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Abstract: We recall a simple class of translation invariant states

for an infinite quantum spin chain, which was introduced by

L.Accardi. Those states have exponential decay of correlation

functions, and a subclass contains the ground states of a certain

class of finite range interactions We consider, an particular, a

family of states for integer spin chains, containing as its

siirplest member the ground state of a spin 1 Heisenberg

antiferromagnet recently studied by I.Affleck, T.iCenriedy,

E.H.Lieb, and H.Tasaki. For this family we compute explicitly the

correlation functions and other properties.
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We consider an infinite chain ot quantum mechanical systems o

spin J This is to say that the systems are labelled by sites n=

,—1,O,1,... , and the observables of the system at each site

are given by the algebra
2J1

of (2J+1)x(2J+1) matrices. A state

of the chain assigns an expectation value <X 0. . .®X > to the
n n+m

observables X ,...,X , where X. is an observable at site i. This
n n+m i *

assignment has to satisfy the positivity condition <A A>O, the

consistency condition

<X 0.. .OX >= <1 OX 0.. .OX >= <X 0.. .®X 01 >.
n n+m n-I n n+m n n+m n+m+1

and the normalization condition <1>=1. The aim of this letter is

to call attention to “finitely correlated states”, which have been

introduced by Accardi [1] under the name of “Quantum Markov

Chains”. These states are invariant under translations along the

chain and are characterized by the additional property that there

are only finitely many linearly independent functionals of the

form

(X,...X) i— 3<Y 0...OYOXO...OX>.
I n -m 0 I n

In the cases we consider here, the space of these functionals can

be parametrized by an auxiliary matrix algebra
k’

and the states

are explicitly constructed as follows

We start from a map IE:At OAt At and a density matrix EJ
2J÷l k k k

such that (1®1) 1, and tr[pE(10A)) tr[pA] for all AEAt . It wiJ.J.
k

be convenient to introduce for each X€At the map IE[X] :At
2J+I 1< k

given by IE[X](A)= IE(XOA). An important operator in this theory is
A

E[1), which we shall abbreviate by L. In terms of E the above

conditions on JE and p become (1)= 1 and trfp f(A)]= tr[pA]. The

state <...> is now given explicitly by

<xo ox >= tr[P Ix ]olE[X ]o olEfX ](1)] (1)
n n+m n n+I n+m

where ‘o” means composition of maps. The consistency conditions

for the state then follow from the properties of and p.

Translation invariance follows because we have chosen IE to be

independent of the site. It remains to establish conditions on JE

that will ensure the positivity of the functional <..>. For this

it suffices to take IE to be completely positive [2), which is in

turn guaranteed if we take E of the form
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*

IE(X®A)= V (X®A)V (2)
1< 2J+i 1<

for an isometry V:(C (C

A nice feature of finitely correlated states is that their

correlation functions can be computed in a very simple way: for

two single site observables XYEt21 at distance n from each

other the correlation function is

<x®i. . .øiøi>= tr[p E[XJo’’oE[Y](1)]. (3)

n-i factors

Thus the computation of all correlation functions is reduced to

the diagonalization of the single linear operator :k >k<, i.e.

a k xk —matrix. Generically, the eagenvalue 1 (with eagenvector

lEAtk) is non—degenerate, and the other eigenvalues are less than

one in absolute value. Therefore the state exhibits pure

exponential clustering and only a finite number of decay rates can

appear. Negative eigenvalues of correspond to alternating signs

in correlation functions, which are typical of antiferromagnetic

behaviour. The simplicity of computations with finitely correlated

states makes them an interesting set of trial states in

variational computations. Minimizing, for example, the mean energy

for the usual spin 1/2 Heisenberg antiferromagnet over the

finitely correalated states with the smallest possible value k=2

leads to an estimated energy density, which is about 25% off the

exact value. This is a considerable improvement over the

mean—field approximation (corresponding in our setting to the

trivial choice k=1), which does not describe antiferromagnetism at

all [3J.

We illustrate these general properties of finitely correlated

states by explicitly constructing a family of such states

(labelled by a half-integer jJ/2 ) for spin chains with integer

spin 3. We shall compute their correlation functions by
A

diagonalizing IE, and discuss some of their properties, which

follow easily from the above construction. The simplest case of

our construction ( 3=1, j=1/2) gives a state recently studied by

I.Affleck, T.Kennedy, E,H.Lieb, an H.Tasaki [4] and also by

J.Chayes, L.Chayes, and S.Kivelson [5] in terms of the “resonating

valence bonds” introduced by P.Anderson [6]. They are also the
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exact ground states of a type of models discovered by Klein [7]

see also [8]). Thus our construction offers a simple alternative

to the computation of the correlation functions of these models,

replacing the diagrammatic technique used in [4].

We start from the representations and
0(j) of SU2, and denote

their generators by = (S11S2,S3) and i! (L1,L2,L3), respectively.

Then if J is integer and 2jJ, there is an up to a phase unique

i some try
2j+1_____ 2J+1 2j+1

V:U —4U øt

intertwining and Then eq..2 defines the required

map E:.Jt ØA( At with k= 2j+1. Since V is an isometry the

property E(i®1)=1 is obvious. Moreover, A— tr[(A)]

defines a rotation invariant functional on At Since is
2j +1

irreducible, this must be proportional to the trace itself. Hence

we can ( and must) take p= (23+1)1.1.

It is clear from the intertwining property of V that the operator

commutes with the action (A)= D AD of SU on At . The
g

2
g g 2 1<

representation on the (23+1) -dimensional space can be

decomposed into irreducible representations DCX). The

irreducible subspaces of this decomposition are eigenspaces for

and we only have to compute the corresponding eigenvalues

X(x,J,j). These are invariants constructed from the

representations D’’, and D<, which suggests that they can

be expressed by a 63-symbol. In fact, a straightforward

computation observing the conventions of [9] yields

X(x,J,j)=
(_)X

(23+1) . (4)

The case of principal interest is X=1, because the generators L1,
(1) .

L, and L3 transform according to D . We give a sample direct

calculation of X= X(1,J,j) and the spin—spin correlation function

to show that the 63—machinery is not essential for many cases.

From the intertwining property of V we get (1®+®1)V= V. Using

2
3(3+1) and r J(J+1) the relation (1®+®1)2V= V2becomes

2• V= -J(J+1) V. Hence with
=

=1E(1)= xf we find

V 1®’(1®-i-®1)V= 3(3+1)- -J(J+1)= X = X 3(3+1). This determines
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X, and 1E[j satisfies 1E[J(1) - = (i-).), and E[] =

* * 1 1
V (®1)V V øi(1®+®1)V J(J+l) —J(J+i)= —J(J+i). The

spin—spin correlation at distance n is defined as C(n)=

<S1.. .®i®S<>, where n-i factors 1 appear on the right. Since the

3x3—matrix C(n) is rotation invariant it is a multiple of the

Kronecker symbol 8ik’
and it suffices to compute its trace.

Inserting the above formulas into eq.3, we get

C.(n)=
6ik
J2(J+i)2 [ 1

2j(j±1)
(5)

The representation of SU2 associated with n neighbouring sites is

tfl€.. .®D. A characteristic property of the family of states

under consideration is that they vanish on most of the irreducible

subspaces appearing in the decomposition of this tensor product

representation. The relation

E{D)(A)=
0(j) fl((J)*)

follows directly from the intertwinig property of V for n=i, and

generalizes to all n by induction. Inserting this into eq.i we

find

<D3®. . .D°> = tr[p
0(j)• ( ] . (6)

n factors

Now the right hand side, considered as a function of g€SU2, can be

expressed as a sum of matrix elements of the representation

Hence the support of the state <....> is contained in
( 2J÷1”®fl . . CX)

the subspace of C j carrying representations 0 with x2j.

In short, the sum of any row of consecutive spins ( of arbitrary

length n ) is bounded under <...> by 2j.

These considerations have an immediate bearing on nearest
Ci) (j)

neighbour Hamiltonians of the form H= h , where h

denotes a copy of a fixed operator hE ft in the i and
2J+1 2J+1

(i+i)t factor of the chain. Suppose that h is positive and

vanishes on the subspaces with x>2j. For J=i and j=i/2 this fixes

h up to trivial scalings to be the Hamiltonian

+ . + .1 . )2,

3 2 1 2 6 1 2

studied in [4]. Then by the previous paragraph <...> is a ground
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state for H, in the sense [4] that <h> attains its minimal

value 0 for all 1. In fact, it was shown in [4] that <...> is the

only state with that property.

This ground state property can be established in our framework

without taking into account any special symmetry ( e.g. rotation

invariance), using only the special form eq.2 of IE, together with

the assumptions that (A) tr[pA)•1, and p is non—singular. We

state the main results, leaving a discussion of this assumption

and detailed proofs to a later publication.

It will be convenient to choose some basis , p=1,. .,2J+1 in

2J+1
Then V can be expressed in terms of matrices v(M)€.4(k as

= ip ( v()X ). For each nEIN we define a map

Q:
2J+1]®fl

by

Q(A)
=

tr[A.v().....v()]. (7)

On n consecutive sites the state <....> is given by a density

( 2J+1Øfl .

matrix in C j . The support of this density matrix is

contained the range of Q , which we shall denote by . Clearly,

dim dim
k=

k2. Equality holds for some n if the
(2J÷1)fl

operators v(ji1). . .v(ji) span the vector space Under the

above assumptions this is true for all nN—1, for some N. Now let
I 2J+fl®N

h be a positive semi—definite matrix in D whose

null-eigenspace coincides with Let h’ denote a copy of h,

acting in the algebra of the sites i+1, i+2,..., i+N. Then H=

(i) . . .

h is an interaction of range N for the spin chain. We can

then show that <...> is the unique ground state for H in the sense

of [4]. This implies, in particular, that the state <...> is a

pure state on the quasi—local algebra of the chain

The conditions for this conclusion are generically true for any

choice of V, and (2J+i)’ k2. They are easily verified for the

above family of rotation invariant states. For example, j J 2j

implies dim R2 (2j+1)2, so the corresponding states are ground

states for suitable interactions of nearest and next—nearest

neighbours. The smallest admissable value of j, namely jJ/2,
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gives a state, which as the unique ground state at .nv rL

neighbour interaction vanishing on the spin J suhspace

:cc2J+lJ®2

The technique we presented can be generalized without major

changes to models on CayJ.ey—trees, and the basic construction of

finitely correlated states can be generalized to higher

dimensional lattices and general graphs
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