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Abstract

Anomalies are chiral symmetries of classical Lagrangians that are broken at the

quantum level. They occur only to first order in h (for topological reasons) but are of

central importance for particle physics. The aim of these lectures is to explain the origin

of the anomalies and to describe their theoretical and experimental consequences.

1 .Introduction.

It is well-known that most of the symmetries of classical physics are also symmetries

of quantum physics, and this is particularly true of the space-time symmetries such as

Lorentz symmetry. However, there is at least one classical space-time symmetry, namely

chiral symmetry, which is not a symmetry of the quantum theory,and the breaking of

this symmetry at the quantum level,and its consequences, are the subjects that I wish

to consider in these lectures. In terms of the Lagrangian, what happens is that if the

effective Lagrangian is written as

LeffLc+Lq, (1)

where L is the classical Lagrangian and Lq is its quantum correction, then Lq does

not inherit the chiral symmetry of L. More precisely, if L contains fermion fields /()
then Lq does not inherit the symmetry of L with respect to the transformations

—* ei(x), (2)

of these fields. One may consider both the rigid (or global) chiral transformations,

a(x) = constant, and the local chiral transformations, a(x) —* 0 as — . The

experimental cosequences of the breakdown of the rigid chiral symmetry are (i) the

fact that the number of lepton and quark families must be the same (ii) the associated

evidence for the existence of just three colours for the quarks (iii) the resolution of the so

called U(1)-problem (which is posed by the observed breakdown of the chiral part of the

central U(1) x U(1) subgroup of the flavour internal symmetry group U(n) x U(n)), and
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(iv) the light that the resolution of the U( 1) problem throws on the problems of the mass

and three-.pion decay of the i particle. Experimental consequences of the breakdown

of local chiral symmetry are (i) the prediction of the correct rate for the decay 7r —* 2-y

(ii) the associated evidence for the existence of just three colours for the quarks and

(iii) the prediction of a decay-rate for baryons, which, although miniscule at present

temperatures, might have been appreciable in the early universe. Finally it might be

mentioned that analogous chiral anomalies occur in gravitational, supergravitational,

Kaluza-Klein and String theories, and the condition that their coefficients vanish (in

order to make the theories consistent with renormalization) put restrictions on these
theories. For example the vanishing of the coefficient of the conformal anomaly in string
theory leads to the well-known condition that the dimension of the configuration space
be 26 or 10.

2.Description of Anomaly.

As the anomaly actually occurs only to first order[1] in h it is possible to discuss it purely

within the context of the WKB approximationE2]. Let us begin by recalling the (time-

dependent) WKB approximation in ordinary Quantum Mechanics with Schrodinger

equation
h8

= [—A + V(x). (3)
z8t 2m

If we write

= pexp(S), (4)

and take the real and imaginary parts we obtain

+ ±(VS)2 = 0(h2) (5)
8t 2m

and

hHp +1V(pVS)] =0. (6)
m

These equations have two remarkable features: (a) In eq(6) P1.anck’s constant appears
only as an overall factor so that the equation itself is classical. It is actually the conti

nuity equation

—p = divj, where j = (7)
8t 2m

which expresses the conservation of probability, in disguise. (b) In the WKB approxi

mation equation (5) is classical, in fact it is just the Hamilton-Jacobi equation for the

corresponding classical system. Furthermore,if one uses the solution SffJ in (6) one
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can solve locally for p, and the solution with the correct initial condition to describe a

particle located at x x(o) at time t=O is simply

82

p(x)
tL8Xa(t)8Xb(O

(8)

Thus finally the WKB approximation for the solution (x) to the time-dependent

Schrodinger equation is

/ 82SHJ _I
(x)wKB = det 2 exp(SHJ). (9)

Thus in the WKB approximation (x) is expressible completely in terms of the

classical action SHJ = I Ldt. For example, for a free (V = 0) particle in n dimensions

) is just ()n/2 exp(i2).

What has all this got to do with anomalies? First write (9) as

h 8SffJ 1
exp{—[SHJ— —7lndet (10)

h 2z

This can be interpreted as

h 8SHJ 1SwKB’SHJ—---lndet{--— , 11
2z 8xt)6.rb(o)

the second term giving the first-order QM corrections to the classical term Si-j. If S-j

is invariant with respect to any space-time symmetries such as rotations then, since the

x’s are space-time vectors and occur only in the determinant, the correction term is also

rotationally invariant. In other words, in the QM case the quantum correction inherits

the space-time symmetry of the classical term Sj. The point now is that in Quantum

Field Theory (QFT) this is not always the case. In particular in QFT involving fermions

and chiral space-time symmetries it is generally not the case. In these cases the analogue

of the Hamilton -Jacobi term SHJ is the Dirac or Yang-Mills action

SHJ
= f dLL

= fd4xL()
= fd4x(P m(x), (12)

where subscript c denotes classical and =7’D, where D is the covariant derivative

i.e. D = 8 + ieAb,. for electromagnetism and D = 8 — J, where the u’s are the

group generators, for nonabelian Yang-Mills theory. What we need now is the first-order

quantum correction to (12).This is computed [3] from the (exact) functional integral

formula

exp[Seffj (13)
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which, by the rules of fermionic functional integration [4], is just

Seff = SHJ — —Indet
- (14)

Note the resemblance between this result and the QM one. (The change in sign and

factor 2 comes from the fact that the integration is fermionic and that there are two

fermion fields).For the Dirac or Yang-Mills cases, where S is linear in and , it is clear

that the quantum correction is just

FL
--1ndet(iJ H- m)], (15)

(where it is understood that the indet has to be regularized).The statement of the

anomaly now is that with respect to the chiral transformations

(x) (16)

and the induced transformations for 4 and m, the quantum correction (15) is not

invariant. This is, perhaps, not too surprising because, on account of the y involved in

the definition of ,, the latter transforms in the same way as (not in the opposite way)

and thus the functional derivative 8,bSi in (14) is not chirally invariant. Note that, on

account of the same factor -y,, in the definition of the induced transformations of

and m just mentioned are

—*±[,7sa(x)]± and m—*m--2m75a(x), (17)

for infinitesimal c. Note also that the statement that the functional derivative with

respect to and is not chirally invariant is equivalent to Fujikawa’s well-known ob

servation [3] that the measure dz/di/ in the functional integral is not chirally invariant,

since for fermionic variables integration and differentiation are the same! The quanti

tative form of the statement that the quantum correction (15) is not chirally invariant

is that

= [1ndet(i+m)] = 12E.B, (18)

where

E.B FF E

Here E and B are the electric and magnetic fields (and their Yang-Mills equivalents)

and the quantity E,B is a pseudoscalar, as it should be, since the parameter a is a

pseudoscalar.
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3.Derivation of Formula (18).

For those interested in how the result (18) actually emerges let me just sketch the idea.
Those not interested can safely ignore this section. First, one regularizes lndet(i17.1—m) =

Trln(i. + rn) by the (-function method, i.e. by writing it as

± rn2) = —F(()]=, where ((s) = Tr(_D2 (19)

Next, using (17) and the fact that, since, for sufficiently large .s the quantity (—D2
m2)_8 is trace-class one can cyclically permute operators ,one finds that within the trace
the chiral variation of (— + rn2)2 reduces to 4(x)75 times itself. Thus the chiral
variation of ((s) is

= 2(-s)Tr[(-2± rn2)a(x)75],. (20)

which can also be expressed in the integral form

=

— fdtt1em2tTr[a()7seHtj. (21)F(s)

It is not difficult to see that, provided that the trace is a regular function of t, its
contribution to S(’(s) at s = 0 comes only from its value at t = 0. So all one has
to do is to verify the regularity of the trace as a function of t and compute it at

= 0. This is easily done by noting that 2
= oF1, where the sigmas are

the Lorentz generators, and that, to leading order in t, (i) e# = (ii)
tr{(75)exp(o-.F)] = E.Bt2 where tr denotes the Dirac trace, and (iii) Trexp(—tD2)
Trexp(—tA) O(t2) where A is the free Laplacian and its proportionality to t2
follows from the earlier expression for the free wave-function in ii dimensions with n set
equal to 4. Putting these four observations together one sees that the trace is indeed
regular, and that its value at t = 0, and hence the required value of the anomaly, is just
E.B up to a numerical constant.
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4.Violation of Current Conservation.

The most convenient way to connect the breakdown of chiral symmetry to physical quan
tities is to express it in terms of a breakdown of current conservation. It is well-known
that any (rigid) continuous symmetry of a (Lagrangian) theory leads to the conservation
of a local current (Noether’s theorem) J(x) say, and a more precise statement of this
result (due to Noether herself) is that

8J(x)
=

(22)

where o(x) is the (infinitesimal) symmetry group parameter. For rigid chiral symme
try, the current J(x) computed according to the usual Noether rules is ys’(x)
and the variation of the Lagrangian contains two terms, namely a “classical”term
2mb(x)75(x) coming from the variation of m in (17) and the anomalous term (18).
[Note that from rigid chiral symmetry i.e. a(x)=constant, the variation of in (17) is
zero, so there is no contribution from this term]. Thus from the chiral symmetry (or,
more precisely, lack of symmetry) of the Lagrangian we have

= 2m(x)7s(x) ÷ E.B. (23)

This equation shows how the anomaly affects current conservation, and since it is the
currents that connect directly to physics, how it affects physical quantities. For example,
since at low energies the neutral pion field -ir°(x) can be approximated by the axial
current by means of the Golberger-Treiman [5] relation

ir°() = (mf18J(x), (24)

where J(x) is the current on the left-hand-side of (23), rn7,- is the pion mass, f’,- is the
weak coupling constant determined from 3-decay, one sees how, in principle, (24) can
determine the decay rate for ir° — 27. (More details will be given in section 7).
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5.General Prefactor.

The above description was for an axial field coupled to a single fermion field but it is

clear that it can be generalized to an axial field coupling to any number of fermion fields

by replacing the prefactor e2 by tr(sQ2)where cr5 and Q denote the axial and electric

charges of the fermions respectively, and the trace is with respect to these internal

indices. Note that in this case the chiral gauge transformation is

(x) (25)

More generally, if the EM field is replaced by any Yang-Mills field (including the axial

field itself) the anomaly generalizes to

(26)

where the cr are the generators of the Yang-vli11s group. The generalization to the

case when the axial field is also non-abelian yields a more complicated expression [6]

than E.B for the dynamical part of the anomaly but yields the same prefactor, except

that u is replaced by the generators u of the non-abelian axial gauge group. The

general prefactor

(27)

is important because the renormalizibility of the theory requires that the anomaly, and

hence the prefactor, must vanish when this trace is taken with respect to all the fermion

fields. We shall see later that for the standard model this is not the case for the leptonic

or quark sectors alone but is true for the combined sectors, provided that the numbers

of leptonic and quark families are equal.
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6.The Triangle Graph.

Historically the anomaly was first discovered [7] in the course of computing the triangle
graph of Fig.1, and it is still often associated with that graph. Hence it might be useful
to establish the relationship between the anomaly as defined above and that defined by
the graph. This is done as follows: First we neglect the mass m as we know in advance
that it does not appear in the final expression for the anomaly. Then we return to the
original expression for the quantum correction to the Dirac or Yang-Mills Lagrangian
i.e. Trln(iT/’). Using

= [4,75a(x)j+ =27578a(x), (28)

we see at once that

6Trln=2Tr[7578()()’]. (29)

Now expanding (4)’ in the form

(‘ = ()_1 + (‘e41(W’ + ()‘e44()’e4()’ + ... (30)

and inserting the expansion in (29) we see that the Dirac trace kills the two leading
terms and so

8Tr1n= 2Tr[(’e4’e4’733a(x)± ...]. (31)

It is possible to see that the higher order terms represented by the dots do not contribute,
either from the fact that the higher order terms in t in the previous derivation do not
contribute, or from the fact that the corresponding Feynman graphs are finite. Hence
the only contribution to the anomaly comes from the term displayed in (31) and it
is evident that this term is just the one represented by the triangle graph of Fig.1.
Note that since ‘y commutes with ()(x)()1 the anomaly is just the difference of
the anomalies due to the left-handed and right-handed fermions i.e.the two kinds of
fermions do not mix in the loop of Fig.1. Note also that the general prefactor (28)
can be read off from the triangle graph since the three a’s are just the usual internal
symmetry insertions at the three vertices.
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7. 11°-Decay.

The most important application of the local anomaly is to the decay of the r° meson
into two photons. This process depends on the fact that at low energies the 7r° field can
be approximated by the divergence of the axial vector current. More precisely, at low
energies one has the Goldberger-Treiman relation (24). It follow that the amplitude for
the decay 7r° — 2-y’ can be written as

<°27 >= (mf)’ <Oj)° 127>. (32)

However, from the theory of PCAC (partially conserved axial vector currents) it can be
shown [5]{8] that the first (mass) term on the right-hand side of (23) does not contribute
to this process. Indeed, before the discovery of the anomaly, this was one of the few
PCAC results in disagreement with experiment and was regarded as a major puzzle.
The puzzle was resolved by the anomaly, in the form of the second term on the right-
hand side of (23), which shows that if the first (mass) term is neglected in (23) the
amplitude for the decay is given by

<7r°27 >= (16n2mf)’tr(crQ2)<o1FF27>, (33)

where o is twice the neutral generator of chiral isospin, and Q the electric charge,
of the participating fermions. If one denotes by and e.x,e,. the momenta and
polarization vectors of the emerging photons then the amplitude (33) takes the form

<°127 >(l62mf)’tr(uQ2)ejppeAe. (34)

Since the decay process takes place in the strangeness zero sector and is a low energy
effect the fermions that effectively participate are the proton and neutron and hence
the trace factor in (34) is effectively

tr(Q2)= - Q 1. (35)

Inserting this result in (34) one obtains a decay rate for the n° which is in excellent
agreement with experiment. An interesting feature of this result is that it was obtained
[9] as far back as 1949 by Steinberger, who proposed (33) using other considerations,
and carried out the subsequent computations. An even more remarkable feature of the
result, however, is the one described in the next section.
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8.The Number of Quark Colours.

We have just seen that the ir° decay rate comes out correctly if we use the anomaly

and regard the nucleons as the participating fermions. On the other hand, according to

the quark model, the nucleons are composed of the up- and down-quarks, so we should

obtain the same result if we use these quarks instead of the nucleons. In that case the

trace factor becomes

tr(Q2)= (Q — Q) = — (1//3)21 = N/3, (36)

where N denotes the number of colours, and we see that this will give the same result

(unity) as the nucleons if, and only if, N is equal to three. Thus, through the anomaly,

the -it° decay rate gives us a direct measurement of the number of colours. This is an

important result because the original statistics argument for the existence of colours

requires only that there must exist at least three colours,and the 7r° measurement is one

of the few pieces of evidence that there are just three colours. In fact there are really

only three pieces of direct experimental evidence for three colours, namely the 7r° decay

just discussed, the vanishing of the anomaly for the present electroweak generations
1 1 I ae+e’hadrons)to oe aiscussea in tne next section, and the cross-section ratio R =

for electron positron collisions, which depends [10] strongly and monotonically on the

number of colours.
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9.Renormalizability and Generations.

In this section we indicate why renormalizability requires the vanishing of the anomaly

when the trace in the prefactor is taken over all fermion fields and how this in turn

requires that the number of lepton and quark families be the same. We first note (from

the triangle graph for example) that the anomaly is proportional to the momenta of the

external gauge fields. In the case that these gauge fields are external fields for a complete

Feynman graph this is not an immediate problem (though ultimately it could cause

problems with the unitarity bound). But if the triangle is in the interior of some higher

order Feynman graph then the momenta of the gauge fields are internal momenta and
so increase the divergences of the usual integrals over momentum. Since the divergence
of these integrals is such that they are renormalizable, but not superrenormalizable or
finite, even in the absence of these extra momentum factors, it is not difficult to imagine
that they become non-renormalizable in their presence, and this is exactly what happens

Eli]. So if we wish to have a renormalizable theory we have to make sure that, when

the anomaly appears in the interior of a Feynman graph, it vanishes. On the other

hand, when the anomaly does appear as the internal part of some Feynman graph then

the fermion fields participating in it consist of all po$szble such fields, not a selected

subset as in the case of the nucleons or up- and down-quarks as in rr° decay. Hence for

renormalizability we need only require that the prefactor trace taken over all fermion

fields vanish,

(37)

where the subscript means that the trace is the complete one i.e. is with respect

to all fermion fields. If we recall that the left- and right-handed fermions do not mix,

but contribute seperately to the anomaly, this condition may be written a little more

explicitly as

tr(ooaub)L = tr(ooaob)R. (38)

In evaluating (38) we first note that if the assignment of the fields to the representations

of the gauge group is vectorial i.e. is such that the left- and right-handed components

of a field are assigned to the same representation of the gauge group, then the field

will give no contribution to the anomaly. This is what actually happens for the strong

interactions, where the assignment of the quarks to the (fundamental) representation of

the colour gauge group is indeed vectorial. We should also note that particles and anti

particles have opposite handedness, and that if a particle is assigned to a representation

of a gauge group its anti-particle is assigned to the complex conjugate representation.

It follows that for particles belonging to representations of the gauge group that are
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equivalent to their complex conjugates the contribution of the particle to the left-hand-

side of (38) is matched by the contributions of its anti-particle to the right-hand side,

so the contribution of such a pair to the anomaly is zero. Hence the only fields that we

really have to worry about are those that are assigned to representations that .are not

equivalent to their complex conjugates. Such (unsafe) representations exist for only a

limited number of groups, namely the (unsafe) groups U(1), SU(n),n 3,SO(4n + 2)

and E(6), and even for these groups not all of the representations are unsafe [12]. (In

fact, for SO(4n + 2) and E(6) only the representations congruent to the spinor and

27-dimensional representations are unsafe). However, unsafe representations occur in

the assignments of the standard model, and that is where they introduce restrictions

that relate the number of quarks to the number of leptons. We recall that the gauge

group for the standard model is SU(2)x U(1) (more precisely U(2) = SU(2) x U(1)/Z2).

Since SU(2) is a safe group there is no contribution to the anomaly coming from the

SU(2) part alone so the problem comes from the pure U(1) and mixed U(1) -SU(2)

contributions.From the triangle graph one sees that if Y and o denote the generators

of U(1) and SU(2) respectively the prefactors for the anomalies coming from these two

sources are

tr(Y3) and ir(Yoo), (39)

respectively.(There is no anomaly with Y2 in the trace because the cr and Y traces are

independent and the trace of a single SU(2) generator o is zero). We now recall that in

the standard model [13] the weak hypercharge assignments of the left-handed quarks

and leptons are

Y = (—1, —1), 0,2, (1/3,1/3), —4/3,2/3, (40)

where the brackets denote isospin doublets and the particles are ordered in the conven

tional way, e.g. for the first generation the ordering is

(Ve)e(?)ë(ud)üd (41)

We also recall that since Y generates a U(1) group the generator of a complex conjugate

represention is (-Y). Hence for Y the contributions of the left-handed particles and right

handed anti-particles to the anomaly will not cancel but add up. Hence if the anomaly

is to vanish the contribution of the left-handed particles alone must vanish. It is clear

from (40) (and from the fact that t(gaga) is 3/4 for doublets and 0 for singlets) that

trY3 = (6) + N(—54/9) = 2(3
—

(42)
tr(Yocr) = (—2) ± N(2/3) = (—2/3)(3

—

12



13

where the quark contributions can be identified as those proportional to N (which, as
before, denotes the number of colours). From this equation ve see that neither anomaly
is zero for the quarks and leptons alone, but that both anomalies vanish if (and only if)
both the quarks and leptons of each seperate generation are included,and if the number
of colours is three. Thus the vanishing of the anomaly, as required by renormalizability,
requires that each set of standard model leptons be accompanied by a set of standard
model quarks. Thus, via the anomaly, renormalizability requires that the number of
quark and lepton families must be the same. This means, for example, that the recent
experiments at CERN which established that there are only three families of (low
mass)leptons thereby automatically established that there are also only three families
of (low-mass) quarks. This correlation of quarks and leptons which is obtained via the
anomaly is most remarkable as it is the first such correlation between hadronic and
leptonic physics that has ever been derived, and it cannot be obtained in any other way.
In conclusion, it might also be noted that for the gravitational anomaly, in which the s
in (39) are replaced by the universal gravitational constant which may be normalized
to unity, the prefactor reduces to trY, and that this vanishes for the quarks and leptons
seperately. Thus even the lepton and quark sectors seperately of the standard model
have no gravitational anomaly.
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1O.Resolution of the U(1) Problem.

Another use of the anomaly is to resolve a long-standing problem in flavour-symmetry

theory called the U(1) problem.This problem arises as follows:In the zero quark mass

limit the flavour symmetry of the strong interactions is G = UL(n) x UR(n), where L

and R refer to left- and right-handedness, and n=2,3,4.. for the various flavour groups
i.e. n=2 for isospin, n=3 for Gell-Mann’s SU(3), n=4 for Charm, and so on. Since the
U(ri) groups are not simple but have a centre U(1) the group G can also be written as
o = U(1)L x U(1)R x SU(n)L x SU(n)R (modulo some discrete global correlations that
are not important here). Since chirality doubling is not observed in nature (there are no

[ octets to match the 0, octets in the Rosenfeld tables, for example)
one concludes that the axial part of the group G is spontaneously broken, leaving only
the the vector (diagonal) part U(1) x SU(m), where U(1) is the symmetry that
conserves baryon number and SU(m) is the original vector version of the isospin,Gell
Mann SU(3), Charm SU(4).. .groups. However, as is well-known, the breakdown of

a continuous symmetry entails the existence of either (massless) Goldstone fields or

(massive) gauge fields to cancel them by the Higgs mechanism. For the breakdown of
the chiral part of SU(n)L x SU(n)R it is assumed that the observed pseudo-scalar

mesons are the required Goldstone fields (the pions for n=2, the pion,kaon and ij fields
for n=3, and so on, their observed non-zero masses, which are small on the relevant scale,
being acquired afterwards by some other process associated with the generation of the

quark masses). But for the U(1)L x U(1)R part of the group no such Goldstone field

or compensating Higgs gauge field has been seen experimentally. It might be thought

that the m particle could be such a Goldstone field but estimates from current algebra

show [14] that the mass later acquired by any such Goldstone field should not exceed

%/3m, whereas the mass of the r exceeds m7,. by factor of about four. So the Tb iS

ruled out, and one is left with the puzzle: How does U(1)L X U(1)R break down to U(1)

without producing a Goldstone scalar or a Higgs vector? This is the U(l) problem. The

resolution [15] of this problem by the anomaly comes at two levels. Assuming that the

breakdown of U(1) chiral symmetry is due to the anomaly according to (23), then at the

first level, one notes that there is a sense in which the chiral symmetry is not broken at

all. This is because the anomalous term in (23) can also be expressed as a divergence,

E.B = FF = where J = ± (43)

and hence if this term is shifted to the left-hand side of the equation one obtains a

conservation law for the modified axial current

— cnfJ) = 0, (44)
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where c is a numerical constant and flf is the number of fermion fields. Since the
modified axial U(1) symmetry is not broken there is then no need for Go].dstone scalars
or Higgs vectors.

At the second level, however, one sees that, while one has solved the Goldstone
Higgs aspect of the problem in this manner, one has created another problem, because
the question now is: why is the conserved axial U(1) symmetry not observed in nature in
the same way as the conserved vector U(1) symmetry e.g. as the conservation of left- and
right-handed fermions seperately? The answer to this problem is that the piece which
has been added to the traditional fermionic axial current in (43) is (manifestly) not
gauge-invariant and hence the symmetry it generates is not physical. This explanation
may seem a little facile but it can be put on a somewhat more quantitative basis by
considering the conserved axial charge G5 and its action on the vacuum. Let G4(t)
denote the part of C5 coming from the gauge field alone. It is clear from (43) that G
is not gauge- invariant, and is also not seperately conserved since

G() — G(—)
= fd4xFF = I, (45)

where I is the (integer-valued) instanton number. Hence the eigenvalues of G(t) are
integer-spaced and without loss of generality can be taken to be integers n. The vacuum
can then be decomposed into n-states i.e. into states n > such that

>= nn> and I = m(o) n(—) (46)

This implies, of course that the vacuum is degenerate. The states n > are not gauge-
invariant or time-independent because G(t) itself does not have these properties. How
ever, because the n’s change only by integers it is easy to see that the linear combinations

8 >= (47)

of these states are both gauge-invariant and time-independent for each value of the arbi
trary parameter 8. Since the states which are linear comnbinations of these states with
different values of 8 are, like the m > states, neither gauge-invariant nor time indepen
dent, this means that there must be a superselection rule which divides the vacuum,
and hence the whole theory, into gauge-invariant sectors [16] parametrized by 8. The
transformations generated by the conserved axial charge violate this superselection rule
since they change the 8-states into one another thus are not physical transformations.

In sum therefore, the accepted resolution of the U(1) problem is that the axial
current is actually conserved, but that the axial charge is gauge-variant and therefore
does not generate physically observable transformations. As this explanation may seem
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to be a little unusual it might be useful to consider a symmetry of classical physics that

could, perhaps, be regarded as analogous. This is the dual symmetry

E —* Ecosa + Bsina, B —+ Bcosa — Esina, (48)

of the free Maxwell equations, which is continuous and conserved, but has no direct

physical meaning.

It is only fair to mention, of course, that this resolution of the U(1) problem raises

other questions, namely: what determines the value of 9 occurring in nature? and, since

this value is extremely small (9 0 implies CP-nonconservation because the instanton

number I in (45) is a pseudoscalar, and is therefor ruled out by the neutron dipole

moment experiments), what makes it so small? But, in contrast to the case of the

original U(1) problem, there is no inherent contradiction involved here, and these are

simply open questions.

Finally it should be mentioned that although the U(1) symmetry is not directly

observable it may be indirectly observable in the form of the 17-mass and the decay of

the i7 to three pions. The idea is that the i may acquire its mass by an analogue of

the Riggs mechanism for gauge fields or fermions and the 7 —÷ 3ir decay may proceed

by an analogue of the ir0 —* 27 decay. However, the arguments for these processes (for

example the argument for the 17-mass given in the next section) are not as rigorous or

as convincing as those for the processes already discussed, so perhaps it would be best

to refer here to the literature, for example to the books [14], [15] and [17] listed below.
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11.Fermion-Instanton Interactions.

It is now well-known that the non-abelian Yang-Mills field equations admit solutions
F, for which the classical Euclidean action S(F) = fd4xFF, is finite but not
zero (the so-called instanton solutions). The Minkowski-space interpretation of these
solutions is that they represent a tunneling between the degenerate eigen-vacua n >

of the operator Gg(t) defined in the previous section. Indeed, from (45) one sees that

in the presence of an instanton G(oc) — G(—c) is not zero so that the eigenvalues
n must change with time. From the usual Quantum Mechanical WKB formula the
amplitude for the tunnelling is then found to be exp(—S).

The relevance of all this to the anomaly is that through the conservation equation
(23) the instantons couple to fermions and lead to an effective fermion-fermion inter
action of a kind that would not otherwise be there. It is this induced fermion-fermion
interaction that is thought to lead to a mass and a 37r decay of the right order of magni
tude for the 77 mentioned above. Here, however, we wish to discuss a more dramatic, if
less observable, consequence of instanton-fermion coupling, namely baryon-decay. The
point is that the instantons do not distinguish between different baryons and hence the
leptons and quarks can couple via the instantons. In an attempt to make the argument
more quantitative ‘t Hooft [18] adopted the following approach. Let r,s, where r and

s are flavour indices, denote a set of external chiral (left-handed, say) currents coupling
to the fermions through the usual kind of term

r(1 75)sjrs, (49)

in the Lagrangian, and consider the first quantum corrections to the classical action

S(F) of a background instanton. Since rs behaves like a mass parameter except for
its space-time dependence one sees from (14) that the action up to first order in h is

SwKB =Sc+Tr1n[i(1±75)jr,sj, (50)

where is the covariant derivative for the gauge-potential A of the background instanton

and the change in sign in front of -y comes from the y in the definition of ‘. The most

important contribution to the Trace in (50) comes from the zero modes of 17 and thus

is proportional to the currents, and a more precise calculation shows that it takes the

form
(1 +

(51)
(—o)

where x is the ‘centre-of-mass’ of the instanton. ‘t Hooft then asked the question:
what fermion-fermion interaction would produce (51)? By using fermionic functional
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integration theory it is not difficult to see that the answer is

11rsr(1 + 75)s, (52)

and from this ‘t Hooft concluded that (52) is the effective fermion-fermion interaction
induced by the instantons. [Note that theinduced fermionic interaction has the right
quantum numbers to generate an 7 mass, and that for two flavours it even takes the form
of a mass-term, except for its space-time dependence]. Here, however, we are interested
in baryon-decay. It is clear that (52) makes no distinction between different baryons
and hence allows baryons to couple to leptons without any selection rules apart from
chirality. Indeed the only thing that prevents an immediate decay of all baryons into
leptons is the exponential tunnelling factor exp(—S), which is extremely small. For
example, for a single instanton S = (16ir2g2)’ so it is of the order of 10 —150 and thus
10120 smaller than the corresponding factor for the grand-unification decay rate. This
factor, however, is the one computed at zero temperature, and temperature-dependent
computations show that once the temperature rises above the tunnelling-temperature
i.e. the temperature needed for direct transitions from one n-vacuum to another, the
situation changes dramatically. This will be discussed in the lecture by Andreas Wipf,
who will show that the temperature in question can be estimated by means of sphalarons,
and that it is only of the order of 200 Gev. Thus, in principle, instanton-induced baryon
decays could have taken place in the early universe at any time prior to the time of the
electroweak breakdown.
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