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Abstract
We show that every translation invariant valence bond state on a one-dimensional

quantum spin chain arises as the unique ground state of a certain family of finite

range interactions. For each interaction in this family we show the existence of a

non-zero spectral gap above the ground state energy. A special example of this

structure is a state recently studied by Affleck, Lieb, Kennedy, and Tasaki. For the

Hamiltonian studied by these authors we can estimate the gap, and prove that it

lies between 1/3 and 10/27.
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It is well known that, even for nearest-neighbour interactions on a one-dimen

sional quantum spin chain, determining ground state properties such as degeneracy,
symmetry breaking, exponential clustering, existence of a gap, etc. is a very hard
problem. Some progress on the uniqueness problem was made recently in [1]. We
are concerned here with an extension of recent work by Affleck, Kennedy, Lieb. and
Tasaki [2], who demonstrated for a specific nearest-neighbour Hamiltonian of a spin-
1 chain the exponential decay of correlations, and the existence of a non-zero spectral
gap. We begin by describing an abstract version of Anderson’s ‘va1ence bond solid”
(or “vhs”) states [3]. We then show that for each vbs state there is a family of
Hamiltonians, for which this state is a ground state with non-zero spectral gap.
The example of [2] falls into this class, and we obtain a bound 3/10 10/27
for the gap 7 in this case. A more extensive study of generalized vbs states on
quantum spin chains was undertaken in [4,5], where detailed proof of our assertions
in this letter can also be found.

So we consider here a chain = {... — 1,0, 1,. . .}. At each site of the chain
lives a quantum particle described by the d x d complex matrices M d• So A M d

will denote a 1-particle observable at the site i of the chain. In order to define an
expectation or ‘state’ ( ) for the whole chain we need to specify the expectations
(A 0 Am) of all elementary tensor observables. Clearly, these local densities
have to satisfy positivity and compatibility requirements such as:

(fl- ® .. . Am) = (A ® Am 0 IIrn+i) = (A ® .. . Am)

where I is the unit matrix at site j. We will moreover restrict our attention to
the translation invariant case. Usually states are implicitly given by means of (ther
modynamical) limits of finite system expectations. The vbs construction however
provides an explicit construction in terms of a few simple finite dimensional ingre
dients. So let us introduce the following auxilliary objects:

• the Hilbert space

• a unit vector Cc ®

• a linear map W from C” ® Ck into Cd.

It is well known that any vector ® C” can be written in an essentially unique
way as:

where the p are strictly positive, the Ck and 7 E Ck are orthonormal sets.
In order to avoid trivial degeneracies we will assume that there are exactly k terms
in the sum so that the Xi (and of course also the ) form actually a basis of Ck.
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Furthermore = = 1. We will use the notation for:

(A)(,A) AEMk®Mk

The map W has to match with in the following sense:

4®(iI®W*W®B)= (IIØB)

®4®W*VØI)=(AC)
(*)

We can now compute the vhs state as follows:

m—n+2 factors

Remark that SU(2) (or any single site symmetry group whatsoever) does not play
any role at all in the construction, though a symmetry will obviously be helpful
in actual computations [6,7,5]. There is also no reason to assume that W is an
isometry and so A W*AW is in general not a representation of M d•

Another way to express condition (*) is to say that:

(idØ)(W*WØ )= 11 and (®id)( W*W) = I

We will in fact assume the st’onger condition that there is only one eigenvector of
A H-* (id®)(W*AW® I) which corresponds to an eigenvalue of modulus 1, namely
11. This assumption implies [4] that the state is exponentially clustering and that
translation symmetry is not broken, i.e. there is no Néel order.

For every ri < m the equation

uniquely defines a set of k2 vectors b{n,...m},i,j E ®(nm)C. We shall denote the
linear span of these vectors by c{n,...m} From the expression for the local expecta
tions it is then immediatly clear that each observable living on the sites {n,.. . m}

will have zero expectation as soon as it has no support in the subspace c{n,. ..m}
The local density matrices that define the vbs state hence live on a subspace of di
mension at most k2 independently of ri and m. There is in fact a natural interaction
length r given by the smallest interval {1,.. . r} such that cr c{i,...r} has exactly
dimension k2. It turns out that the subspaces , n > r completely characterize
the vhs state:

cm
= fl;n ®iCd ® ç ® ®(m-n-i)d
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• if a state of the infinite chain is supported by the subspaces cm, that is if it
assigns a zero expectation to all observables that vanish on cm, then it coincides
with the vbs state.

Another way to express this is to turn the vbs state into a ground state of a transla
tion invariant finite range Hamiltonian. Indeed, the vbs state () is clearly a ground
state of

H

as soon as is non-negative and has support in the orthogonal
complement of ce+i. Furthermore, if we choose larger than the interaction length
r and h{j i+1} strictly positive on , H will have the vbs state () as unique
ground state by virtue of the above result. A Hamiltonian with this property will be
called a vbs Hamiltonjan for the vhs state (). There are many such Hamiltonians
associated with each vbs state, varying also in the range . However, restricting
to the translation invariant case, where h{, .i+l} h is independent of i, we
find that any two vhs Hamiltonians H, H’, defined by h, h, are equivalent in the
following sense: if we define the local Hamiltonians for m n + by H{n,...m} =

i+1} then there are positive constants c± such that whenever rn — ri

, ?‘ we have
C_ H{n,...m} C+ H{n,...m}

This follows easily from translation invariance, and from the fact that the operators
in this inequality have the same null spaces.

The ground state energy gap 7 of the Hamiltonian H is the largest ‘
such that

for all (local) observables X:

(X*[H,X]) 7{(*) -

Since we are considering states, for which the positive operator H{n,...m} has zero
expectation we may omit the commutator in this definition, and have to show instead
that

* * 2(X H{n,...m}X) 7{(X X) (X) }
whenever {n,. . . m} is much larger than the area of localization of X. Our strategy
for proving this inequality for some strictly positive is the following. First of all,
neither the existence of the gap, nor even the value of changes, when we take not
M d as the basic one-site observable algebra, but group together runs of p consecu
tive sites to obtain a chain with “one-site” observable algebra ®‘&4 d M This
grouping does not change the vbs property of the state under consideration. If we
choose p larger than £, we may now consider the given Hamiltonian as a nearest
neighbour interaction k{1,2} E M M d with

k{1,2} E + +

2r

i1 i=p—r+1 iP+l
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This operator is clearly positive, and its support is precisely the complement of c2.
It therefore defines a nearest-neighbour vbs Hamiltonian for the same vbs state as the

original Hamiltonian. It is clear from the equivalence of vhs Hamiltonians described

above that the interaction k{1,2} defines a Hamiltonian with gap, if and only if

any other operator with the same support has this property. The most convenient

choice is to replace k{1,2} by its support projection, i.e. by the projection onto the

orthogonal complement of c2p. Let us denote this projection by k19}. Then a

crucial step in the proof is to use the cluster properties of vhs states to show that,

provided p was chosen large enough, k12} and k’{23} nearly commute, and

k12}k23}+k23}k19} (—Ep)(kl2}+k23})

for some
,

> 0, which becomes small for large p. From this, and the fact that
and commute for Ii — it 2, it is easy to see that

(H1,..})2 (1 — 2ep)H1,..}

This means that H{1,.,.} has a spectral gap at least (1— uniformly in n, which

implies the desired result.

Consider now the case of a spin 1 chain (d = 3) and choose the auxilliary

filbert space 2 dimensional (k = 2). Let us denote by the irreducible spin j
representation of SU(2) carried by C2’ and choose = — (—+)} E C2 0

C2, where (+) and (—) denote the eigenvectors of 5Z in the representation If

we take W to be 2/J times the isometry that intertwines V and D’2ØD’/2
then we have all the ingredients to construct a vbs state. The interaction length of

this state turns out to be 2 and the space 2 is the 4 dimensional subspace of C3®C3

that carries the V° and the V’ subrepresentation of ® Dc’). In this case we

have, moreover, that = 2 0 C3 fl C3 0 2. This means that, while the general

structure outlined above guarantees only the existence of a next-nearest-neighbour

vhs Hamiltonian, there is already a nearest- neighbour Hamiltonian that has this

vhs state as unique ground state.

This nearest-neighbour interaction is the orthogonal projection P12 on the or

thogonal complement of ç2, which in terms of the usual Heisenberg interaction S S2

can be written as - + 52 + S1 . S2. The simplest estimate for the gap of this

Hamiltonian using the argument of above would be based on the inequality:

12P23 +F23P12 —j (P12 + F23).

Unfortunately, the constant — (which is optimal) is not good enough to lead to

a non-zero lower bound for the gap. We should therefore regroup the chain as

outlined above, which considerably complicates explicit computations. A careful

analysis based on the explicit form of the state leads to a lower bound of 3/10 for

the gap which is reasonably close to the easily obtained upper bound of 10/27.
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