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Abstract:

Consider a one-dimensional lattice boson system with the
Hamiltonian in a finite box A, HA = Kp+ Up. Here Kals the kinetic
energy (the discrete Laplacian) and U, is the potential energy
corresponding to a finite-range pair interaction. For a class of states
¥ of the infinite system, we prove the existence of the limit
‘.Pt (A) =Aij7‘43° (e LEH, pe=tEHAY for any t € R and any Tocal
observable A. Thereby a family {¥, , teR"} of locally normal states
is determined which describes the time-evolution of the initial state y.
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1. Introduction

The problem of constructing time-dynamics for an infinitely
extended system is a major one in statistical mechanics, both classical
and quantum. So far, in quantum statistical mechanics this problem has
been solved in a satisfactory way for a particular class of systems
only, namely, for quantum spin systems. Here Robinson's theorem
[ 13 (see also {2 ]) asserts that, given a "reasonable" interaction
potential of a general form, there exists the corresponding strongly
continuous %- automorphism group of the quasilocal C* - algebra. This
provides, in particular, an elegant definition of an equilibrium state
via the KMS boundary condition.

However, for other types of quantum systems of interest,
e.g., for interacting particle systems in a Euclidean space, the problem
remains open (some results, both of a positive and a negitive character,
are available for free systems; see, e.g.,L£3]),041 ). A wide-spread
opinion is that the "traditional" C* -algebras ( the CAR, the CCR and
the quasilocal algebras) are not appropriate for this purpose; by
analogy with the classical case, it is believed that trouble may arise
from singularities whichoccur in a system with infinitely many degrees
of freedom , such as uncontrolled "collapces" or "accelerations" of
particles.

From this point of view, it seems natural to consider the
time-ev 1u tion of a state rather than the time-dynamics on an algebra
of observables. One such version based on time-dependent Green's
functions was elaborated in [5], [ 6] for equilibrium states and in
[7] in a general set-up. However, to check the assumptions on an
initial state ¥ which were formulated in {7] 1is not an easy matter.

The present paper deals with an alternative approach to the
problem. For an appropriate initial state ¥ we construct directly the
time-evolved state it by setting

P (A)= L :P(eLtH" Am'”H") (1.1

for any local observable A. We consider a system of interacting bosons
on the one-dimensional lattice Z" .
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The {formal) Hamiltonian H of the infinite system is

H=-4/ZZ, O.S(Aa)j-i- 2. @(xj-j'l) VLJ- na.,, (1.2)
et Jrjen’

where A stands for the second difference operator,
A
L= . P - . 1

O’I and a arqe respectively, the creation and aqnihi]ation operators at
a point ke7., P is a real-valued function on 7/.*, the set of
non-negative integers, with bounded support and Ny = 0.1 a, is the
particle number operator at a point ke'/z.‘. In princip-le, one can admit
infinite values for the potential{’ (hard-core type interaction), but
to emphasize the "bosonic" character of the system under cohsideration,
we shall assume that | P(r)| < o0 for any r € 7[,:_ .
Given a finite "box" f\ (an interval, or a segment of the

Tattice 7[..1), one can consider the finite-volume version Hn of the
Hamiltonian (1.2); more precisely, one takes the self-adjoint
extension corresponding to a standard boundary condition on A, and

for definiteness we shall deal with the Dirichlet condition. Then the
* - automorphism group

i -it

N oteR” (1.3)
determines the time-dynamics of an abservable A. For a class of states
¥ which we call diagonal, we establish the existence of the limit
(1.1), as /\7’7[_4, for any local observable A. This yields the family
{j’t , te R'}of locally normal states of the C* -algebras of the
infinite system which describes the time-evolution of the initial state

¥

In a separate paper we shall prove that the family {yt}
provides a unique solution of the infinite-volume Liocuville equation as
well as a solution to the corresponding BBGKY hierarchy.

The condition of diagontagity on the initial state is used
to simplify technicalitiesywe ‘hope drop it in a later publication.
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The method of proof relies heavily on the concrete form
(1.2) of the Hamiltonian as well as on the one-dimensional character of
the system. The problem of the recovering dynamics of continuous
systems of interacting quantum particles by passing to the Timit when
the lattice spacing tends to zero is reserved for future study.

In conclusion we remark that the main idea of this paper is
inspired by Sinai's approach to the construction of a cluster-dynamics
for classical systems (see [8], [9])

2. Prehmmames and resu]ts

For any ke?/. consider a copy j{ of the separab]e Hilbert
space Q ) with standard orthonormal bas1s {e(k) , S & v/ o1
Letting %k be the C* -algebra of bounded operators 1n’}(k, we set
P @55 The creatmn and annihilation operators ot ) and oy act in

4, ot Y2 5k (k) Y, ot k)
R[4 3 ak (S-M) es“and @y = ) 2 S 57./.( o el is set

to be zero) ke7z_ Given a finite lattice 1nterva] f\c7l.4 the
Hamiltonian H acts in the Hilbert space'}{ ® H and is defined via
kel\ k 4+t H

(1.2) with the Dirichlet boundary cond1t1on Hence, e = A is unitary
and (1.3) defines the *-automorphism group on®, the time-dynamics in
the volume A .

A locally normal state ¥ of the C* -algebra J}is determined

E(A ) ); here N is an arbitrary bounded 1nterva1 of the

by its values ¥ (
lattice, x and x’ stand for occupation number conﬁguratwns in /\
i.e., for functions N -97[. (we shall use notation x, x' ¢A%) and E U;J

is the corresponding matmx unit in the standard or thonormal basis ~

(AN®
e,y A%y i H o
) ) (AY
WD) o™ provided that y = x',
X)’U 3 X i (2”1)
= 0, otherwise,

A locally normal state ¥ is called gauge-invariant if and only if

9(E i’\:, ) =0 provided |x| #|x'l wherelyl is the total particle number
-]

in y:lyl Zy j). Likewise,¥ is called diagonal if and only if ‘;?(E(x’\:, )=
H

=0 prov1ded x # x!

1)

A detailed C* -algebra background for this section may be found in
[10]. For details of a probabilistic character see, e.g., 111
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Diagonal states are in one-to-one correspondence with
probability measures on the measurable space (M,m) where Mis the space
of occupation number configurations in 71.4, i.e., of functions

X :7[_‘-,74.41_, and® is the G- algebra of subsets of.ﬂ.generated by
n gAY .

BN {Xedl: XPA% = x},
The correspondence between a diagonal statey and the measure on
(.U.,m), which we denote by the same symbol, is established by the
formula

"cylinders

MEi’“’)) = ¥( Bf‘"‘”).

2%

A simple, but useful, example of a probability measure on
(M,m) (and hence, of a diagonal state) is the product (Bernoulli)
measure X F(j),, where \9(3)(=P) is a fixed probability
distribution on T, withp(0)>0 ( e.g., a geometric distribution :

p(s)=(4-q q%, se¢ 7/_"+ ., where q € (0,1)).

A Bernoulli measure has the following property which will
play an important role in the sequel : let§S ., me€ 7[:_ } be a monotone
increasing sequence of positive integers and set

In= [-5"‘*4,5,,,,4], (2.2)
I;" [."SMH"“: 'Sm], I;:[SW\3SM+1-1}

(4a11 the space intervals considered here and below are on the lattice
7). Denote X’MM=5M“~SM and consider the event (from Y[ ) that
neither on I;q nor on I: can one find a subinterval of length greater

than or equal <« oy, <X'M, which is free of particles. The

™y
probability of that event does not exceed

T ot =
2 (1= POY*™) " T £ 2 exp (= pOY ™ fm el -
If we assume that K""‘/o(,,, F(O)d"‘/ ©0 asmAo0 so that

2.4 exp (- p(O)“"' Yo /) < 00,

m2
then, by the Borel-Cantelli Lemma, for 5°~a.e.X€\M one can find
Meaxmy(X)  with the property that for any m< m, there exist
subintervals J’fc If‘ of length greater than or equal tod, such
that X (j) =0 for j€ TV J*. MoreTover, the following bound holds:
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— 4
FmolX)7m) ¢ 2 3 exp(-dmy, pOS™), We L. (2.3)
m7, M
Now consider an arbitary measure ¥ on .M m). We shall

suppose that the foregoing cenditions ho1d forgwith
S = , X’M— 2™ and o -[m 1, where S € (0.1) is
fixed. In that case we denote the property under consideration by (d*).
In probabilistic terms property (d*) means that, for a measure ¥,

¥( U N Mim)= Qun ¥ ( n M(m)) (2.4)

Q--1M7,Q, my,

Here .M,(m) stands for the event

{XEM:B intervals It=J'ﬁ(X W\)C-Ii of
length W[MJ such that X(J) -0 VJ eJ' UJ- }

In what follows we shall think of J'-as the longest intervals possessing
the properties listed (if such intervals are not unique, we take the
left-most (resp., the right-most) of them). So far we have checked that
the property (d*) holds for Bernoulli measures but the class of
probability measures on (MY for which (d*) holds is in fact much
larger; it includes positively recurrent Markov chains and DLR measures
corresponding to classical superstable interactions (not necessary of a
finite range).

Another property of an initial state which will be used
heavily in the sequel is again inspired by the example of Bernoulli
measures. This property is denoted below by (d**) and is a combination
of the two conditions, (d **) and (d i"*)

(d #*) There ex1sts constants ¢, 6,b>0 and a
value s e7L+ such that for any bounded interval A< 7.1 with\l\\?,&owe

have

('\)

(ﬂ_ du exp (- u/’:’), (2.6)

where

52(5 (N1 72)"" (5.8 1AL,
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and ﬂ'(:s is the orthogonal projection in '}QAonto the subspace generated
by occupation number configurations x¢ N with [xlws.

(d g*) There exist constants c, »Q and 3&(0,4) such that
for any pair of finite occupation number configurations y)y’ we have:

B, ) sey g - ¥R, (2.7)

where R(y) = 2, ‘)(,(y(:i)>,1) and we have used the notation

2 B ={Xell: X»x];
the sum y + y' means here and below summation of functions.
As before, the conditions (d 4**) and (d ;*) hold for a large
class of probability measures on (M ,N1). Property (d ;‘*) establishes a
kind of 1imit theorem estimation while (d ;:*) gives a kind of stability
bound, both are natural from the point of view of statistical mechanics.

Remark: We have stated properties (d *) and (d **) in a form chosen

to emphasize their probabilistic character; as will be seen from what

follows, this is not necessary. For instance, the inequality (2.6) may

be replaced with the following relation: for any bounded interval A°=

=[vov']lc 2’ .
(A°(Ls72]))

bwm (L )y =0
s
o $ B0 P
where A" (r) = [v"-\ﬁ, vier], re 7L.,,.

2

We are now able to formulate the results of the paper:

Theorem 1. Suppose that a diagonal state ¥ has property
(d*). Then, for any bounded interval /\°C.7L" , any pair of occupation
number configurations x,x‘é A° and any t 694 the following limit
exists:

(A%
E X, %4 ),

2 EMys m 9

(2.8)
t o %! /\/‘7[.4* ,\J*:

where

¢ : 1)
g0 A D=9t a omitRy Ae®, < T2

~
D The symbol < indi cates the end of a statement. The end of a

proof is indicated by the symbol 0O
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Theorem 2 Suppose that a d1agona1 state ¥ has property
(d**). Then, for any bounded interval N° C7L and any T € R’ the
following relation holds:

(N
: = 2.10
}émco ::‘7\0 Tf/\:": ‘ ﬂ7/5 ) 9. 1 ( )

From these two statements we derive immedately the following
result :

Theorem 3 Suppose that a diagonal state y has both
properties (d*) and (d**). Then, given teR?*, for any Tocal A€ the
following Timit exists:

¥ A=l oy (A, (2.11)
NATA s
where :P t(A) is defined by (2.9). The limit (2.11) determines a
Tocally norma] state 5°t of the C*-algebra 3. <

Proof of Theorem 3 (given Theoremsl and 2): Let A be
localized in an interval A°cZ* . Writing

- (RO p [ CA® - A% CAS
A, (A=Y AT AL T+ S - )Aﬂ){;)»«

©9 AT+ g (W-NT T A-RGTY),

Q

we estimate from above the first term in the RHS by 50 (ﬂ (A% )and the
second and third ones by (¥ LA F\‘A ’) Pt ﬂ.(”)) 7/
Theorem 2 asserts that all these est1mates may be made smaH un1form1y
in /\ whereas Theorem 1 says that the fourth term has a limit when N~
7" Hence, the whole RHS of (2.11) tends to a limit.

The problem of verifying that >°t is a locally normal state
is reduced to checking the equality
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/\0
> yt(E; y=1 (2.12)
X EA° o %
for any bounded interval /\°c7L4. To do this, we again use Theorem 2
for estimating the difference
(A%
-9 (ﬂ-ﬂ% )

and then Theorem 1 for doing the same for

f- 2 2 (ENY)

xCA%:lxli<g X, %

These estimates vanish when s%00 . This yields the assertion of
Theorem 3. O

The proofs of Theorems 1 and 2 are based on the
representation of the matrix elements (et"'tH/\J}by, in terms of
integrals over the paths of a Markov jump process on 7%, Precisely,
let P, je‘?ﬂ, <= 2 O, denote the path distribution up to time T of
the processstarting at the point j which, after spending the mean one
exponential time at a given site, jumps to one of the nearest neighbour
sites, each with probability 3.

Suppose a triple of occupation number configurations %,
),y'c'. N with [yi=Iy1is given. By (jy)yz we denote the set of all
matchings between ¥ and Y’ . Every matching is identified with a
function [ TN 7./_1 with the following properties:
(i)[(},j)=0 provided y(j>y'(j'>= 0, 44) ér\ﬂj,k’):_y(j) and
gez,\or(‘hsl):j(j') for any J‘Jj’g/\ﬁ Givent0, Tet P; denote the
product measure PT = X (P *YY2? . This describes the
development up to tim‘?—:‘:m’m T of lylcopies of the
process starting from the points occupied by y. Futhermore, given a
matching Fedj,yl denote byw: the set of families Q:{w} of
paths which start at the points occupied by Y and arrive, at the epoch T,
at the corresponding points occupied by_y'. Next, given a family £ =

= {w}, we set

N@)= 2 Nw), X W)=l W(Aw), (2.13)

wesy We S
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V(alz)= Z V(@@ 2, T(wk)yzck), @as

w,w E-ﬂ- wé.n-
W w’
where ke A
N (w) is the number of jumps of a path ), (2.15)

X/\(w: 1, ifw(u)eN for anyu e [0,T],

=0 , otherwise, (2.16)
T

U (w,w')= S du @(w(u)-—w'(u)\), (2.17a)
T

V(w,k)= 5 du @(lwu)-kl). (2.17b)
(¢}

1
Finally, given a pair, fX= {w},f}. ={b)'}_, of families of paths we
set

V@ua'iz= & Vw,wh+ 3 V(ww)+

w,w'e’:
i’ wHwW' (2.18)
Y Tww) + S Tk,
wWen,wen we st kea

For later use, it is convenient to consider Hamﬂtomans of a slightly
more general form=those which include a term representing an external
field generated by a fixed occupation number configuration. Precisely,

let H/\ 2 denote the operator in 9{ given by
2

Ha,a =% 2 at@o), + 2, P50, it
2% (I
*ien i3 (2.19)
+ 3 @Uj-kng zdo,
Jokel\
and H/\ " be the operator in H 83{ of the form
3
U =H ®L+4oH  +Vv (2.20)
HAJZ Hf\,Z A2 2

where V is the cross interaction energy
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V=2 (k- kl)h en ,. (2.21)
k,k'eA k

Lemma 2.1 Given a bounded interval Ac 741 a quadruple of
occupation number configurations 3:1:34#»1 in A with Ulf-U'\,
1341-.-\3;1 and £t 20 , we have: oy

a) the matrix elements of the operators e.- N:E are given by

(etitHa, 3)3,:4"'2*(41‘)‘3' 2 S Py (‘iﬂ)x (£2)

redy,y -w-t
- (2.22)
,‘Lf-N(Q) Q*P -LU(_Q,l'i-.)))
b) the matrix elements of the operators Q_ﬂtH/\,z are given
by ~ EAEDUYlely, 1)
(@.ﬁtHA,z) = e Q TR 2. *
(y’y"):(ﬁ::j,:) re e 3,y72 460' Ny
4274
T(N(a)+NCQ))
j P umjp da (ke wplillaua 15) <
Wr W’c (2.23)
1
+ik Notice that if Ul*l)j | or lyll ¥ iyll , the matrix elements of
L

A% and Q“tH'\ £ vanish due to the gauge invariance of the
Hamiltonians H/\ 2 and H A2

The proof of Lemma 2.1 is standard: Observe that for each
choice of sign the RHS's of {2.22) and (2.23) obey the operator
semigroup rule and then calculate the infinitesimal generators.

3. Proof of Theorem 1

For definiteness, assume that >0 . Notice that the RHS
of (2.8) vanishes if Ix1#1%'l. Hence, we can assume that Ix|=|x’}].
Denote

{:H °s-u4
M, E ‘ ﬂ (m)) (3.1)

RS

¥ WSES yae(n

Nt,m



(1)

where H(M(m)is the orthogonal projector in '}EA onto the  subspace
generated by those basis vectors Q.(;) for which the occupation number
configuration y belong to Mm) (see (2.5)).

Lemma 3.1. The following equality holds true:

Lbm sup Ly ENH-v° (EYYy| =0, (3.2)

mac0 ADT,, A% S FS Ntm o K, w

where Imis defined in (2.2), <
Proof. Let AD Im (this will be always assum ed in the
proof of intermediate assertions which follow). We have

A"b K xl ’\) "

£ (A% e_LtHA(ﬂ_RW(M)))\*w“ﬂ_n(m(m))e“cm %
o (3.3)
\ ‘ ° -itH
E e 0 [+ 19 (N1 M0m) € tH“EiA:, TR (-0 o)) |
%! ’

The first term in the RHS of (3.3) is upper-bounded by (4~ .ﬂ.('M("V‘)) 4,
whereas both the second and the third ones do not exceed (¥(4~T ‘M(m)):f’(ﬂ("’(m))) 2
Finally, we get that the LHS of (3.3) is less than or equal to

2 Mem))+ 2‘5’(C.M(m)1/2) (3.4)

where(:denotes the set-theoretical complement. Due to (2.4), this yields
the proof. O

The next approximation to 50 (E ))15 provided by the
following quantity:

A (E (A ) (ﬂ(l\)( )D EU\) '.DR n(i\)(m))’

Ayt m %;x tAm *A -t A m

where (cf. (2.22) for the particular case 220 )



i)l . t
% ) =M S jpﬂm)

Wt (3.6)

red&a.‘/' r

TN L/R
A exp (iU () Y (),

R +
New indicators )(,(m) and l%(m)are relating to free intervals ] -
(see (2.5) ) . We remind that, because of presence of the projections
FL2(m) in (3.5), we have y& AL (m) when deal with D and y'e M(m)

when deal with DR . So,

L/R L/R
X a)=1l X ( (3.7)
wes 7
-t
Here, for a given path W from a family Q_Gwr , we have set
L A A4
f)(( (w) =1, if Q)(u.)é(']' UJ- ) for any
m)
3.8
welo,t 1, 3.8}
= 0, otherwise ,
where the 1ntervals CJ' ()I m) (see (2.5)) are defined as
follows: if J (ym)= [v— \/‘ ], then
A+ + 4, 3 p 1,9
J :[\,4*[,3m ])vz -Lgm ]} (3.9)

(distinguish parenthesis for the integer part of a positive number from
that for an interval of the Tattice 7[.1 ). Recall that the lengths vi-
+ 49 $ o 2

-V, of ]" s are % [m°]. Likewise,
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R
Y(M) (w):']_’ if w(u)¢ uJ*) for any
we[Ot], (3.10)

= 0, otherwise,

2+ +
where the intervals J = ¢ J~(y,m) (see (2.5) again) are defined
in the similar way.

Physically speaking, in the integral in the RHS of (3.6) we

forbid the paths to go "too far" into free intervals J't . As a
result, the paths which are on one hand side of J’t will not interact
with those which are on the other hand side. Such an interaction
breakdown means, as we shall see, that 7 (E('\o) ) depends
"very weakly" on N At m LA

We now want to estimate the diffeence between :f’o
A Ae, m

and
:fr\,'\:, w

Lemma 3.2 The following equality takes place:

&m Swp \S’o (E(A) )

m > 09 I\;Im A>t.>""1 L (3.11)

"‘f4 (EU\O))‘:O.Q
Nt LY
Proof. Comparing (2.22) (where % is taken to be zero) and
(3.6), we shall write the difference between 50/\,{:,»«: $in a form where
the integration over the trajectories which obey the taboo imposed in
(3.6) is separated from that over the trajectories which violate it.
Denote by ‘MI\ the set of occupation number configurations in [\ :

J=AXedhs X(G)=0 ¥ 4N}

and set \M (M) M H‘M( . To simplify the notations, we set ‘.f(E(M )
}f(")(j) . and omit the md1cator'\f\, in all the 1ntegrands
Denoting by w{\/\ the restriction of a functmn W to a set /\ , we
e ) (A°) 1 CA®) t(2lytilyti+ly?)
EM -yt (B L e :
N,tam X, N, Esm Rox 30;34;:{9'€MA(M)‘.

ly°r+iyti+ly2f 31
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s S 2 e

el MeC o 4., 59,6 b
4 2 2 yo+yi 2 A & Jhat S
ly Iy =1t 18 =l Y0l Poed, UARNIENPER IS EERITY TS
2)3 +_3° A
' t _ 4, —
2 %‘ J Do (O(Q‘);_ N ),)(/ (.Q_A)x
21:29_6;/\1 r;é y 2 N w-{' Yy +j4 (M)
Az @M, H

2 1
(B2 )P AVA® = (2242 ) PANAS, 223,

12 l=12'l, [2%)=12 !

g (OL.Q_Q') N(n.),%( (ﬂ) S P (o(ﬂ) -N(Q)X (Q)J P (&_Q_)L ZX («

-t -+ (m)
wl"z W T -wrz

" Q*P( U"(_Q_ U_Q_ )-tU(fL VA )) (h)(gc’-\ﬁ"afj")' (3.‘\2,)

tH
Here Q is the collection of paths from the ('L ) 1ntegra1 which
ignore the taboo, and S.* is that of those from the (& ") -integral.

On the other hand, .Q is the collection of taboo-obeying paths from
»‘CH

"tH and ‘Q'l is that of those from 2~ Correspondingly,
the indicator 7"( is totally disjoint from “L
(m) ™
= 1 (4- o
X (‘Q‘ )= Y«(m( ), =42, (3.13)

we

Finally, notice that the taboo under question is established relating to
the occupation number configuration 3°+_‘/‘+j4 = y94y2+y, which,
by assumption, belongs to MA(M) .

We shall now rewrite the RHS of (3.12) in a sligtly more
convenient form. For further simplifications, we omit from the
notations (but of course, keep in mind) regulations concerning
occupation number comfigurations which are in the RHS of (3.12). We

also omit, whenever possible, the references to 24,27:2 because

-~ 4 :z 20
th esg/(')ccupation number configurations may be recovered from matchings

ik [—4 and I;_ So, the RHS of (3.12) equals

1 2
5 LI+ T+HYD
+ + - -
. 1 ~2
J*C;Im’nj*c Im. yO,yl’yz. r ,r'
* ) o,.1..2 -
lJ*l 7,[111] vy oy FJ*UJ*—O

1. = , 2, =
@b VO 7( o (5 Pt QD YL
yory (70 z J,)

t t
W
er P2
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5 AR AP P @) i‘N(‘Ql))((g SRS
Yy3Y5° Mo r Y1 » )
1292 o2

o1 z W

I (y +y 4y ,m=dy Ty

t N(Q) At
x V( Pzz(dﬂz)l Z)C(J*)(Qz) x
t
W
r-2

S
« exp CiU(QRQMUR - W QAU F (% ey, B.14)

t+ r 2 *
Here IJ';[ stands for the length (V, x = V4% ) Of an interval J';‘ =
o rd
-.:[\/4*,\,2* ] and J'* denotes, as before (cf, (3.10)), the
corresponding taboo subinterval,
A% + 3 +
L t A L 4 ?
=|lv +| /M v - m 3.15
I, =lv ot sl vy - L%l ] (3.15)

Correspondingly, ')(,(5 i) is the indicator which vanishes provided at
Teast one trajectory w g‘rom Q.d;dﬁ,.?,obeys the taboo and 'X("i) is
the totally disjoint indicator which equals 1 provided all the *
trajectories w from Qd,dr-tl, obey the taboo. The sum 23 y
is now restricted to those pairs of occupation number configurations 2 YyaYa
for which the reference intervals J:' are just the free intervals for
the full configuration y°+y“*+y, .
Now we estimate (3.15) from above by

2, 2 £(@ly°1r1y'1+1y*) 2 S P’ ahy ,
e QY)Y .. ()«
ot o yiv2 : 2 + 3°*J1 X(Jt)(
‘T* 5}’:’ r’r Wr1 *
‘ ¢ - tly, 141y, t -N(£2,)
xg P.(da® Y oas @52 e ) j P apr
t (3.*> 31732 f"“r' J"
W 2 2 'W"c
r r
t CN(sx ) 4
* o1 J*)
W
r?.

)

« exp (CU(.Q.4 1.0.4)~ L_U(_Qz‘-flz)) Y (304-_}, 4.,.34),( 3.16)



e)
Here we continued the policy to omit from the notations

LW Cy .
varios sum conditions. Notice where the absolute value appears: this

will play the crucial role just helow. The potential energy exponent is
defined by

T(Q19%) (:U(Q ua*)-UaM)s:
- 2 Tww)+ 2 Ulw,e'); (3.17)

w,w'e N we Ly,
wiw' Q'e Qe
this is related to a "conditional" energy of a "domestic" path family
2o in the envircnment created by a "wild" path family Q%

Proposition 3.3. The quantity under the absolute value sign
in (3.16) is equal to the following trace-like sum
o]
A 4 A h- (A°)
2 PV ey (BURSMNGUIIE T
- -t Q
yoryteyed, (m),

Ty e dam)=T ¢

(NARO) ( 2 B ey A M)
Qs AN(JTuT™)
) ﬂ-«-z‘l‘ma"‘z--\-;"f‘m:@ g—t ’ ﬂ°*}°‘+3°:-+3°+34 %Y’
(3.13)
where:
A AR AN 2 A4
(a) E,CQQ';/\\(S vJ ) and E'J:_t(ﬂ sAN(T 0] Jare the
products of unitary operators in A : , '
ALLE LT (L) Rey T4y - 1 .19
X CETNG RN E Y S AR A R (3.13)

jroaN(ah

s 1
A A ST AN, (3-0F%5, 0% (3.20)
g @iy 1 e dm imiam I,
-¢ ]

10 = N
AA®) .
(b) ﬂ( 4_\1«[-/\\,\0:..‘.2’-[‘/\\/\0 is the partial isometry,
operator in ® = ® 'H with the entries
ANAS TINV
(AAK) R W e ro
(ﬂ_ ) = 1, if zZ, vt PAVAC =

2 PANAC = 422 ANAS 14,22
- 2 o
= 2,42 [ AVA°)

=0, otherwise, (3.21)
(A)
(c) Tikewise, ﬂ.+31+jo=,+3°+31 is the partial isometry
operator in '}[A with
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it

(A
(" 1, 1 3,+3% 7=
+y24y%2-4y0eyty 29,

SRISS ERS AN

= O otherwise. (3.22)
2

Furthermore, T (.Q. )= 3”(2. ) - =T (ﬂ J is the time between
the epochs of the (j + 1)th and jth Jump for the path famﬂ_y.Q. (we set
T, ()= 0, T Q“)H(Q‘ J=t), «=4,2, and the self-adjoint operators
H/\\(]‘ \’J’*’),g,ﬂ-"‘ are the Hamiltonians of the motion in 1:,he
external potential field created by the occupation number configuration
Q*W) (i.e., by the time section of this wild path family Q™ at a

moment W), T (%) <w T, (%), 08I SN, = 1,20

A_ A . “_‘.-4 Q-Jr AQ- +
HM(J vJ*),3, 5" 2 ke/\%”uj*«) k( )k
2 PUk-k'1)n n .
L,lc'er\\(j\"uj'*)

+ E(k-w@ln, , (3.23)
ken(G-oi,
we Q*
with the Dirichlet boundary condition on ‘3(/\\(‘]' UJ )) .4
Proof of proposition 3.3 - by inspection, using
Lemma 2.7 a).

Since all the operators in (3.18) are of norm £ 4, we conclude from

-~

Proposition 3.3 that the absolute value in (3.16) is upper-bounded by

2 ¥M() ¢ DL e™My). a4
ye Mylm: e m):
yz max [ y1,y2]+yo J* (:w) J*
Bow o ok
J=@my=J°

Now we pass to estimate the internal sum Z in (3.16) ¢
r:i 2
ST



2 P (cm )Y, G, g Piz(otsﬁ}((At Q3
1
r r2
(3.25)

+
for fixed intervals I; and occupation number configurations y©° y* y%,.
This is obviously less than the product

$Tu et (5. T
J&(P CLouP |l % [YmP ] dist (5,7 7))+

2%y "+ y")

.\.P ( sup ‘w(u)\v[/m 1+0L.st(gj ))) (3 26)

ue (o,t]

Making the summation, over 3?34 and Y% yields the upper
bound

’cn t
Z, 3"e” Po (sup [wwl »‘”))n, (3.27)

V"/[‘/s md)

whereas the sum over J; gives a value ¢ 41 due to (3.23). Assuming
that m is chosen so large that

t
24 e_f Z Po (5u[=lm(w)l>/*‘) < 1, (3.28)

we get that (3.16) is less than LHS of (3.28). This goes to zero
because

t b T
(sut:\w(u){ 20 )< Z s = . (3.29)
{>r i
Lemma 3.2 is proved. O
Now write
¥ (ENYy= $M(yy (D"
(B0 +Z+ 2 DD
J"c. I = Je.M (m):
‘J’I’/[‘”‘ ] J (J m)= J"
A° (3.30)
% "t,/\,m Jsy

and notice that for ¥ € M (m) and m large enough
I
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(p- M pR ) = (DN«
t,Am ks =t A m T Y5 t,T,.,m
,\O
. E(. ) D R

*JK' _t)Im,m JFIM:B [\Im 5 (3-3])

since both LHS and RHS coinside with the diagonal entry of the operator

L A A U\o)
2xp (it H(Im‘(]_05+))cht) E

LR
x exe (- tt H A_ A ) (3.32)
g SIS ACAR P
where I \(]' U]+) tnt stands for the "mterna1 connected component"

of the set-theoretical difference I \(] UJ+)

Having this in mind and combining the arguments from the
proof of Lemmas 3.1 and 3.2, one can get

Lemma 3.4. The following relation is valid:

L’m sSup 1&94 (EU\Q ) -

N SN .
" 00 I\3Im s Uy XyX

-y (E™)] -0, 4
st 2w (3.33)

This finishes the proof of Theorem 1. O
4, Proof of Theorem 2.

Assume again that t>0. The proof of Theorem 2 proceeds
along a similar way. First of all, we write

(A°) (A°([s72]) L itH (N% AL (R°([s21))
EADISIBICE T A1 " ‘L )+
(K"c(_s/zD (A% -CtH (Rots”2])
¢ (I, Aﬂ»s IL ), 40
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— 0 i
where ﬂ.( s( A- ("1 D) denotes the complementary projector:

(A cts/u) (A cce/zn
Il - Il

<S

and A OC[ s%_]) is obtained by stretching the interval A ° = [ vcl)," v; ]
A (Le™2]) = [v,- [s72], v +[s/2]]

Due to condition (d :*), the first term in the RHS of (4.1) does not
exceed, in the absolute value,

cf\ <cs‘/21> 2
Wil )< ¢ Jo(u exp (- u/:,_), (4.2)
3

where
— 4 4 -4 l/
5:1\6( 1A°{+ ,'2,5/2) /2) (5"(“\0‘+2,5 2’) @)+ . (4.3)
We are now going to estimate the second term in the RHS of

o L
(4.1). For the sake of simplicity we write A instead of A _(L[s%"27),
Lemma 4.1  The following bound holds true

M (A kM. (A0 SItH, ANy .
\?\ﬂ(se. i, e B D  FCPRCP
where Lm 47/\0 (¢)=Q for any /\o and t . 4

Proof. The proof of Lemma 4.1 will remind that of Lemma
3.2. We have (cf. (3.13)):

ne ) - (A° )
g(ﬂis) ‘-tHAﬂU\ \,‘tH .ﬂ, =

%%
= ? et(2(z°\+lzﬂ+\zzl) E:
zo %" 2 % .
2h2%eldl ¥i¥*e M, .o
12°1412% %4, = 4,2 121200 +121],

Iy3=12%+ 2%
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t 1 ’ vt ~N(Q
Z S P, 21(<>sz)3(A(Q‘)L“““S P.tday @i ’
“ A
. -
e dy’-,z°+‘£
i e
2,26l o ¥45Y, eM- : r, eO ,
4
E% 2+ 2,22 ,%2 +2°f, Nyl =1z 1, ok 1,2 [ EO'J
2)

lz°|+1z‘1+rz1| %S

ot N | ot CoN(QL,) 2tz
Sphumpxh(nm 1 J Dzam,_))(Amz)L 2 Z&

~rt t
i L e
R 2 S 5 uﬂ))(,\(mi”‘mj Prda)y @) N,
:/yEM reUzj, Wt Wt A

Y3323, ey J

Iy1= tzi=ly’)

comp (- U(QVR,00)+ T(QT1R,02)) 97 (yley,y),
(4.4)

As before, we omit henceforth the standard indicator 7(_ A
and do not write regulations for summations. We estimate the RHS of
(4.4) from above by

°Liz! 2 t t
Z et(ztz ezt 1221) Z > g Pao+z1(ot§14)g sz(olﬂz) x

20222 YLyE PR Lot At
Lz *12,0) qu(Q_) t r? L= N(L)
IZe. > | P eyt PrAQ i 2k
Y0¥, r,zwf 1 vt 2
2
PRARY «N t ; ~N(SL
ety 3| s @ | Pt gyt
Y, ¥ Fr“wt 2 -w—t J
rl
xexP(-i'U(ﬂquﬂlﬂ4)+LU(Q?.UQI‘QZ)) X (4.5)

X \.'.P(A)(H""j.‘*j) ! '
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It is again important to notice where the absolute value sign appears in

(4.5). The conditional energies U(2,u'| ©2%) and

U, v’ are defined in analogy with (3.

Now an analog of proposition 3.3 comes:

17).

Proposition 4.2 - The quantity under the absolute value sign

n (4.5) is equal to the following trace-like sum

Z :?(“(j‘»«ypj)(ﬁ“\)

346~M/—\o.~ cky e oz opy 2
ye M,
A (A) — (A
"‘(ﬂ. _ ) ((ﬂ ﬂ, )

4+ Z .;.2 o+ 2%zt ANN®

~

4 A)
B hm(LJel))y oo,

—

where U\)
the tensor square 3{ ® '3—9 with the entries

[ 1+12°% 412" 3

() e1) & (a*n-

)@ﬂ.)x

(4.6)

is the partial isometry operator in

N ,
(n )" =4, iE Y,y ey Y,y 2y,

ey teeE ey R N0, Y0, 0,

= O, otherwise,

(4.7)

ﬂ. N is the orthogonal projector 1‘n '3’(,\ confining an

occupatmn number configuration to a subset NeN

(A)
(c) J-l_ﬂo&z__ﬂ% .

entries
(e +)
+2-°+} =-+Z +2 '?;2,'?.-1
= O, otherwise,
(G
(d)n\-mz”wlz‘lzs
corresponding to occupation number configurations z,

with

4is the partial isometry operator in’}{,\ with the

=4, if 2,4+ 2% 2=z 2% 2"

(4.8)

is the orthogonal projector in 3{,\ onto the space

(241+\2~°l+“1417,5

S a iy 2
) a_t(ﬂ 3N) and f’:t(ﬂ. sN\)  are the products of unitory

operators in '3{/\@"5{/\:



fy LQ5N= Il e MRt )
, ; O-»N(OD

~ - % ~

& (e N)= [ ot T3 )H/\)J',Q_a' (4.10)

1:0 >N

Here, as in Proposition 3.3,'T:(£2.=*) is the time between the epochs

T (™) and "-‘+1(-Q°‘) of subsequent jumps for the path
famﬂyﬂ > ]=0,. N(Q. ),%=1,2. The self-adjoint operators H/\,j,.ﬂ."*
in X ® 3‘{/\ are of the form
H‘/\)j’nd HA’J"QQ( ﬂ-+ ﬂ@H J;), as + \/-, (4.11)
where
H. . &:'"/Q_Z, af(aa) + Z, P (1k- l<i)h hot
N3 k k
ke A k.k'e A
+ Z é(lk"“)(“)l)“k, (4.12)
ke A

where T (o~ )<u.<'r L (S2%) et = 4,2 (ef. 3.23))and |/

is the cross 1nteract1on energy (2.21).4

Proof of Proposition 4.2, like that of Proposition 3.3, is done
by inspection, using Lemma 2.1 b). to

We use Pronosition 4.2 and condition (d 2**) conclude that
the absolute value in (4.5) is less than

2 2 Py eyhey) = 2 (43" ¢

316 MAo' 36M J46M'Ko"
Rallyivs 1y l*iytiS s
(5727 + |A°
219 + A7} 1yt -
$cy, Y 2, F(y,), (4.13)
.neMKc

Yal 2(s-1y11),

where we have used the notation

tf(j“')'-'-:?(E:}V). (4.14)

In the same way one can check that the absolute value in
question is less than
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4

.

2(s 27+ A% (J'Z] E f g’(j )

C - . *
4 5) 32€M/\°' 2
1y, 1% (s-1y2),

Hence, this absolute value is less than
4
Y.

4
20521 +IA°) (1y'+1y2 - : .
c g0 25 ey 2 FuY)
! %EMK": YZEMxo '
Yal%(s-1y1), 1Y, 2Cs-1y2)),
Now we estimate from above the sum Z Z, in

yL,y2 r4rz

(4.5) by . 4 : 2129 +12'1+122%
n (po ()3 [s2]+j-v7)+ P, (m(t)lz[s‘&]w}j)) X
1€A°
4/ o 4 2 ° P
cz[s z]+\/\;§(iz +1z%)/2 + 12 \( 2. | " AGED)
1 :’46MR°:

134(3(5-\z°x-{z‘:)+
v 4
2. Py, )72
Y2€ M’I\'O :
1y, 12 (s=12°%1-13 %)),
Making the summation over z°, z ‘,2 2 yields, by virtue of (d z*),
the following upper bound for (4.5):

( E 3"t > P:(lw(t)w))h 5?'"(:4
n=1

rs [s72]

4
U\°\+25"/2)2 — IN1+2572 )2

]

where

- -1 _ m
s=U-9)"" =2 o7,
™ 20
The final remark is similar to that in the end of the proof of Lemma

3.2. This finishes the proof of Lemma 4.1 and hence, that of Theorem 2. 00
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