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Abstract

We show that every translation invariant valence bond state on a one-dimensional
quantum spin chain arises as the unique ground state of a certain family of finite
range interactions. For each interaction in this family we show the existence of a
non-zero spectral gap above the ground state energy. A special example of this
structure is a state recently studied by Affleck, Lieb, Kennedy, and Tasaki. For the
Hamiltonian studied by these authors we can estimate the gap, and prove that it
lies between 1/3 and 10/27.
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It is well known that, even for nearest-neighbour interactions on a one-dimen-
sional quantum spin chain, determining ground state properties such as degeneracy,
symmetry breaking, exponential clustering, existence of a gap, etc. is a very hard
problem. Some progress on the uniqueness problem was made recently in [1]. We
are concerned here with an extension of recent work by Affleck, Kennedy, Lieb, and
Tasaki [2], who demonstrated for a specific nearest-neighbour Hamiltonian of a spin-
1 chain the exponential decay of correlations, and the existence of a non-zero spectral
gap. We begin by describing an abstract version of Anderson’s “valence bond solid”
(or “vbs”) states [3]. We then show that for each vbs state there is a family of
Hamiltonians, for which this state is a ground state with non-zero spectral gap.
The example of [2] falls into this class, and we obtain a bound 3/10 < v < 10/27
for the gap 7 in this case. A more extensive study of generalized vbs states on
quantum spin chains was undertaken in [4,5], where detailed proof of our assertions
in this letter can also be found.

So we consider here a chain Z = {... —1,0,1,...}. At each site of the chain
lives a quantum particle described by the d x d complex matrices M 4. So A; € M 4
will denote a 1-particle observable at the site 7 of the chain. In order to define an
expectation or ‘state’ () for the whole chain we need to specify the expectations
(A, @ --- Ap) of all elementary tensor observables. Clearly, these local densities
have to satisfy positivity and compatibility requirements such as:

<In_1®A"®H.Am> = (An®"'Am®][m+l> = (‘4n®Am>
where 1I; is the unit matrix at site j. We will moreover restrict our attention to
the translation invariant case. Usually states are implicitly given by means of (ther-
modynamical) limits of finite system expectations. The vbs construction however

provides an explicit construction in terms of a few simple finite dimensional ingre-
dients. So let us introduce the following auxilliary objects:

e the Hilbert space C*
e a unit vector ¢ € Cc* @ C*
e a linear map W from C* ® C* into ce.

It is well known that any vector ¢ € C* ® CF can be written in an essentially unique
way as:
2__
P = Z P’ i@xi

where the p; are strictly positive, the y; € C¥ and X7 € C* are orthonormal sets.
In order to avoid trivial degeneracies we will assume that there are exactly &k terms
in the sum so that the x; (and of course also the ;) form actually a basis of C*.
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Furthermore Zf__ﬂ pi = |l¢l> = 1. We will use the notation & for:
B(A) = (o, Ap) AeM @ My
The map W has to match with ¢ in the following sense:

PRI W*W o B)=3o1% B)
PRPADW W) =d(AST)

We can now compute the vbs state as follows:

(A, @ Ap)=2200 -2 (1WA, W - - WA, WaI)
N —

m—n+2 factors

Remark that SU(2) (or any single site symmetry group whatsoever) does not play
any role at all in the construction, though a symmetry will obviously be helpful
in actual computations [6,7,5]. There is also no reason to assume that W* is an
isometry and so A — W*AW is in general not a representation of M 4.

Another way to express condition (%) is to say that:
(d@)(W*W@I) =1 and (2@id)(I2W*W)=1

We will in fact assume the stronger condition that there is only one eigenvector of
A~ (id® ®)(W*AW ® 1) which corresponds to an eigenvalue of modulus 1, namely
1. This assumption implies [4] that the state is exponentially clustering and that
translation symmetry is not broken, i.e. there is no Néel order.

For every n < m the equation

IoWOW D¢ p=3 X0 Un.mij) DXy
Y]

uniquely defines a set of k* vectors ¥, .m},i,j € @(n=m) ¢ We shall denote the
linear span of these vectors by G . n}. From the expression for the local expecta-
tions it is then immediatly clear that each observable living on the sites {n,...m}
will have zero expectation as soon as it has no support in the subspace G(n .. .m}-
The local density matrices that define the vbs state hence live on a subspace of di-
mension at most k2 independently of n and m. There is in fact a natural interaction
length r given by the smallest interval {1,...r} such that G, = G, .-} has exactly
dimension k2. It turns out that the subspaces G, n > r completely characterize
the vbs state:

¢ Gm =N"7" ®CHR G, @ @M
1=0
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e if a state of the infinite chain is supported by the subspaces Gm, that is if it
assigns a zero expectation to all observables that vanish on G,, then it coincides
with the vbs state.

Another way to express this is to turn the vbs state into a ground state of a transla-
tion invariant finite range Hamiltonian. Indeed, the vbs state () is clearly a ground

state of
H= Z hii,. i+t
ieZ

as soon as hy; 41} € 241C? is non-negative and has support in the orthogonal
complement of G¢4q. Furthermore, if we choose ¢ larger than the interaction length
r and hy; 4y strictly positive on g,_;‘:H , H will have the vbs state () as unique
ground state by virtue of the above result. A Hamiltonian with this property will be
called a vbs Hamiltonian for the vbs state { ). There are many such Hamiltonians
associated with each vbs state, varying also in the range ¢. However, restricting
to the translation invariant case, where hy; ;43 = he is independent of 7, we
find that any two vbs Hamiltonians H, H', defined by h¢, k), are equivalent in the
following sense: if we define the local Hamiltonians for m > n+ £ by H(n . .m) =

Z?;f hii,..it1), then there are positive constants c+ such that whenever m —n 2
2,0 we have

c- H{n,m} < H~,{n,m} S C+ H{n,m}

This follows easily from translation invariance, and from the fact that the operators
in this inequality have the same null spaces.

The ground state energy gap 7 of the Hamiltonian H is the largest v such that
for all (local) observables X:

(X*[H, X)) > v {(X*X) - (X)]*}

Since we are considering states, for which the positive operator H, . .n) has zero
expectation we may omit the commutator in this definition, and have to show instead
that

(X*Hin,.myX) 2 7{(X*X) = (X)])

whenever {n,...m} is much larger than the area of localization of X. Our strategy
for proving this inequality for some strictly positive v is the following. First of all,
neither the existence of the gap, nor even the value of v changes, when we take not
M 4 as the basic one-site observable algebra, but group together runs of p consecu-
tive sites to obtain a chain with “one-site” observable algebra @? M 4 = M 4. This
grouping does not change the vbs property of the state under consideration. If we
choose p larger than ¢, we may now consider the given Hamiltonian as a nearest
neighbour interaction ky; 2y € M g» @ M 4n with

1 p—r P 1 2p—r
kg =3 Yo hpiarnt+ Y. hiasnt 5 > ki
=1 t=p—r+1 t=p+1
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A,

This operator is clearly positive, and its support is precisely the complement of G,,.
It therefore defines a nearest-neighbour vbs Hamiltonian for the same vbs state as the
original Hamiltonian. It is clear from the equivalence of vbs Hamiltonians described
above that the interaction k(o) defines a Hamiltonian with gap, if and only if
any other operator with the same support has this property. The most convenient
choice is to replace ky; 5y by its support projection, i.e. by the projection onto the
orthogonal complement of Gp,. Let us denote this projection by k,1,2 . Then a
crucial step in the proof is to use the cluster properties of vbs states to show that,
provided p was chosen large enough, k’{l,‘Z} and kl{z,s} nearly commute, and

12 k) T Faay k) 2 (—ep) Ry 0y + ki23y)

for some €, > 0, which becomes small for large p. From this, and the fact that
kl{i,i—i—l} and kl{j,j-{-l} commute for |i — j| > 2, it is easy to see that

2
(Hil,...n}) 2 (1 - 2EP)H21,...n}

This means that Hyy,  ,} has a spectral gap at least (1— 2¢, ), uniformly in n, which
implies the desired result.

Consider now the case of a spin 1 chain (d = 3) and choose the auxilliary
Hilbert space 2 dimensional (k = 2). Let us denote by D) the irreducible spin j
representation of SU(2) carried by C**! and choose ¢ = ——\}—5{(-{-—) —(-+)}eC*®
C?, where (+) and (—) denote the eigenvectors of S* in the representation DU/ | If
we take W* to be 2/v/3 times the isometry that intertwines D) and DU/ @ DE/?
then we have all the ingredients to construct a vbs state. The interaction length of
this state turns out to be 2 and the space G, is the 4 dimensional subspace of cec?
that carries the D(® and the D) subrepresentation of D(*) @ D). In this case we
have, moreover, that G3 = G» ® €* N €* ® G;. This means that, while the general
structure outlined above guarantees only the existence of a next-nearest-neighbour
vbs Hamiltonian, there is already a nearest- neighbour Hamiltonian that has this
vbs state as unique ground state.

This nearest-neighbour interaction is the orthogonal projection Piz on the or-
thogonal complement of G5, which in terms of the usual Heisenberg interaction Si-52
can be written as % + %5‘1 . §2 + é.S_"l . §2. The simplest estimate for the gap of this
Hamiltonian using the argument of above would be based on the inequality:

1
Py Py3 + P3Py > ~5 (P12 + Pa3).

Unfortunately, the constant ——% (which is optimal) is not good enough to lead to
a non-zero lower bound for the gap. We should therefore regroup the chain as
outlined above, which considerably complicates explicit computations. A careful
analysis based on the explicit form of the state leads to a lower bound of 3/10 for
the gap which is reasonably close to the easily obtained upper bound of 10/27.
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