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1. Classical exchange algebra

The algebraic structures associated to the Yang-Baxter equation play a central

role in present day ‘integrable physics’ [1-4]. In particular, the role played by quantum

groups in conformal field theory is a subject of intense study [5-16].

There is a universal method, developed by the Leningrad school [3], by which one

can associate a Hopf algebra to any solution of the Yang-Baxter equation (without

spectral parameter), that is to any R-matrix satisfying

R12R13R23 =R23R13R12 .
(1)

For example, when applied to the following R-matrix in the defining representation

of SL(n)

RDJ(q) = q* {q e ® e + e 0 + (q — q’) ® eii} , (2)

I ij 1>)

this method yields the quantum group SL(ri)q, whose dual is the quantized universal

enveloping algebra Uq(sl(n)) discovered by Drinfeld and Jimbo [1, 2].

In principle, one can associate a Hopf algebra to any conformal field theory by

applying the ‘Leningrad construction’ to the solution of the Yang-Baxter equation

provided by the braiding matrix of the conformal field theory.

If R(q) has a classical limit,

R(q) = 1—ihr+o(h) for q= (3)

such that r E for some Lie algebra , then the quantum group associated to

R can be interpreted as a quantization of the Poisson-Lie group structure defined by

r on the corresponding Lie group G. On the other hand, the dual U( R) provides a

deformation of the universal enveloping algebra U() [1, 3, 4].

In a recent paper [13] we have shown that the basic Poisson brackets in the chiral

sectors of the WZNW theory can be given as follows:

{uL(j) UL(2)} = -[uL(1) 0 UL(2)j [sign(2 -1)C + r()), (4)

where
r(w) = I Lcoth{4&hw,h}eQ A e_ , (5)

aE+

with denoting the set of positive roots and A standing for antisymmetric tensor

product. These formulae constitute the r-matrix description of the chiral sectors of

the WZNW theory. The reader is referred to [9] for related (but different) results
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on the ‘classical exchange algebra’. In equation (4) C ,\
‘ \ is the C’asirnjr

operator’ and uL() is the left-moving field appearing in the factorization of the

WZNW solution

g(r, ) = UL(r + ) . u(r
—

It is a chiral primary field with respect to the

k), which solves the differential equation

=

(6)

Kac-Moody current I() (with level

(7)

with diagonal monodromy:

UL( + 2ir) = ‘UL()D D = exp[whj (8)

These properties determine uL() up to a monodrorny dependent normalization,

which allows to consider a transformation of the form

UL() — U() = UL() .
(9)

We have shown in [13] that by such a transformation it is possible to remove the

monodromy dependence of the exchange algebra in the case of sl(n) and that this

is impossible for the other simple Lie algebras. In the sl(n) case the monodromy

independent, antisymmetric r-matrix turns out to be given as

rz—2

= —2 e A e1kS_1,1_k8(i— k) + h’ A h’

i<j k<1 L=1

(10)

where 8 is the usual step function, whose value is at 0, and the h are the standard

Cartan generators of sl(n). By construction, i is an antisymmetric solution of the

modified classical Yang-Baxter equation, and thus ± C are solutions of the classical

Yang-Baxter equation (without spectral parameter). The transformed SL(ri) valued

field?2L(), which satisfies an exchange algebra of the form (4) with replacing r(),

can simply be written as

UL() = [u() u( + 2ir) u( + 4ir) ... u( + 2(n - l)ir)). (11)

In other words, ü1, is

differential equation

Our results for

tually also valid for

the WZNW theory

built out of an arbitrary (generic) column vector solution of the

(7) by means of successive translations by 27r.

the exchange algebra for the WZNW field uL() (z2L()) are ac

the corresponding chiral fields in the Toda theory, obtained from

by imposing two chiral sets of first-class constraints [14]. For
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the left-movers, the gauge transformations generated by the constraints are upper

triangular KM transformations and therefore leave the last row of u t() (?2 L()) in

variant. On the other hand, the exchange algebra (4) is given in terms of matrix

multiplication from the right, mixing the columns of uL() (tL()). These two ob

servations imply that the chiral Toda fields, that is the matrix elements in ±e last

row of uL() (L(D) in the constrained WZNiV (i.e. Toda) theory, indeed satisfy the

same exchange algebra as the chiral fields of the the unconstrained WZNW theory.

We also mention that, for exactly the same reason as above, (4) also yields

the exchange algebra for the gauge invariant fields of the generalized Toda theories

recently discovered by O’Raifeartaigh and Wipf [13].

It seems an interesting question to ask what is the quantum group structure

obtained by quantizing the Poisson-Lie group defined by the constant r-matrix (10).

In this respect it is worth pointing out that our classical r-matrix (10) is qualitatively

different from the standard Drinfeld-Jimbo r-matrix

TDJ = —
e A ,

(12)

which underlies the standard quantization of SL(n). To see this qualitative difference

we now explain how to identify (10) and (12) as special (:ases in the Belavin-Drinfeld

classification of r-matrices of simple Lie algebras [17, 4].

Belavin and Drinfeld proved that every solution of the classical Yang-Baxter

equation can be transformed into a ‘standard solution’ by a Lie algebra automorphism

and classified the standard solutions in terms of certain discrete and continuous

parameters. The discrete parameter consists of two subsets + and of the set

of simple roots and a one-to-one map: r _, which preserves the scalar

product and pushes every root out of if applied enough times (+ and . may

intersect). The continuous parameter is the purely Cartan piece of the r-matrix. Up

to multiplication by a constant, the standard solution is of the form r = (±C + ri +

rg), where C is the Casirnir operator, r is the purely Cartan piece, and r’ is the

purely root piece. One extends r to a map f : —p where are the subsets

of the positive roots generated by respectively, and one writes for 3 E i5_ and

a E + that 3 >- a if fi = fk(a) for some natural number k. The root piece r4’ is

completely fixed by the discrete parameter as

—eAe_+2 —e3Ae_c. (13)

aEc+

The Cartan piece r = h is antisymmetric and satisfies the condition

rh,(hL,, ha) — ha = r’h(h, hr(a)) + hr(a) for Va E . (14)
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In the above equations e±a, ha are the step operators and the Cartan element asso

ciated to a positive root c

The r-matrix (12) corresponds to the simplest special case of the Belavin-Drjnfeld

standard r-matrices, namely is the empty set and r 0. Interestingly, (10) can

be identified as the other extreme special case of the l(n) standard solutions, in the

sense that are the largest possible sets:

{( 2),(2 —A3),...,(A_2n-1)}, -

(1D)

= {( —3),(3 —n)},

where the ‘s are the weights of the defining representation of .sl(n). The map r is

given as follows. r — A) —* (A1 — A+1), and r in (10) is indeed of the form

r = —r’ — r.

2. Non-standard quantum group and quantized enveloping algebra

Before our work on the classical exchange algebra [13] of the WZNW theory,

Cremmer and Gervais [11] performed a thorough analysis of the quantum exchange

algebra of the chiral primary fiels in SL(n) Toda field theory (see also [10, 12] for

related papers). The result which is most important to us is that they constructed

certain chiral primary fields çb whose braiding is given as

= Rjk,miL(’)m(), (16)

1,m=1

where, for ( — ‘) > 0, one has

R = q* {q ® eu + q ® ejj + q’

I 1>j 1<)

/ ij1 3—2—1

+ (q — q’)(
q_2k/flj ® e,jk — ef1+k)

i>j k=O l<j k=i
(17)

In Ref. [11] the authors initiated the study of the quantum group defined by (17).

They have also pointed out that the two distinct solutions of the Yang-Baxter

equation given by (2) and (17) are related by a similarity transformation Y E

Mat(C” 0 C”). However, Y does not have the factorized form X 0 X, X E Mat(CTh),

and therefore the quantum groups defined by (2) and (17) are not isomorphic [11].

It can be shown, by identifying the components of the last row of the chiral

WZNW field 12L with the chiral Toda fields that the classical limit of (16) is
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the classical exchange algebra we found (independently). It also follows from the

relationshiP of Toda and WZNW theories that it is (17), rather than the standard R

matrix (2), that describes the quantum exchange algebra of the chiral primary fields

also in SL(n) WZNW theory. For this reason we think that the quantum group

structure defined by the Cremmer-Gervais R-matrix deserves further attention.

The aim of our latest work [16], which we are going to review now, is in fact to

describe this quantum group and its dual, denoted as Uq(sl(n)). The main question

we are interested in is how different the Hopf algebra 14(sl(n)) is from the standard

quantized universal enveloping algebra Uq(sl(n)). We consider in detail the simplest

nontrivial case of sl(3) ((2) and (17) coincide for sl(2)). Our main result is that the

multiplicative structures of 14(sl(3)) and that of Uq(sl(3)) are isomorphic, but the

complete Hopf algebra structures are qualitatively different.

For easier reference, first we need to recall the main points of the Leningrad

construction’ [3]. Let us consider a solution of the Yang-Baxter equation R E

Mat(V V), V C”. The Hopf algebra A(R) (‘formal quantum group’) associ

ated to R is the associative algebra generated by the unit element I and the set of

generators t,, (i,j = 1 .. . n), arranged as a matrix T E Mat(V, A), subject to the

relations

RT1T2=T2T1R (T1=T®I,T2=I®T). (18)

The coproduct and the counit of A are given by the simple formulae

= tk ® tkj and (t) = . (19)

Depending on R, one could add further relations, like detqT = I for (2), corresponding

to the center of the exchange algebra (18). The quantum determinant plays an

important role in the construction of an antipode S, which requires inverting the

matrix of generators T.

We note that by ‘forgetting the coordinate dependence’ (16) reduces to the

defining relations of a ‘quantum plane’ [3, 11]. Similarly, apart from the trivial

coordinate dependence, the classical exchange algebra satisfied by the rows of L iS

nothing but the classical version of the relations defining a quantum plane.

The dual space A’(R) is endowed with the bialgebra (Hopf algebra) structure

naturally induced from that of A(R), e. g., the multiplication in A’(R) is defined as

(20)

If R is invertible, then one can introduce the ‘algebra of regular functionals’ on A,

which is the sublagebraU(R) C A’(R) generated by the functionals 1 and 1 defined

by the foflowing formulae:

<1T1...Tk>=I®lc and (21)
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Here denotes the matrix T1 E Mat(V,A) contains the matrix T

as its 1th factor and is the unit matrix in the other factors. The numerical niatrice

vIat(V(’)) are non-trivial in those two factors of the multiple tensor

product, which correspond to the positions of L and T2 on the left hand side of

the above formula, and coincide there with

= PRP and = (22)

respectively, where F E Mat(VV) is the permutation operator. In the Hopf algebra

U(R) the multiplication satisfies the relations

RWLL = LLR , = . (23)

For the comultiplication and counit we have

= , (1) = 1 1 , (24)

and
= , (1) = 1, (25)

respectively. We note that the formula for antipode in U(R) is known for a class of

R-matrices [3], but the matrix (17) is not in this class and thus the existence of the

antipode has to be investigated separately in our case.

The functionals are not independent, some combinations of the matrix ele

ments of L(±) can be zero. In conclusion, one can regard U(R) as the bialgebra

genrated by the and 1 subject to (23-25), modulo the identifications coming

from (21), which depend on the form of R. For example, for the standard R-matrix

(2) giving rise to U(R) = Uq(sl(n)), the matrices are upper and lower triangular,

respectively, and their diagonal entries are inverses of each other [31.
Now we are in the position to investigate A(R) and its dual for the R-matrix

(17), for ii = . First we consider .4(R) briefly.

We would like to impose on .4(R) the quantum analogue of the unit determinant

constraint of SL(3) . To do this, and also for the construction of the antipode, we

need some analogue of the quantum determinant, which generates the center of the

algebra (18) in the standard case. In our case, the appropriate deformation of the

classical determinant is provided by the expression

2 2 6 6 8uetq.L —t13.t22t33 — tJ.1t23t3 — t12t21t33 + t13t21t32 + t12t23t31 — t13t22t31

(26)

which can be verified to commute with all the generators t. Here and below we use

the notation

E=q”3. (27)
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Like the standard quantum determinant [3], detq (26) has the multiplicative property

detq(T T’) q(T)&q(T’). 123)

for any two matrices T and T’ containing two commuting copies of generators sa

tisfying the same exchange algebra (18). Therefore we can consistently impose the

constraint
detq(T) 1. (29)

We designate the quantum deformation of SL(3) obtained in this way as SLq(3).

By using (29), the antipode S can now be computed from the equation

5(T1) . T1 = 8jk .
(30)

One can verify that the solution is given by the following q-deformation of the stan

dard inverse matrix formula:

/ (t22t33 —2t23t32) (—2t12t33 +t13t32) (6t12t23 —4t13t22)

5(T) = ( (—2t21t33 +6t23t3i) (t11t33 —4t13t31) (—4t11t23 +t13t21)

\(6t2t32 —e8t22t31) (—e4t11t32 + €6t12t31 (t11t22 —2t12t21)
(31)

Having clarified the Hopf algebra structure of.2q( 3), now we describe the cor

responding dual object U(R), denoted as Üq(sl(3)). First we introduce a notation for

the components of L(±), which takes into account the identifications forced by (21),

namely:

= f 0 A i ) and L = f D 0 ) (32)

D) C)

The list of relations obtained by substituting (32) into (23) has been displayed in

[16]. The main feature is that, roughly speaking, the diagonal components behave

like exponentiated Cartan generators. In particular, the operator C measures the

height of the off-diagonal components, which are the analogues of the step operators.

However, there appear also significant differences from this general pattern, e.g., not

all the diagonal entries commute.

It can be proven that the ‘quantum determinant’

V = detqL = C(AD _2) (33)

commutes with the whole algebra, therefore we can impose the constraint

D1. (34)
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This relation allows for inverting the generator matrices L±. The result turns

out to be consistent with the special form of L± given in (32) and provides the

formula for the antipode of Üq(sl(3)) [16].

In the standard case, that is for R in (2), one finds the Chevailey generators of

U(R) Uq(l(Tl)) with the aid of the Gauss decomposition of the triangular matrices

L [3]. It turned out [16] that a Chevalley basis can be introduced for tlq(l(3))

too, with the aid of the Gauss decomposition adapted to this case.

In our case the matrices L are not triangular, but, in a formal sense, they

still belong to certain subgroups of SL(n), consisting of matrices of the same ‘block

structure’ as L in (32). To account for this block structure and for the identifi

cations between the various components of L(+) and L in (32), we consider the

following special Gauss decomposition of the generator matrices:

= exp(de32). [Ce11 + Ae22 + Be33] exp(be23). exp(be12) . exp(aei2) exp(cel)

(35.a)

and

=exp(Ee31).exp(de32)exp(äe21).exp(e32).[Aeii +Be22 +Ce33].exp(be12)

(35.b)

Here, the various e3 are numerical matrices, and the a. h etc. are our new variables.

By using these new variables, the relations given by (23) take a simple form. First

of all, A, B and C turn out to be mutually commuting Cartan variables, in terms of

which we have

D=ABC=1. (36)

By using this relation, and assuming that A’ and B are also in the algebra (or,

more precisely, adding these as new generators) we can eliminate C and work with

the ‘exponentiated Cartan generators’ A and B. These Cartan generators act on the

generators of height one a, b, a, as follows:

Aa =4aA, Ad =4dA, Ba = e.2aB, Ba = 2dB,

4b = E2bA, A = Bb = 4bB, B =

(37)

The commutation relations of the height one generators are

[a,] = [b,d] = 0, [a,aj = zC’B(A’ 42), [b,] = zA’(B2— B),

(38)

where z = (q — q’). By combining (23) and (35) we can express the height two

off-diagonal generator c in terms of the height one generators as

zc = qba — q’ab, and analogously zã = q(a — ab). (39)
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The above equations tell us that a, b, a and are the analogues of step operators as

sociated to simple roots, and we can take them, together with the Cartan generators

as the generators of our algebra. These step operators and the composite objects c

and ë satisfy

ac Ca, bc = cb, ãë = q2ãã, bã = q23b, (40)

which are clearly the analogues of the Serre relations.

The above relations are strongly reminescent of the defining relations of the stan

dard quantized universal enveloping algebra Uq(sl(3)) [1, 2]. More than that, we can

indeed introduce new variables in which these relations describing the multiplicative

structure of Üq(.sl(3)) become identical to the standard ones. This is achieved by the

change of variables

a =x1E1.4kBt , b =I2E24mBn 4 =q2Ht/3

a =y1A_kB1_tF1 , =y24’B_4_F2, B =q2H2/3
(41)

where the k, 1, etc., are arbitrary numerical coefficients subject to the conditions

41 + 2n — 2k — 4m = 3 , x1y1 = ‘.Y2 = —ez2 (42)

It is easy to check that this transformation converts the multiplication table of our

algebra into the standard one, that is we have

[H1,H1J= 0, EE2 — [2]qE1E2E1+ E2E 0,

[H1,E,j EE1 {2]qE2EiE2+EiE 0,

[Hi,Fj] = —K1F, FF2 — {2]qFIF2F1+ F2F = 0,

[E,F1 =c5ij{Hi]q, FF1 — [2IqF2FIF2 + F1F = 0,

where K, is the Cartan matrix of sl(3) and

[xlq
= qZ _q_Z

(44)
q —

It should be noted that, strictly speaking, H1 and H2 do not belong to the original

algebra, which consists of polynomials in the components of To consider trans

formation (41), one has to enlarge the original algebra in such a way to allow for

power series in the H’s. However, this issue is not specific to our case, it also arises

for the standard R-matrix (2).

The formulae describing the coproduct and the counit of Uq(sl(3)) in terms of

the variables A, B, C, a, b, c, a, and E can be read off easily from (24) arid (25).
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However, due to fractional powers appearing in (41), we have not been able to write

them down in terms of the Chevalley generators. Nevertheless, we can jve the

coproduct of the invertible elements .4, B and C as follows. First, we obtain from

(24) immediately that

(C)=COC. [43)

and

(A)=A®.4[1®1+e4b®a]=[1®1+2b®ãjAA. (45)

Combining this with

(ABC)=(1)=1Ø1, (47)

we obtain

(B)=B®B[1®1+2b®aJ’. (48)

By using (41) and expressing the inverse in (48) as a formal power series, we arrive

at

(A) A® A[1 1 +4x2yiE2AmBn ® 4kB1lF] (49.a)

and

(B) = B® B[1 ® 1 + (_i)(2x2yiE2AmBn : A_kB11F1)Jj
. (49.b)

This power series terminates in any finite dimensional representation because of the

nilpotent character of the E1’s and F1’s.

We see from the above formulae that, in contrast to the standard case, the

coproduct of Uq(sl(3)) is not cocommutative on the Cartan 3ubalgebra. For this reason

Uq(sl(3)) escapes the uniqueness theorem of Drinfeld [1] for quantum deformations

of the enveloping algebra of a simple Lie algebra.

We have seen that Uq(sl(3)) and Uq(sl(3)) are isomorphic as associative algebras,

but not as Hopf algebras, since their coproduct operations are different. This means

that 14(81(3)) and Uq(31(3))have the same linear representations, but are represented

by different operators in the tensor products of such representations. However, it can

be seen from (49) that the spectrum of .(A) and (B) is the same as that of

A ® .4 and B ® B, respectively, in the tensor product of any two finite dimensional

highest weight representations. Thus the branching rules of Uq(sl(3)) and Uq(sl(3))

are probably very similar, if not identical. We also note that (45) allows for defining

the quantum dimension of a finite dimensional representations of Uq(sl(3)) to be the

trace of a certain power of C, in the same way as in the standard case [5, 81.

The relation [5, 8] between the branching rules of 14(sl(n)) for q2 root of unity,

and the fusion rules of the SU(n) WZNW model is one of the celebrated examples
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for the appearance of quantum group symmetries in conformal field theory. It would

be very interesting to know if Uq(sl(ri)) can also be used to describe the qualitative.

topological features of the SU(n) WZNW and Toda field theories.

3. Consequences of the Hecke relation

We argued that the branching rules of Uq(sl(3)) and those of U(sl(3)) are ex

pected to be closely related. For general n, this expectation is also supported by the

fact that 1 q1/’PR satisfies the ‘Hecke relation’

(50)

for both exchange matrices (2) and (17). As a consequence of (50), the operators

,j+i acting in some multiple tensor product of C with itself, generate two rep

resentations of the Hecke algebra (see, for example, [2, 5]), corresponding to (2)

and (17). The representation of the Hecke algebra belonging to RDJ (2) commutes

with the generators of Uq(sl(n)) acting in the multiple tensor product of the defi

ning, n-dimensional representation, while the representation associated to R in (17)

commutes with the generators of Üq(sl(n)). The representation theory of the Hecke

algebra, which is a deformation of the group algebra of the permutation group, and

that of Uq(sl(n)) are connected by a duality relation [2, 5, 18]. Clearly, the same

duality connects the Hecke algebra also with Üq(sl(n)), and for this reason the bran

ching of the multiple tensor products of the defining representation is expected to be

the same for Uq(sl(n)) and for 14(sl(n)).

Recently an example of covariant differential calculus on a quantum hyperplane

has been worked out by Wess and Zuxnino [19] (see also [20]). This exterior calculus

is based on the fact that consistent exchange relations between the basis objects x,

dx and can be postulated by using a numerical R-matrix satisfying the Yang-

Baxter and the Hecke relations. It would be interesting to compare the variant of

the calculus based on R (17) with the example of [19] based on RDJ (2).

We also note that in the same way as for the standard R-matrix (2) (see e.g.

[18]), the following expression

(q,u) = R(q) + q’[1 — ictg(u)j(q’ — q)P (51)

provides us a solution of the full Yang-Baxter equation

1Z12(q,u7?.13(q,u+ v)73(q,v) = 1?23(q,v1Z13(q,u+ v)7Z12(q,u). (52)
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In fact the ‘Yarig-Baxterization’ formula (51) is valid for any spectral parameter

independent solution of (1), which satisfies the Hecke relation (SO) We note that

R(q) is recovered from (51) at i , and that at —i c (51) reduces to a closely related

solution of (1) which satisfies (50) with q —i q’. We stress that the R.(q, u) (and its

classical limit r(u)) should, in principle, give rise to a new series of integrable systems

in statistical (classical) mechanics.

4. Concluding remarks

It is obvious that there remain a lot of interesting questions to be investigated.

For example, the integrable systems associated to (51) should be explored. It is likely

that Uq(sl(ri)) is to play an important role there. We think SL(rz) and Üq(sI(rz))
deserve further attention on their own right as well. We expect that a Chevalley

basis can be introduced also in Uq(sl(n)). Like in the special case of n = 3, this

should be achieved by a Gauss decomposition oredered in a special manner. It seems

to us that this ordering has to do with the ordering appearing in the Belavin-Drinfeld

description of the classical r-matrix (10).

A theorem of Drinfeld [7] tells us that all quasi-tr:angular Hopf algebras defor

ming U(sl(n)) are equivalent as quasi-triangular quasi-Hopf algebras, in a pertur

bative sense (as formal power series in Ii). This means that, in a formal sense, the

multiplicative stucture of all such Hopf algebras is the same, and the coproduct is

obtained from the trivial coproduct of U(sl(n)) by twisting, i. e. by a similarity

transformation in II(sl(n)) 0 U(sl(rz)). It is well known that the formal equivalence

between U(sl(n)) and Uq(.sl(r&)) breaks down for q2 root of unity. In contrast, we

have seen that the equivalence of the product structures of tlq($l(3)) and Uq(sl(3)) is

valid for every value of q. It is possible that the twisting connecting the coproducts of

Uq and Üq is also regular for every q. If this is true then also the branchings of tensor

products of representations of Uq and Üq would be the same. We hope to report on

some of these issues in a future publication.
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