-

C

—
1

L
L

. 0

‘ 4- -
7 7- / 7, 0 r
r
, p
p

/ c. c_
_I

)
4- £

i1

(
.

0
%

_
_
_

:3
_

c-
F

:3
-

CD c-
I

II
2. CD

-
U

)

U
)

-
c-

I
:3

-
&

CD 0
+

D
i

..
1

c-
I

-
4
.

D
i

>
-
4

-
4
-

U
)

—
0 3 CD c-

I
-S

.
I.

—
’

Z
r—1

-1
“-

c
t.

a
.

o
:

<
CD

—
a-

D
i

c
:
i
2
.

4
-
’

—
4

.
Lt

—
CD

C
)

U
)

U
g-

J
Ø

_ D
i

U
)

-s
E

SI
o

-
c

c
C

D
V

.
3

I
c-

I
-4-
D

i
•
-
J

)
:3

-
C

)
-

c-
I-

-V
P

—
’

CD
0

z
-S

CD
p.

CD
0

c-
I-

0
I’

-’
C

)
0
-
-
S

-
:3

_
9-

-
-

CD
0

CD
c+

•.
c-

F
U

)
0

4
--

’
C

)
-
‘
-

—
i-

CD
-
i

ji
-
-
0

CD
c-

I-
D

i
D

i
3

-
4
.

-
—

4
U

)
C

)
0

—
J.

c_
_p

I
•

0
:3

_5
C

)
‘V

—
S

C
)

0
6

I
i
-

0
c-

I
3

:3
—

J
—

4
—

4
-

•
3

CD
0

(A
)

CD
—

-
c-

I-
•

c-
F

.
C

.
—

‘-
C

D
c-

F
—

‘-
‘—

c
C

)
0

U
)

CD
C

)
S

ci
-

c
I

_
5

P
i

.E
:3

-
CD

—
4
4
’
(
F

p.
D

CD

—
CD

C
D

F
’
1

0
CD

0
3

,
.
_

CD
s,

•
c-

I-
—

i.

0
5

-
D

i
6

=
—

ii
CD

c-
I-

c-
I

0
-

‘.
..
.

CD
0

c-
F

1)
-o

3
—

‘-
<

,
D

i
CD

D
i

D
i

0
c-

F
U

)
- CD

CD
c-

F
-h

C
)

D
i

=
CD

D
i

CD
3

(a
-

D
—

‘D
i

<
CD

0
‘<

c-
F

D
i

c-
F

C
D

5
D

i
><

U
)

c-
F

-D
•
.
1

,

0
0

:3
:3

CD
c-

I-
(/

)
—

4
-
.
_

-
-
-

:3
(A

.)
c-

I-
—

‘-

(I
)

•—
1

—
I

:3
-

CD -o D
i

:3 c-
F

c :3 0 CD -5 c-
I-

:3
-

CD D
i

0 U
)

0 c-
F

CD D
i

rn
CD

0
-)

•
•—

—
I.

(0 :3
7

. 0

‘I
,

- 0
0

t
t

-
7 2
0



(17)

) ‘1, if
•+J2:4

0

—
otherwise. (3.22)

Furthermore, T)(.c)
—

is the time between

the epochs of the (j + l)th and jth jump for the path family2. (we set

oc=1,2, and the seif-adjoint operators

ço are the Hamiltonians of the motion in the

external potential field created by the occupation number configuration
2.c(t.) (i.e., by the time section of this wild path familyfleat a

moment A.), L)<. 41(.c2.°) QçL)i,Z..

k €

+ Z 4(.’i) L’k’ +
L c’t\ (3uJ

+ (3.23)

E IV3UJ),
A A

with the Dirichlet boundary condition on (i\\(3’uJ)) . I

Proof of proposition 3.3 - by inspection, using

Lemma 2.1 a).

Since all the operators in (3.18) are of norm I , we conclude from

Proposition 3.3 that the absolute value in (3.16) is upper-bounded by

3+y0,

Now we pass to estimate the internal sum in (3.16)

r , F
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rr’

(3.25)

for fixed intervals J and occupation number configurations .j°,

This is obviously less than the product

fl(jDt( $p )(U)1

4t(
sp (3.G)

UE Co,)

Making the summation, over and 12. yields the upper

bound

3 (4 t ( si’p I(Ai1 ‘--‘)) , (3.27)

whereas the sum overJ gives a value ‘1 due to (3.23). Assuming

that m is chosen so large that

24 P0çI()I) < (3 28)

]
we get that (3.16) is less than LHS of (3.28). This goes to zero

because

-.

P (SL&rCJ(*.)r)2 7 (3.29)

t,r
Lemma 3 2 is proved C

Now write

4(E’) +z+ (A)() (DL

3 (JI
(I\°) R (3.30)

D )
,,

and notice that for E J) () and rn large enough
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(DL )
t,I\,h, )4’ ]:mh,

riI,c,(’

since both LHS and RHS coinside with the diagonal entry of the operator

(fO)

(u)). E

d% A (3.32)t H(r (3J *))
A A

where stands for the “internal connected component”

of the set-theoretical difference I\(JUJ+).
Having this in mind and combining the arguments from the

proof of Lemmas 3.1 and 3.2, one can get

Lemma 3.4. The following relation is valid:

— (3.33)

This finishes the proof of Theorem 1. C

4. Proof of Theorem 2.

Assume again that t >0. The proof of Theorem 2 proceeds

along a similar way. First of all, we write

(i\°)
(A0([54//2])

‘f (fl
>13

(Oç/2))

“ft Q Aft ),.1)
-
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where fl
(0

([si] denotes the complementary projector:
<S

(X0(t,S2 J)
“S

and /\ °C s9) is obtained by stretching the interval

Due to condition Cd *), the first term in the RHS of (4.1) does not

exceed, in the absolute value,
00

(°(EaJ)) J r(- z) (4.2)

where

(4.3)

We are now going to estimate the second term in the RHS of

(4.1). For the sake of simplicity we write instead of

Lemma 4.1 The following bound holds true

ri) +I-4 ri(0)
jj ...‘fl IL

<S >1_S <S

where cs)o for any A° and t , 4
S -o

Proof. The proof of Lemma 4.1 will remind that of Lemma

3.2. We have (cf. (3.13))

( 0)

(a)
‘ A ) =

<S

t(ZI°I+L4L-l2i)

o1-iu. 2.€

11+I1,,4 +

lm1°[’ L)
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(Q4.) n
T’. (fL)-j

Q. 3 (4.10)
t

O —‘N(i..2)

Here, as in Proposition 3.3,9(.C2.) is the time between the epochs

and of subsequent jumps for the path

family 2., The self-adjoint operators
in are of the form

.
(4.11)

where

42 c
/ k k’4

kE/\

+ 2 (jk-Ø()I)k (4.12)

wIere <L4. ( (l) 1, 2 (cf. (3. 23)),and V
is the cross interaction energy (2.21).

Proof of Proposition 4.2, like that of Proposition 3.3, is done

by inspection, using Lemma 2.1 b). to
We use Proposition 4,2 and condition (d*) conclude that

the absolute value in (4.5) is less than

2: Z ++I)=
iUo

l14i 1j

14L +1j11 >..5

4

t.aj +

1 (4.13)

>,(s-.y4I)

where we have used the notation

(4i)

In the same way one can check that the absolute value in
question is less than
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zcs/’2J+ j40

I 12€ A°

Hence, this absolute value is less than

‘1 2€U0

Now we estimate from above the sum in
4 1Z 4

(A k
t.Jj Ui, 0 4 2.

i+j L+t I

fl (P0 (I)(t)1 [sZJ+j
-“‘ )÷ P0 (II[szi+vj))

4°

js1zj.4. IA°) ti+i2I)/a +

I

Z
—

‘f(”j ) )‘a
2.

II ,(5I.0(I2.J)

Making the summation over °, 4,. 2 yields, by virtue of Cd

the following upper bound for (4 5)

( Z 3 e2( z (1a)r))
r>,

where

w

The final remark is similar to that in the end of the proof of Lemma

3.2. This finishes the proof of Lemma 4.1 and hence, that of Theorem 2.
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