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INTRODUCTION

The system of charged particles is the most fundamental object of

the statistical mechanics and the only tool of rigorous dealing with it

is the Sine-Gordon transformation. This explains the interest in this

transformation.

The Sine-Gordon (S-G) trasformation relates Gibbs systems of par

ticles, interacting through a pair positive-definite potential, and

Gibbs field systems [1] . The former are defined by Gibbs (multiplica

tive) perturbations of the Poisson measure and the latter are defined

by the similar perturbations of a gaussian measure.

This relation is exploited in statistical nechanics [2-41.

In this paper we establish that the Sine-Gordon transformation can

be generalized to the class of Gibbs systems of particles, interacting

through many-body potentials. Initially we tried to obtain the genera

lization for the case of a special three-body potential, which is

connected with a system of diffusing particles [5]. The interest for

the generalization isbased on the idea, that quantum mechnical

interaction between nuclei and electrons generates an effective many-

body potential between molecules,i.e.classical particles, which regu

regularize the divergencies, created by the Coulomb pair potential.

The proposed generalization is based on the introduction of the

Gibbs systems of interacting fields and particles.

The Sine-Gordon transformation of a particle Gibbs system looks

like transition to an effective Gibbs scalar field system in the sys

tem of interacting fields and particles after integrating out the
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particle variables. And in the case of absence of 2k+l - body poten

tials the effective Lagrangian contains the usual S-G Lagrangian and

the logarithm of the Fourier-Wiener transform.

Our paper is organized as follows.

In the first paragraph we introduce Gibbs systems of separate par

ticles and fields and derive the usual Sine-Gordon transformation.

In the second paragraph we introduce the Gibbs system of interacting

fields and particles and present the reduction procedure that yields

the generalized Sine-Gordon transformation for Gibbs systems on a for

mal level.

In the third paragraph we give a rigorous interpretation of the

the obtained formulas.

l.Gibbs systems of independent particles and fields.

Let us consider the d-dimensional system of particles,

interacting through the pair potential c0(x), xe

C0(x) (2d Sexp{i(k,x)Q(k2)dIc

where Q is a positive polynomial or an entire function.

We assume that the Fourier transform is considered in the sense

of the generalized functions. This assumption restricts the class of

Q considered. For example the case

Q(k2) = (k2)1 , l

is excluded.

The grand partition function given by

= n S exp( - U(X) } dX
no An

where X=(x1,x2,.. dXn=dx1X2Xn
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C(x. -x.),on i<j=l°1 J

z = exp( f3j} is the activity, 13 is the inverse temperature, t is

the chemical potential.

Let us denote by dp the formal measure defined on the space

of the integer valued measures p(x) = . ö(x - x.), such that
jo

X = (x1,x2 ) is a finite sequence, by the equality

d p = dXP n! nno

Properly normalized dp generates the Poisson measure

on the space Q of integer valued measures such that X is an infinite

locally finite sequence.If X is restricted to A, then ic0(d p)

=exp{ - V(A)} d’p , where V(A) is the volume of A.

The Gibbs particle system is described by the Gibbs measure

(1.1) = (E ) exp{
- 13UA(p)} dpP

in this formula dp can be written, since

UA(p) = ‘ kkx1”p(xk)dXk,
koAk

where cI =
-pS, Ct2 = C0, is a k-body potential, that can depend

onA.

Now let us consider the Gibbs field system. The corresponding

Gibbs measure is formally given on Q by A

(1.2) 4 = (E)’ exp{
- LA() } d,

where dFp =
d

dp(x), = , = exp(
-

L(p)} dp

XE

It is possible to give a rigorous meaning for (1.2) if the
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Lagrangian LA is given by

L(q) = S (Q(A)q)(x)q(x)dx + VA(p)

where A is the laplacian, and C0(o) <

Then the Gibbs measure of the field system is given by

(1.3) (d(p) = (E exp{
- VA(p)} t0(d(p)

where is the Gaussian measure with the covariance C0(x-y),and

(1.4) = S exp{ - V()}0(d)

0is the probability space which is usually a subset of Q. We

shall omit it in all the integrals in what follows.

(1.3) is derived from (1.2) by multiplying the numerator and the

denominator by
1

(Det it 1Q(A))2

and using the equality

(1.5) 0(d) = (DetQ(A))2exp{
-

(Q(A)pp)}d

PROPOSITION 1. 1(S-G transformation)

If VA(p) -
S exp{ W13p(x)}dx, z=exp{21C0(O)},
A

A(1.6)
P F

PROOF is simple and it is based on the expansion of exp{
- VA(p)}

into series and application of the formula
n fl

Sp0(dp) exp{ W13 p(x) } = exp { - C0(x-x.) }
j=l ij=1
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2. GIBBS SYSTEMS OF INTERACTING PARTICLES AND

SCALAR FIELDS

The phase space of the system of interacting particles and fields
is = x . The potential energy is given by

(2.1) U(pq) = U(p) + J’V(p)p(x)dx + VA(p,p)
A

UA(p)
> -oo, V(p) > -oo, V(pp) > -oo•

where V(pq) is a nonlinear function of p .It is sufficient to
consider the case when it is zero.

The Gibbs system is characterized by the formal measure

(2.2) p(d(pdp) = (p)ö(Q(A)(p - p)exp{
-I3UA(p,(p)}dF(p dp

where

-
p)

=
((Q(A)q)(x) - p(x))

(2.3) = exp{ - U(pp)}ö(Q(A)p - p)dp dp

co

PROPOSITION 2. 1(Formal S-G transformation)
If the potential energy UA(p) of the Gibbs particle system de

pends on the potential energy U(pp) of the system of interacting

particles and scalar field as follows

(2.4) UA(p) = UA(p,Q’(A)p)
then

(2.5)
p F,P (DetQ(A))
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PROOF: With the help of the equality

(DetQ(A))ö(Q(A)p
-

p) = 8(p - Q(A)p)

and (2.4) we obtain

F,P S dp S dFp exp{
-

- Q(z\)p) =

S dp exp{
- =

PROPOSITION 2.2 (FORMAL S-G TRANSFORMATION)

For the grand partition function FP of the Gibbs system of in

teracting particles and scalar field the following representation

holds

(2.6)

F,P DeWQ(z\) dF SDeWQ(L\) dF exp{ - Lp,q*)}exp{i(Q(A)qp*))

where L(qp*)
- I3UA(p) + sexp{iq*(x)

- I3V(p)}dx.
A

PROOF:Let us use the formula

6(p) = S exp{i(q*,p)} d

Then substitute this equality into (2.3) we obtain

F,P = Det’/Q(A) dF 5 DetVQ(zX) dF exp(i(Q(A)cp,cp*)
-I3UA((p)}x

x [5 exp{i(p*,p)
- I3SV(p)p(x)dx dp =

A
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= exp(- L(q*,p) +I3UA(p)}.

Let us show now that the S-G transformation, i.e. eq. (1.6) follows

from eq.(2.6).

To do it we have to assume that

UA(p,p) = -(ji +C0(O)Sp(x)dx + (Q(A)p,p)
A

In this case U(q) is the quadratic form and

V(ç) = - - z5 exp{iç*(x)
- f3V(q)} =

Then (2.6) yields

= SDeWQ(A)dF exp{
- VA(f3)} S DeWQ(A) dF X

x exp{
- f3(Q(A)(p,(p) + j(Q(A)p,q*)}.

Now let us rescale the fields:q => Vf3p, p* > So 13 disappears in

the right side of the last equality. Taking into account (1.5) we

derive the following equality

F,P
L0(dp*)exp( VA((p*) + (Q(A)p*,p*)S0(dp)exp(i(Q(A)p,p)}.

The second integral is easilly computed

I0(dp)exp{i(Q(A)p,p*)} = exp{
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Hence we obtain the usual S-G transformation.

3.The generalized S-G transformation.

There are cases when the formula (2.6) can be written in a rigorous

form (MAIN THEOREM)

THEOREM 3.1,

Let potentuial energy U(pp) in (2.1) is such that

U(p) = (Q(A)q,q) + U(p), Up)>-oo.

then the following equality holds

(3.1) F,P =
0(dp) S0(dp)exp(i(p,p*)Q + p*,p*) - Lp,p*)}

where

Lp,p*) = Up)
- 5 exp{ip*(x)

- V(p)}dx, ((p,(p*)(Q(A)(p,(p*).
A

If the potential energy UA(p) of the particle Gibbs system satisfies

then equals the right side of (3.1) also.

PROOF follows from props. (2.1), (2.2), and eq. (1.5).

It follows from the main theorem that

(3.2) = St0(dp*)exp( LA(p*)}

where L(q*) can be interpreted as an effective Lagrangian.

In the case when 2k+ 1-body potentials are absent,i.e.
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-

- C0(O)

then this La rangian is the Sum of two terms

(3.3)

L*) VA(*)
-

ln[exp( **)}
(d)exp(i(*)

There is the problem how to make the measure rigoro5 It is

cleare that we have to make meaningful the robabiljtytt mease

)lexp(U*()
f V()p(x)dxJ0(d0(dp)

- Q()1p)

We shall make it somewhere else.

Let us Consider some examples

+ V*() V°() --C(O)

1 If V(p) (P21(x), then

UA(p) U(X) =! (Z C (x.x.))2l

j>O i>O °

* * 2 212.If V() = o, UA(p) = ( (x)dx), then
A

(3.4) UA(p) = U(X) =( Z CA(xx.))21CA(x,y) = f C(xz)c(yz)dz
A
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The effective Lagrangian can be derived in the latter case with the

help of the theorem

THEOREM 3.2

If the potential energy of the particle Gibbs system satisfies (3.4)

then

1
A .(2l) -1 2

(3.5) = S J10(d(p)exp{
- VA(p)} 5m1(q){Det( I + qxQ(A) )} x

* * l,\ -1xexP{i(CqP(P)}dq CAq
= (21)

+ iq20 XA) Q (A)

where is the operator of the multiplication by the characteris

tic function of the compact domain A

PROOF is simple and it can be found in [6j.

4.DISCUSSION

The Gibbs system described by the measure (2.2)reflects the fact

that in order to derive the generalized S-G transformation we have to

introduce the field p. It has the meaning of the electric field

created by the distribution of charges.

There is a suspicion that the introduction of the Gibbs system of

interacting scalar field and particles is not really needed for the

derivation of the generalized S-G transformation, since

the introduction of the measure (Q(A)p-p) means meerly the change of

the variable. This view is wrong in general since it is impossible to

represent in terms of the bounded below function of the field variable

a 2k+1-body potential.

There is also the question: why have we to omitt the last term in

(2.1)? The only answer is that we don’t have examples that it

contributes to the potential energy of the particle system. If this
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term is left then the particle variable is not easilly integrated out.

In conclusion the author expresses his sincere gratitude to professor

John Lewis for inviting him to the Dublin Institute of Advanced Study

and kindness and thanks Nick Duffield for help with printing.
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