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G.V. Efimov, G. Ganbold

ABSTRACT:

A general method is presented for representation of
functional integrals in the strong coupling regime.

This method is applied to the computing of polaron ground
energy for large coupling constant.

1. INTRODUCTION

Feyman's path-integral or the functional] integral is widely
used in quantum mechanics, statistical physics, quantum field theory and
so on. Solution of many physical and mathematical problems can be
represented in the form of functional integrals. The only method which
can be considered as mathematically well established consists 1in
perturbation calculations. The standard form of these integrals is
shown in (2.1) where the Gaussian measure with an appropriate Green
function describes the noninteracting free system and a nonlinear part
describes the interaction in this system. The practical purpose is to
compute this integral. However, there are great difficulties in the
performing of these calculations. In quantum field theory functional
integrals are defined as mathematical objects in a perturbation sense
only. There are no reliable general methods if we want to get out of
the perturbation method and calculate functional integrals in the strong
coupling regime. Therefore different variational approaches are widely
used for this aim [1,2] - The variational method has got a good
reputation in describing such physical values as a ground state energy
due to its low sensibility to errors in the choice of a trial wave
function. The main defect of variational calculations is that we do not
know how close the obtained variational estimation to the true described
value and we can not compute the next correlation in order to improve
the main variational estimation.



-1-

The aim of this paper is to formulate a general method of
calculation of functional integral in the strong coupling regime. Our
jdea is the following. We propose that the functional integral is of
the Gaussian type in the strong coupling regime but with an other Green
function in the Gaussian measure. The contribution to self-energy which
are propotional to the tadpole Feynman diagrams are the main one to the
formation of the new state. Thus the mathematical problem is to take
into account them correctly. It can be done by introducing the concept
of the normal product according to the given Gaussian measure. We
formulate the equations which make possible to perform this program. As
a result we obtain the equivalent representation of the initial
functional integral, in which the main contributions of the strong
interaction are concentrated in the new Green function defining the
Gaussian measure and in an explicit expression for the ground state
energy. This representation permits us to compute small perturbation
corrections.

We put this method to the problem of poloron ground state
energy. The poloron is one of the simplest nontrivial models standing
between quantum field theory and quantum mechanics [1 ]. There are many
papers devoted to this problem [3-15-1. In this paper we obtain the
poloron ground energy in the strong coupling regime. The comparison of
our result with others is done in table 1.

2.  GENERAL FORMALISM

In this section we formulate our method of calculation of
functional integrals defined on the Gaussian measure. We shall consider
the functional integrals of the following general type

Z/j)ﬂ%f&r%p -5/@’@:?)7 W/‘sv]}, 2.1)

Here we have introduced the following notations.

(‘fD;f(f)____/a/ /d;go[x)])o—i[xg) ?[;/) (2.2)
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The integration in (2.2) is performed over a region /r7£;-Az3
(d= 1, 2, ...). Usually the region is a box

/_7"-:{)(,' C?J-S)(j\(g,j':/,m)o/}. (2.3)

-1
D (x,y) is a differential operator defined on functions
€9(3Q) with appropriate boundary conditions. For example

D;’(y,;):: (.O%z +W102) ;(X’i) (2.4)

with periodic boundary conditions. The Green function D, (X,y)

;dg D;/(Y,,&/) 'Do[;’/(z): 5[)/,-)(2), (2.5)

The normalization constant No in (2.1) is defined by the

N, [Sg expl-2 (R e)j=1 o

. { _ —1
Mo = Jotet D, (4,

The interaction functional Lb%{?{]can be written in a
general form

Wiel= (up.e " o

(@g)= f oA x a6 ()
ciyﬂ( is a measure For example,

\X/[? delf(‘f’(r)) ﬁ(v U@)@Y/?f f?t«f(y)é“(x f

satisfies

condition

and

where
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The parameter g is a coupling constant.

We consider that the integral (2.1) does exist as functional
integral and can be calculated by the perturbation method for a small
coupling constant g. Our aim is to give a representation of our
integral in the strong coupling regime. In other words we want to
obtain a representation in which all main contributions of strong
interaction are concentrated in the Green function of the Gaussian
measure.

Let us perform the following transformations in the integral

?[X) — C}P/Y/ +/(X))
D;"O«g) s \D‘—f()(,;) (2.9)

(2.1):

where f(x) and D—{ (x,y) are arbitrary functions. The Green function
D (x,y) satisfies

~
édaD (Xba) D(H)Xz>: 5(’{1'){2) _
Then the functional integral becomes the form

Z.(5) :w/o{é’—éwld?- -2(¢07%)( -

Do
- [4g; expf W0 [4,4,0]]

W,;,‘f:g W[‘f"'g]‘(/po-/‘f/'El@/u:poqﬁpdj?) . (2

Now let us introduce the concept of the normal product according to the
given Gaussian measure 0((%; . It means that



2(ag, (ag) —{—(aDa)
o= "

(2.12)

so that fo(% :'gz‘(alf): _ /{

or

[ de; LPl) ) =0,

Then the interaction functional Lb/ (2.11) can be rewritten

i(a "QD"‘) 1(a
M‘«e 0 M—f——v(mf)“@‘f)H

(2.13)
1(a¢p)- (aD

@)+ (@[ Je):

Qur basic idea is that the main contribution into functional

_‘_)tg gd[“\ 1( atp)- a(c\'Da) (o) - (/D Cf)]-’
|

integral is concentrated in the Gaussian measure. It means that the
lenear and quadratic terms over the integration variables QF(Y) should
be absent in the interaction functional L*%;,t- (2.13). Thus, we obtain
two equations

gfo(/ua 2a(x)€ 6d)-4(2De) fOLtD [xér)///) =0

0)—2/ Da ) ) (2.14)
g[d/“aa()‘)a(dt/)e (66)-%(aD )_{_ D (Y,g}—D (%07):‘:0

These equations provide the removing oof these terms.
Let us introduce the functional

W [01= [dpexp{itad)-f(a0e)] .

(2.15)
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Then the equations (2.14) can be written in the form

/)= 3f/;p 0 (7);/() wle],

Dbyt ) =D, (v, 3)+ [Jly el D, (r,,y, )z (%f )D/p) 4).

These equations define the funct1ons b(x) and D(x
Finally we obtain

Z,(g)w/x/o{%ffﬁ@ 9’(/”{? @[‘f’]}. 2

Here

W, =10kt 2 - L(e2]'4)- 4 (B707]D) 4 H’/[/]
— wt)-Loda),
])(/2[({)]-;35;[[4&6 é) z(_'b ): ¢ (o ‘f’)_ "7‘(“?)“'2“@?)

The functions b(x) and D(x,y) are defined by the equations (2.16)

One should stress that the representations (2.1) and (2.17)
are equivalent. Therefore our mathematical object ﬁZ;jg) has at least
two different representations (2.1) and (2.17). In principal we can get
other representations if the equations (2.16) have different solutions.
We shall choose the_representation in which the perturbation corrections
connected with é} lk?; or é; w are at a minimum for the given
parameters in the interaction functional LK/.

A1l our transformations and equations (2.16) are valid for
real and complex functions in the functional integral (2.1).

In the case of real functional integrals the equality (2.19)
and equations (2.16) lead to the following conclusion. The interaction
functional [1(] in (2.17) satisfies

fus; Bll=0

Using the Jensen's inequality we have
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Z(g)zexpf W, ]

so that Li%; defines the lower estimation for our functional integral.
On the other hand, one can check easily that the equations
(2.16) define the minimum of the functional LXZ; in (2.18). Thus the
inequality (2.20) is a variation estimation of our functional integral
(2.1). Moreover, the representation (2.17) permits us to calculate the
perturbation corrections to LK/ developing the functional integral

(2.17) over 31X/ [l.'ﬂ]

3. GROUND STATE ENERGY OF POLORON

The ground state energy Z;Z;) of the Frohlich polorons
is defined by the expression /S ¢/

Z,W=1, §5 “@*ff“f”‘"‘f@* gds#e

2(0) 2((3) I,Z({,) '2(5) y (3.1)

Fl)=-f A2 (@)

Our aim is to get the behav1our of the function Z% 6;Q)for~a(45¢*3 We
apply the method described in the previous section to the functional
integral (3.1). This integral (3 1) can be written in the form (

Z ()= 5% ex [ (adestle9s)« < U ]} B

)= (1) "T
T:% P ) D;f (“,S)": ——'Df" é\( ’S)
T (3.4)
Ve [, 50
—T 2ntU* > (3.5)

£ ()= = b 4? )

Tse0 2T
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The Green function D (“ S) satisfying the periodic boundary
conditions is {
D, (4,5) =5 [t-5|-F —= Dy(¢-5)=-g [¢-5],

~N 7V 1K X (7 1 {
D" (k)—fdxe DO(K)-:—Z_./(K-MD)’ +(K-,‘0)2]‘ 3-8

We want to find the 1imit in (3.5). Therefore we shall consider that T::li(i

is asymptotically large. In this limit the Green functions 3>o<},5) and
:D(*,S) are translationally invariant,i.e.

D,(48)=D(-s) , D(4s)= D(¢-3).

The interaction function U}?] (2.15) can be written:
T

dﬁ[?]— oL S{D( (=51 jd& [T((G)-e@) -1 2 F¢-5)

>

(3.7)
F(‘(-—S) = _D(o) ——D({—.S),

Now let us consider the equations (2.16). We choose {&ZE/—' C7
as solution of the first equation (2.16) because this solution seems to
be natural as it follows from the explicit form of the integral (3.1).
Then we obtain

) _ st _
ZJ.(S,—SZ)-J;-Z@-&)—- /g—- (

5‘@ (sy) 5%(53

-[¢] /@"Sz
o(fe ’
‘J €F [ 0Grs) = /‘”‘Z(s Sz)]

o0

.
apy dte  (1-couit)
Z() fd € Z(S) 3FJ F’%(l‘) © (3.9

The second equation in (2.16) has the following form

By = B (k)= B ()t () Do)

and




and ~ //

D(x)

o =~ — '
J%Qk}+“2260 (3.10)
Finally we obtain for the function F(S) the following equation
o
F(s)= fdh’ _f-eows
; Jr K2+°<Z(K) (3.11)

~
where Z(K) is defined by (3.9).
The energy £, (<) which is defined by % in the
representation (2.18) is

oD

e= -t
E, ()= 2 Jdi |baic* Do) — 1 DG+ 1 - |22
2 o /?[7)( 12)

The representation (2.18) for the polaron functional
integral Tlooks as (T=%(3 asymptotically large)

~2TE (¢)

£ («)=¢ T ),

(3.13)

7
-1 —
J;_é():/l/f;'?&(/Jf‘zlf[a{fdf'?é‘)pé‘sz (S’)‘('o( Uz/'?]} (3.14)
— - -T
(7)=2(1)
where T 2
> T oL '/*’S/ 0(—-». — Fé(..s)
R [ == Ydsdte k__
« G 7] \/?——15 ot o€ "
™ e —-(‘ -2 - —t —s ®
o €2u(‘z )2(5))~{ . ZL“Z’(Z(*‘)"Z(S))Z. |
The functions ])(¥) and F:(f) are defined by the equations (3.7)
and (3.11).

(3.15)
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It should be stressed that the representation (3.15) is completly
equivalent to the initial representation (3.1) for asymptotically large

T

4. THE STRONG COUPLING LIMIT.

In this section we obtain the representation for the ground
state energy of polaron for asymptotically large X . Let us consider
the functional integral (3.14). In the formulas (3.14) and (3.15) we
introduce new variables

R’:W?)f:%,.ﬁ'—‘/g,?@‘): S://g) (4.1)

where is a parameter depending on 0< Then all our formulas become

the form

J ("‘ /\/ﬁf M/D{-—ffo/ua/wf(a) ﬂ/ ”‘)f (v) +
L ﬁAudQ wf{o‘? 0 ~F [“F(C ), Hf 1P (Pl f’“) /S’Z(f’(} ()}) }
Vs '3

{u’/?- 2at Fz

-7,
“;w let us consider the equation (3.11) where we introduce

g Up, _f-copu
PG = M St N

S ) =g [4€ F O (t-crppt).

Qur basic assumpt1on, wh1ch will be justified is that the parameter}ﬂd

increases when of-» o
One can see that the equations (4.3) have the limit when/ﬂ44>c*3

F¢)= ¢O‘« ¢) (4.4)

if

Then we have
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(a) f—ﬁ 1= Copu (4.5)
=2 > (op)
~ %
> (- ) olz‘e (/—c»o/upj_9 .
s )k (pe] T po 3l $7E0)
a(p(/—-C”P‘i) {/)_ 14 .
[u) [J‘(Pz-r‘/) (/ e ) (4.6)
where the parameter is chosen is such a way that
oL /;2 1
M 3o o) =1
The representation (4.6) leads to
?5(%42)~:: L
and
{‘A“ sl”( (4.7)
Thus we get, for our functions for
4 —plt _ (dp_e'P?
Fl¢)= //e/“) D)=L~ (de €
( 2 2T p
D (ts) = (—,a% +f*L) O(t-4), -,

%)= (B Soom).

Substituting these formulas into (4.2) we obtain

s .
To)=fsg epf-£ [« T 7

_7?“
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/u vl -—;295( -2)‘)
where —— /M 6(" - u
dU [o(uo(d‘ Ap _ ]
v,_.

ey ]

”7/~ i (4.10)
Y:Z [ (u +Z-( ! (- ;..)'(P 7“)) ( (U)) ]
n=73

In order to find the limit fA4>°0 in (4.10) let us introduce the new
variable

vV = /b\1l-f24

we get

T [F]= \/ggwfe [ ,b‘#/«ﬁ
Z [ (Ff(u)) 2_6) /(u M)/(/’f()) (/’f@“/“f))]

hW=3
The region ;Sf is shown on Fig.1. The second term in the square brackets

in (4.11) disappears when M->®9 because this term leads in the higest
perturbation orders to the products of convolutions of the type

NW"IM“/ {««t‘-(-ut//

Thus for (W’"’Q we obtain

«

2

«UF]= W e] = EF//zqz %y
—p (4.12)
{ +5(poc)®

It should be stressed that the normal ordering in (4.12) is taken
according to the Gaussian measure in (4.9).

Thus the formulas (4.9) and (4.12) allow us to write the
final representation

lrf()

| 4
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I A/[S\f 9%/9{ jdu[;o (4/+F (u)] + (4.13)
fﬁf@ o ) :
eoff e [dfae S1e P 02 g

Here we have 1ntroduced /3 instead 217}u in (4.9) and (4.12). The
formula (4.13) can be represented for the asymptotically large /@ in the
form

(} -
47 _ ~%. (PF () L. 2.
K”/’{Z\E“ b )itge Pf 1<z (PPL)".

Now let us go back to the ground state energy of polaron for
asymptotic large K . This energy is defined by the formula (3.2) and
according to the representations (3.13) and (4.13) it is equal

£ = £, * [ £ (4.15)

where £ is defined by (3.12) and

(f“ éEL~« j7~ . (4.16)
= /3
The formula (3.12) gives for the functions jazz//and /Ci(;ij defined
in (4.8) 2
£ 4

o__——'_———

39
and using the definition (4.7) one can get

2
ol 7 ’ (4.17)
£ o= 37 {'FSEJ~
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Let us go to the representation (4.13) and Tet us come back
to the ordinary operator product in the interaction function, one can

obtain after simple transformations

];5=Nfg§»@f/9{'fdf %—?2&)—3{2‘}(5@“?2@31 %—5—] (4.18)

*

It means that our parameter in (4.16) and (4.17) is the lowest proper

value of the Hamiltonian
[ d* (L FS (s
}-l =~ 2 I5 T~ 3@5018@}3 -+ 7 (4.19)
§ g
Thus, we have reduced our problem to the solving of the Schrodinger

equation
1 _—_,272
(—éﬁA—B\Eafdsef V= (5— EIV.

We have calculated the parameter & (4.15) in the second and
third perturbation orders using the representation (4.13). Our result

is the following
__ T :
E==ge[1+ftf [ ==2 {01745 =~ 20 1050..
Xzz—gigz — 007566 (4.21)
Yy -_--§2.53 = 000178 ..

The comparison of the results is shown is table 1.
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TABLE 1

The comparison of the results in the case

of strong coupling (the coefficients of o ?)

| AUTHORS
|

Vs

|Feynman, Schultz
| Pekar

|Miyake (E%xact )
|Luttinger, Lu

| Tokuda
[Marshall, Mills
|Sheng, Dow

| Smondyrev

D51
[7]
I8l
[91
[10}
0]
[12]
[14]

|Selyugin, Smondyrev[ﬁS]

[Qurs

|

.1061
.1088
.1085
.1066
.1061
.1078
.1065
.1092
.1085
.1080

O O O O O O o o o o
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