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Abstract

We solve the integrability conditions for the local covariant formulation

of the induced action of 2d-gravity and propose gauge conditions under which the
chiral fermion action is an expansion of the Polyakov action in the case when
both functions are retained.
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Polyakov’s famous work on the quantization of 2d-gravity [1] is restricted

to the case of a metric with Minkovskian signature. On the other hand, the

classification of closed two-dimensional surfaces exists only in the case with

euclidean signature.

These approaches are consistent if the theory of two-dimensional gravity

can be represented as the sum of independent holomorphic and antiholomorphic

parts as happens in 2d-conformal field theory [2].

This problem was stated first by R. Stora. There are different approaches

to this problem. One of these is developed by Stora1s group: they integrate

the diffeomorphism anomaly on a Riemann surface of arbitrary genius 92 C31.
The holomorphic factorization of the effective action

(1)

is postulated in this work.

Because the Einstein-Hilbert action in two dimensions is trivial and

reduces to the Euler characteristic of the surface it should be more interesting

to consider the theory of induced 2d-gravity. This theory appears in particular

in the context of string theory.

There is a hypothesis that all induced theories are universal C41; in

particular theories of 2d gravitation induced by scalars, fermions, etc., are

equivalent.

The 2d-gravity induced by chiral fermions is a remarkable theory - in this

case almost all known anomalies (conformal, gauge and gravitational) are

present.

In our opinion the most convenient one to analyse is the theory obtained

by considering three-dimensional fermions interacting with a surface embedded in

i.e. the induced Dirac theory.

This approach is the one closest to string theory and allows us to

investigate the dynamics of the interaction of the embedded surface with the

ambient space.
F,3

The embedding of a surface in f\. is described by

(2)
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where are coordinates in and is ones on Z . The embedding

induces a metric on

(3)

The induced Dirac action is described by projection of the usual flat Dirac
action in P3 onZ

S,,= (4)

where and are spinors in

To translate the interaction of a surface with , induced by embedding,
to the more familiar interaction with gravitational and gauge fields, we
introduce the zweibeins of the induced metric

= (5)

and the vector field orthogonal to surface:

aX)=o )(p)/ (6)

Then we obtain an orthonormal basis of P3at each point of Z

1’>?’’) Xq’t?)J

X(f=e)dx’ x.x=J (7)
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We introduce also an S0(3)-matrix J2() which rotates this basis to a fixed one:

- X;

(8)

00

here (: ) , oL _)are Pauli-matrices

and the differ from them by a global rotation.

As a result, we obtain

S, fc
(9)

- /Z ô’2

where and / is the

spin-connection related to Z’ Here we have used the relation

(x;sx 2Z• (10)

which relates the matrix £2 to the expansion coefficients:

-x (11)

The induced Dirac operator coincides with the usual one except for the presence

of the matrix _C2(t) When the surface is embedded in , the induced

Dirac operator contains also an SO(d—2) gauge field. However the fields
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parametrizing operator (9) are not completely independent. The equations (11)

have the integrability conditions:

(12)s=r4

besides these, there is one more constraint:

(13)

this expresses the symmetry of the second quadratic form of the surface:

(14)

Computing the determinant of the chiral Dirac operator in the usual

reparametrisation - invariant manner, we obtain the effective action for chiral

fermions which, in our interpretation, is an action of 2d gravity:

/r,r (15)

here B is any three-manifold whose boundary is I . The first term in the

action (15) is one ordinary Liouville action plus the kinetic term related to

the angle of Lorentz-rotations. The sign ± corresponds to right and left

fermions through the projection operators (f’/) . By using the

integrability condition (12), it is easy to show that the Chern-Simons term in

(15) becomes the integral

_3

(16)

of the density of the Hopf-invariant of the mapping S”S . (When the

integrand is a closed 3-manifold, it is equal to an integral multiple of

To represent the 3-form (16) in more convenient form, we parametrize the

fields 4±
as

= e(). (17)
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The light-cone coordinates are defined by y’z The second

constrain (12) then gives us

±2r4A
or

c/ç c/c = 2c dl

(18)

Inserting this in the first constrain, we see that it yields the Liouville
equation for c

=-exg2ø) (19)

To solve this, we use the method described in 15]. Namely, we make the

substitution ex,o(—c)=p then (19) becomes

— = 1’ (20)

Differentiating this equation with respect to
f7L,

we obtain

(}= °
,

1. e . (21)

Analogously, we obtain
(a=0

and

For a given function /v(f) , this equation has two independent solutions

and 3(’) so that can be written as

p(1f}= o(1(f %(f8(ly (22)

Inserting this in (21), and taking account of the independence of
and , we obtain

___
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It follows that Wronskian of c and A is zero

a-a6-‘=0 so that (23)

Introducing more convenient functions

and /q (24)

we have

(25)

and analogously p,)
so that (22) now reads

Icc (26)F ) = (1p6.7))
Bringing this into (20), we find that (27)

Introducing a new variable, P6) (28)

we obtain expressions for r’ and

A (29)

D4;

the matrix is expressed in terms and in a local manner by

i (30)
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Comparing
—1_ 4e?cp(—4) e(€/2)

ep(/2))

with 4e)
Wdc9r ç -

eKp(,)

we find that the unitarity condition 2i2 is equivalent to

and O?o (31)

in other wor ds, o is real and is the complex conjugate of

The 3-form (16) is now written as

v(fJ (32)

We parametrize the zweibeins of the induced metric as

and introduce

(34)

Notice that the Lorentz-angle O, in (33) is the same as in (17) because the

dependence of Aon c comes from the zweibeins (the second quadratic form

(14) is invariant with respect to Lorentz-rotations).

In fact, (34) relates the conformal structure defined by the induced

metric with the one defined by the second quadratic form.

We propose that the effective action is computed when the Weil - and

Lorentz-symmetries are fixed by the conditions:

2-z,2. (35a)
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and

(35 b)

which are equivalent to

e=,zz, e..=/
As a result, we obtain that in the gauge (35), the effective action of the left
fermions is

-) (36)

and

The energy-momentum tensor corresponding to (36),

7= (37)

is traceless. (The second term gives no contribution to the stress-tensor

because the variation of on the metric is

in two dimensions).

Integrating by parts in (36), we have

- S,, ()
*

1 (38)

SrAf Sp(P Q.dV
where =

the expression

(pj) Jr.
(c ë&

coincides with Polyakovs action when 1ti=O and 2=1 i.e. when
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If we try to recognize this answer starting from Polyakov’s action and

make an opposite reparametrization to that which yields the light-cone gauge.

f (40)

we see that ‘•

(_-1) . g .(f-)

and to obtain Sleft , we should make additional Weil

(4la)

and Lorentz

(41b)

transformations which are needed to compensate (37) so that the gauge conditions
remain unchanged.
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