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Functional Integrals in the Strong Coupling
Regime and the Polaron Self-energy
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ABSTRACT:

A general method is presented for representation of
functional integrals in the strong coupling regime.

This method is applied to the computing of polaron ground
energy for large coupling constant.

1. INTRODUCTION

Feyman’s path-integral or the functional integral is widely
used in quantum mechanics, statistical physics, quantum field theory andso on. Solution of many physical and mathematical problems can be
represented in the form of functional integrals. The only method which
can be considered as mathematically well established consists in
perturbation calculations. The standard form of these integrals is
shown in (2.1) where the Gaussian measure with an appropriate Green
function describes the noninteracting free system and a nonlinear partdescribes the interaction in this system. The practical purpose is tocompute this integral. However, there are great difficulties in the
performing of these calculations. In quantum field theory functional
integrals are defined as mathematical objects in a perturbation sense
only. There are no reliable general methods if we want to get out of
the perturbation method and calculate functional integrals in the strongcoupling regime. Therefore different variational approaches are widelyused for this aim l,2] . The variational method has got a good
reputation in describing such physical values as a ground state energydue to its low sensibility to errors in the choice of a trial wave
function. The main defect of variational calculations is that we do notknow how close the obtained variational estimation to the true describedvalue and we can not compute the next correlation in order to improve
the main variational estimation.



The aim of this paper is to formulate a general method of

calculation of functional integral in the strong coupling regime. Our

idea is the following. We propose that the functional integral is of

the Gaussian type in the strong coupling regime but with an other Green

function in the Gaussian measure. The contribution to self-energy which

are propotional to the tadpole Feynman diagrams are the main one to the

formation of the new state. Thus the mathematical problem is to take

into account them correctly. It can be done by introducing the concept

of the normal product according to the given Gaussian measure. We

formulate the equations which make possible to perform this program. As

a result we obtain the equivalent representation of the initial

functional integral, in which the main contributions of the strong

interaction are concentrated in the new Green function defining the

Gaussian measure and in an explicit expression for the ground state

energy. This representation permits us to compute small perturbation

corrections.

We put this method to the problem of poloron ground state

energy. The poloron is one of the simplest nontrivial models standing

between quantum field theory and quantum mechanics [1 1. There are many

papers devoted to this problem 3-l51 . In this paper we obtain the

poloron ground energy in the strong coupling regime. The comparison of

our result with others is done in table 1.

2. GENERAL FORMALISM

In this section we formulate our method of calculation of

functional integrals defined on the Gaussian measure. We shall consider

the functional integrals of the following general type

=fSp(?)÷; wMJ. (2.1)

Here we have introduced the following notations.

(2.2)
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is performed over a region

(d= 1, 2, Usually the region is a box
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D (x,y) is a differential operator defined on functions

(9(x) with appropriate boundary conditions. For example

(2.3)
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with periodic boundary conditions.
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is a measure.
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The parameter g is a coupling constant.

We consider that the integral (2.1) does exist as functional

integral and can be calculated by the perturbation method for a small

coupling constant g. Our aim is to give a representation of our

integral in the strong coupling regime. In other words we want to

obtain a representation in which all main contributions of strong

interaction are concentrated in the Green function of the Gaussian

measure.

Let us perform the following transformations in the integral

(2.1):

9(’Y) 92(y) ÷
— — (2.9)

where f(x) and D (x,y) are arbitrary functions. The Green function

D (x,y) satisfies

P()

Then the functional integral becomes the form

= e*p{4 oLef. -
(2.10)
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Here

= WRo ÷8] [4 D/O/). (2. 11)

Now let us introduce the concept of the normal product according to the

given Gaussian measure . It means that
D
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so that Jde — I

Then the interaction functional
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Our basic idea is that the main contribution into functional

integral is concentrated in the Gaussian measure. It means that the

lenear and quadratic terms over the integration variables Cf(Y) should

be absent in the interaction functional (2.13). Thus, we obtain

two equations
2Da)

r

WC] fdRf?‘(a()4( Va)]

or

can be rewritten

e - 11%)÷o2:

8fd141 2o()e
(2.14)

These equations provide the removing oof these terms.

Let us introduce the functional

(2.15)
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Then the equations (2.14) can be written in the form

16) = xi)Jj WIll
(2.16)

/2).

These equations define the functions b(x) and D(x,y).

Finally we obtain

[]J (2.17)

Here

= - (ii‘1) - (2D7D)1W/’j

The functions b(x) and D(x,y) are defined by the equations (2.16)

One should stress that the representations (2.1) and (2.17)

are equivalent. Therefore our mathematical object g.,(g) has at least

two different representations (2.1) and (2.17). In principal we can get

other representations if the equations (2.16) have different solutions.

We shall choose thejpresentation in which the perturbation corrections

connected with ).1” or are at a minimum for the given

parameters in the interaction functional

All our transformations and equations (2.16) are valid for

real and complex functions in the functional integral (2.1).

In the case of real functional integrals the equality (2.19)

and equations (2.16) lead to the following conclusion. The interaction

functional in (2.17) satisfies

fd5-’ VIL9J—c2
Using the Jensens inequality we have
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(2.20)

so that defines the lower estimation for our functional integral.

On the other hand, one can check easily that the equations

(2.16) define the minimum of the functional in (2.18). Thus the

inequality (2.20) is a variation estimation of our functional integral

(2.1). Moreover, the representation (2.17) permits us to calculate the

perturbation corrections to developing the functional integral

(2.17) over lX

3. GROUND STATE ENERGY OF POLORON

The ground state energy of the

is defined by the expression (

dr)
+ ft

/3

Our aim is to get the behaviour of the function (O’)foro(4OQ. We

apply the method described in the previous section to the functional

integral (3.1). This integral (3.1) can be written in the form (2.1):

s) f(s) U[Jf
(3.3)

Frô’hlich polorons

0
5,

(,)

(3.1)

(3.2)

T= D (-CS) — S-s),
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J$fso&e

-T

z&“()-i)
(3.4)

(3.5)
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The Green function satisfying the periodic boundary

conditions is 111c
T-o

(3.6)

We want to find the limit in (3.5). Therefore we shall consider that T1@

is asymptotically large. In this limit the Green functions D0(e,s) and

are translationally invariant,i.e.

P0(s)= D(-s) .ic)
The interaction function U)iJ (2.15) can be written:

ui]=çdti’e
(3.7)

-s) — D(o) D(-s).

Now let us consider the equations (2.16). We choose f) 0
as solution of the first equation (2.16) because this solution seems to

be natural as it follows from the explicit form of the integral (3.1).

Then we obtain

(3.8)

2 F&)
and

(39)

The second equation in (2.16) has the following form
f%t

D6<)=D0()-D(K)6<)D()
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and

(K)=

l(K)÷ Z6) (3.10)

Finally we obtain for the function F(s) the following equation

F(s)—

_______

—

K) (3.11)
0

where is defined by (3.9).

The energy which is defined by in the

representation (2.18) is

-..

- )÷t7(3.12)

0 0

The representation (2.18) for the polaron functional

integral looks as (T=3 asymptotically large)

-2TE)
(o,)J

(3.13)

T

J(vfie/—ffcUcic)2-s)r( (3.14)

z. (-r)ii(r)
where 7

Ii
2P(’is)—t

dsclfe
J2

(3.15)

2.: e .

The functions and (6) are defined by the equations (3.7)

and (3.11).
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It should be stressed that the representation

equivalent to the initial representation

T=.

(3.15) is completly

(3.1) for asymptotically large

4. THE STRONG COUPLING LIMIT.

In this section we obtain the representation for the ground

state energy of polaron for asymptotically large c,( . Let us consider

the functional integral (3.14). In the formulas (3.14) and (3.15) we

introduce new variables

(oiP
1f) a,Z

)LTI

Our basic assumption,

increases when c/4°Q

if

jiPi

p ()(f-CDfdte
which will be justified is that the

‘=r -

___

) )_—_.. (4.1)

Then all our formulas becomewhere (IA is a parameter depending on

the fom

J&) fp[4$c1d
T 114-14

,

i(ui ..f(ir))
f

JA F()=jt2

der the equation (3.11) where we introduce

)

(4.2)

- 2
)P(v))

(4.3)

/foo

(4.4)

parameter J14
One can see that the equations (4.3) have the limit when

Pc)

Then we have
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31a
A

s chosen is such a way that

leads to

/ a

(4.7)

Thus we get, for our functions for

=

Substituting these formulas into (4.2) we obtain

I
0 (Mp)p24.4

JIA

and

)

3v
ç3/2(’cD)

(4.5)

(4.6))fi:Q7_cf2J
O

w(pi’f) e
where the

/4L3
1’

The representation (4.6)

I

and

2

I

F(e)
J

1’ /r/(_t

—— J2 ba÷2/A ‘I

(+ja)
(4.8)

;() (4.9)
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In order to find the limit -° in (4.10) let us introduce the new

variable
17=

bi k411.

2 (F?(u) F ((h).
The region ,S4’ is shown on Fig.l. The second term in the square brackets

in (4.11) disappears when/4-40 because this term leads in the higest

perturbation orders to the products of convolutions of the type

_

_IuUIele

. .— —s’

,
£2

.

ordering in (4.12)

according to the Gaussian measure in (4.9).

Thus the formulas (4.9) and (4.12) allow us to write the

where

Tt
—

e

2J

‘P

t2 ((Lk))4

(‘i.io)

we get

cD

-/t/i

J2?
S

y

(4.11)

(/6*s;z&9 (p?i+,t)
-4:7

4M-t.)

J
Thus for we obtain

biZ1EF] W[f]3vJi
z —

‘p

It should be stressed that the normal

-,2

ea

is taken

(4.12)

final representation
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The

in the

(4.14)

Now let us go back to the ground state energy of polaron for

asymptotic large c . This energy is defined by the formula (3.2) and

according to the representations (3.13) and (4.13) it is equal

£

and using the definition (4.7) one can get

(4.15)

(4.17)
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0

....,2 7

-jo
(u)j + (4.13)

a

Here we

formula (4.13)

form

ipf(’L4)

duced instead 2.7AA in (4.9) and (4.12).

can be represented for the asymptotically large

Is
2 3,

0

where e1

/_._ia 2.(pf(cA))

where is defined by (3.12) and

E=-e -r
The formula (3J2) gives for the functions and

in (4.8)

(4.16)

defined

f’E]
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Let us go to the representation (4.13) and let us come back

to the ordinary operator product in the interaction function, one can

obtain after simple transformations

(4.18)

It means that our parameter in (4.16) and (4.17) is the lowest proper

value of the Hamiltonian

H
-

- 51S
(4.19)

Thus, we have reduced our problem to the solving of the Schrodinger

equati on

(4.20)

We have calculated the parameter (4.15) in the second and

third perturbation orders using the representation (4.13). Our result

is the following

E= Z[11L]Z (&2O.
(4.21)

—

The comparison of the results is shown is table 1.
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TABLE 1 The comparison of the results in the case

of strong coupling (the coefficients of o2)

AUTHORS

IFeynman, Schultz tl5 0.1061

Pekar t7] 0.1088

iMiyake ) 0.1085

ILuttinger, Lu 0.1066

ITokuda [1O\ 0.1061

IMarshall,Mills {ll1 0.1078

ISheng, Dow [l2 0.1065

ISmondyrev r141 0.1092

ISelyugin, Smondyrevfl5j 0.1085

Ours 0.1080
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