# MONSTROUS MOONSHINE AND THE UNIQUENESS OF THE MOONSHINE MODULE * 

Michael P. Tuite $\dagger$<br>Department of Mathematical Physics<br>University College<br>Galway, Ireland<br>and<br>Dublin Institute for Advanced Studies<br>10 Burlington Road<br>Dublin 4, Ireland


#### Abstract

In this talk we consider the relationship between the conjectured uniqueness of the Moonshine module $\mathcal{V}^{\mathfrak{a}}$ of Frenkel, Lepowsky and Meurman and Monstrous Moonshine, the genus zero property for Thompson series discovered by Conway and Norton. We discuss some evidence to support the uniqueness of $\mathcal{V}^{\natural}$ by considering possible alternative orbifold constructions of $\mathcal{V}^{\natural}$ from a Leech lattice compactified string. Within these constructions we find a new relationship between the centralisers of the Monster group and the Conway group generalising an observation made by Conway and Norton. We also relate the uniqueness of $\mathcal{V}^{\mathfrak{a}}$ to Monstrous Moonshine and argue that given this uniqueness, then the genus zero properties hold if and only if orbifolding $\mathcal{V}^{\text {a }}$ with respect to a monster element reproduces $\mathcal{V}^{\natural}$ or the Leach theory.


* Talk presented at the Nato Advanced Research Workshop on 'Low dimensional topology and quantum field theory', Cambridge, 6-13 Sept 1992.
$\dagger$ EMAIL: mphtuite@bodkin.ucg.ie

The Moonshine Module. The Moonshine module [1] of Frenkel, Lepowsky and Meurman (FLM) is the first example of an orbifold CFT [2] and is constructed from a string compactified to $R^{24} / \Lambda$ where $\Lambda$ is the Leech lattice, the unique 24 dimensional even selfdual lattice without roots i.e. $\lambda^{2} \neq 2 \mathrm{cf}$. [3]. The orbifolding is then based on the $Z_{2}$ reflection automorphism of $A$.

Let $\mathcal{V}^{\Lambda}$ denote the set of vertex operators $\{\phi(z)\}$ for the Leech lattice CFT which forms a closed meromorphic operator product algebra (OPA) with central charge $24[1,4]$

$$
\begin{equation*}
\phi_{i}(z) \phi_{j}(w) \sim \sum_{k} C_{i j k}(z-w)^{h_{k}-h_{i}-h_{j}} \phi_{k}(w)+\ldots \tag{1}
\end{equation*}
$$

We will represent such an OPA schematically by $\phi \phi \sim \phi$. The 1 -loop partition function $Z(\tau)=\operatorname{Tr}_{\mathcal{V A}_{A}}\left(q^{L_{0}}\right)$ is a modular invariant and meromorphic function of $\tau$ with a unique simple pole at $q=e^{2 \pi i T}=0$ and is given by the unique (up to an additive constant) modular invariant function $J(\tau)$

$$
\begin{align*}
& Z(\tau)=J(\tau)+24 \\
& J(\tau)=\frac{E_{2}^{3}}{\eta^{24}}-744=\frac{1}{q}+0+196884 q+\ldots \tag{2}
\end{align*}
$$

The constant 24 reflects the existence of 24 massless (conformal weight 1) operators in this theory. $\eta(\tau)=q^{1 / 24} \Pi_{n}\left(1-q^{n}\right)$ and $E_{2}(\tau)$ is the Eisenstein modular form of weight $4[5]$.

The FLM Moonshine module [1] is an orbifold CFT based on the $Z_{2}$ lattice reflection automorphism $\bar{r}: \lambda \rightarrow-\lambda$ for $\lambda \in \Lambda . \bar{r}$ lifts to a family of $Z_{2}$ automorphisms of $\mathcal{V}^{\Lambda}$ preserving (1) from which family one automorphism $r$ is chosen. Defining the projection $\mathcal{P}_{r}=(1+r) / 2$, the set of operators $\mathcal{P}_{r} \mathcal{V}^{\wedge}$ then also form a closed meromorphic OPA. However, the corresponding partition function $\operatorname{Tr}_{\mathcal{P}_{r} \nu^{\wedge}}\left(q^{L_{0}}\right)=\frac{1}{2}\left(\square_{1}^{1}+\frac{\square}{1}\right)$ is not modular invariant, employing standard notation for the world-sheet torus boundary conditions e.g. [6]. Thus, under a modular transformation $\tau \rightarrow-1 / \tau,{ }_{1}^{\square}=1 / \eta_{\bar{r}}(\tau) \rightarrow{ }_{r}^{1} \square_{r}=$ $2^{12} \eta_{\bar{r}}(\tau / 2)=2^{12} q^{1 / 2}+\ldots$ where $\eta_{\bar{r}}(\tau)=[\eta(2 \tau) / \eta(\tau)]^{24}$. Therefore the introduction of a 'twisted' sector with vacuum energy $1 / 2$ and degeneracy $2^{12}$ is necessary to form a modular invariant theory $[1,2]$. The states of this sector are constructed from twisted vertex operators $\mathcal{V}_{r}=\{\psi(z)\}$ acting on the untwisted vacuum. Thus $\mathcal{V}^{\wedge}$ is enlarged by $\mathcal{V}_{r}$ to $\mathcal{V}^{\prime}=\mathcal{V}^{A} \oplus \mathcal{V}_{r}$ which forms a closed non-meromorphic OPA $[1,7,8,9]$ where (schematically)

$$
\begin{equation*}
\phi \phi \sim \phi, \quad \phi \psi \sim \psi, \quad \psi \psi \sim \phi \tag{3}
\end{equation*}
$$

$\bar{r}$ can also be lifted to an automorphism $r$ of (3) where the operators of $\mathcal{P}_{r} \mathcal{V}_{r}$ have integral conformal weight. Then $\mathcal{V}^{\natural}=\mathcal{P}_{r} \mathcal{V}^{\prime}$ forms a closed meromorphic OPA, the FLM Moonshine module [1]. The $r$ projection ensures the absence of untwisted massless operators whereas the twisted sector operators are all massive since the twisted vacuum energy is $1 / 2$. Thus the orbifold partition function is

$$
\begin{equation*}
\operatorname{Tr}_{\nu^{\mathfrak{a}}}\left(q^{L_{0}}\right)=\mathcal{P}_{r} \frac{\square}{1}+\mathcal{P}_{r} \square_{r}=J(\tau) \tag{4}
\end{equation*}
$$

The absence of massless operators in $\mathcal{V}^{a}$ sets the Moonshine module apart from other CFTs. Usually such operators are present and form a closed Kac-Moody algebra. However, the 196884 conformal weight 2 operators in $\mathcal{V}^{\natural}$, including the energy-momentum tensor $T(z)$ can be used to define a closed non-associative commutative algebra. FLM demonstrated [1] that this algebra is an affine version of the 196883 dimensional Griess algebra [10] together with $T(z)$. The automorphism group of the Griess algebra is the Monster $M$. FLM showed that $M$ is the automorphism group for the OPA of $\mathcal{V}^{\prime}$ where the operators of $\mathcal{V}^{\natural}$ of a given conformal weight form a (reducible) representation of $M$. This demonstrates an observation of McKay and Thompson [11] that the coefficients of $J(\tau)$ are positive sums of dimensions of irreducible representations of $M$ e.g. the coefficient of $q$ is $196884=1+196883$, the sum of the trivial and adjoint representation.

We may identify an involution $i \in M$, defined like a 'fermion number', under which all untwisted (twisted) operators have eigenvalue $+1(-1)$ where $i$ also respects (3). The centraliser of $i$ can be found [1] to give $C(i \mid M)=\{g \in M \mid i g=g i\}=2_{+}^{1+24} \cdot \mathrm{Co}_{1}$ where $\mathrm{Co}_{1}$ is the Conway simple group (the automorphism group $\mathrm{Co}_{0}$ of $\Lambda$ modulo the reflection automorphism $\bar{r}$ ), $2_{+}^{1+24}$ is an extra-special group and $A . B$ denotes a group with normal subgroup $A$ with $B=A \cdot B / A$. This result is an essential part of the FLM construction since $M$ is generated by $2_{+}^{1+24} \cdot \mathrm{Co}_{1}$ and a second involution $\sigma$ [10]. FLM constructed $\sigma$. which mixes the untwisted and twisted sectors, from a hidden triality symmetry $[1,12]$ and hence showed that the automorphism group of $\mathcal{V}^{\mathfrak{g}}$ is $M$.

The automorphisms $i$ and $r$ can be said to be 'dual' to each other in the sense that they are both automorphisms of $\mathcal{V}^{\prime}$ and that the subsets invariant under $i$ and $r, \mathcal{V}^{\prime}$ and $\mathcal{V}^{\natural}$ repectively, form meromorphic OPAs. In addition, we may 'reorbifold' $\mathcal{V}^{\natural}$ with respect to $i$ to reproduce $\mathcal{V}^{\wedge}$. Thus

where the horizontal arrows denote an orbifolding and the diagonal arrows a projection [13].

Monstrous Moonshine. The operators of $\mathcal{V}^{\natural}$ of a given conformal weight form reducible representations of $M$. The Thompson series $T_{g}(\tau)$ for $g \in M$ is defined by the trace

$$
\begin{equation*}
T_{g}(\tau)=\operatorname{Tr}_{\nu \mathrm{p}}\left(g q^{L_{0}}\right)=\frac{1}{q}+0+[1+\chi(g)] q+\ldots \tag{6}
\end{equation*}
$$

which depends only on the conjugacy class of $g$ where $\chi(g)$ is the character in the 196883 dimensional irreducible representation. Thus for $i$ defined above, it is easy to show $T_{i}(\tau)=$ $\left[\eta_{\bar{r}}(\tau)\right]^{-1}+24$.

The Thompson series for the identity element is $J(\tau)$ which is unique (up to a constant) for the following reasons. Let $\mathcal{F}=H / \Gamma$ be the fundamental region where $\Gamma=\operatorname{SL}(2, Z)$ is the full modular group and $H$ is the upper half complex plane. Adding the point at infinity, the compactification $\overline{\mathcal{F}}$ is isomorphic to the Riemann sphere of genus zero where the function $J(\tau)$ realises this isomorphism. Such a function is called a hauptmodul for the genus zero modular group $\Gamma$. A modular invariant meromorphic function is a hauptmodul if and only if it possesses a unique simple pole. Once the location of this pole is specified, this function is itself unique up to a constant cf. [5,14].

Based on 'experimental' evidence, Conway and Norton [15] conjectured that each $T_{g}(\tau)$ is a hauptmodul for a genus zero modular group $\Gamma_{g}$. This has recently been rigorously demonstrated by Borcherds although the origin of the genus zero property remains obscure [16]. In general, for $g$ of order $n, T_{g}(\tau)$ is found to be invariant up to phases of order (at most) $h$ under $\Gamma_{0}(n)=\left\{\left.\left(\begin{array}{cc}a & b \\ n c & d\end{array}\right) \right\rvert\, \operatorname{det}=1\right\}$ where $h \mid n$ and $h \mid 24 . T_{g}(\tau)$ is fixed by $\Gamma_{g}$ with $\Gamma_{0}(N) \subseteq \Gamma_{g} \subseteq \mathcal{N}(N)=\left\{\rho \in \operatorname{SL}(2, R) \mid \rho \Gamma_{0}(N)=\Gamma_{0}(N) \rho\right\}$, the normaliser of $\Gamma_{0}(N)$ in $\mathrm{SL}(2, R)$ where $N=n h$. Furthermore, $\Gamma_{g}$ is a genus zero modular group and $T_{g}(\tau)$ is the corresponding hauptmodul with a simple pole at $q=0$. Consider the elements of prime order $n=p$. Apart from one class of order 3 with $h=3$, we have $h=1$ in each case. Thus either $\Gamma_{g}=\Gamma_{0}(p)$ or $\Gamma_{0}(p)+$, generated by $\Gamma_{0}(p)$ and the Fricke involution $W_{p}: \tau \rightarrow-1 / p \tau$ with $W_{p}^{2}=1$, the only non-trivial element of $\mathcal{N}(p) . \Gamma_{0}(p)$ is of genus zero when $(p-1) \mid 24(p=2,3,5,7,13)$ where the hauptmodul is $[\eta(\tau) / \eta(p \tau)]^{2 d}+2 d$ with $2 d=24 /(p-1)$. There is a class of $M$ denoted by $p-$ for each such prime with this Thompson series e.g. the involution $i$ belongs to the class $2-. \Gamma_{0}(p)+$ is of genus zero for $2 \leq p \leq 31$ or $p=41,47,59,71$, which constitute all the prime divisors of the order of $M$
[17]. Similarly, there is a class of $M$, denoted by $p+$, for each such prime with Thompson series fixed by $\Gamma_{0}(p)+$.

It is natural to interprete the Thompson series $T_{g}(\tau)$ as a contribution to the partition function for a further orbifolding of $\mathcal{V}^{\natural}$ with respect to $g[18,14]$. In particular, we expect that under $\tau \rightarrow-1 / \tau, T_{g}(\tau)$ transforms to the partition function for a $g$ twisted sector $\mathcal{V}_{g}$ as follows:

$$
\begin{equation*}
T_{g}(\tau)=g \square_{1}^{g} \rightarrow 1 \square_{g}^{\mathfrak{a}}=N_{g} q^{E_{0}^{g}}+\ldots \tag{7}
\end{equation*}
$$

where $q$ denotes a trace contribution to the orbifolding of $\mathcal{V}^{\mathfrak{b}}$ and $\mathcal{V}_{g}$ has vacuum energy $E_{0}^{g}$ and degeneracy $N_{g}$. For many classes of $M$, the method of construction of $\mathcal{V}_{g}$ is not known. However, for certain elements discussed below and some others, a construction can be given $[14,13]$.

Consider now this orbifold picture of $T_{g}(\tau)$ for the prime classes $p+$ and $p-$, although the analysis given can be generalised to all classes $[14,19,13]$. Under a modular transformation $\gamma: \tau \rightarrow \frac{a \tau+b}{c \tau+d}$ we find $g \square_{1}^{d} \rightarrow g^{-d} \square_{g^{c}}^{d}$ assuming that no extra global phasé occurs [20] (such a phase corresponds to $h \neq 1$ in the original Moonshine conjectures $[14,13]$ ). For $\gamma \in \Gamma_{0}(p)$ with $c=0 \bmod p$ we find $\gamma: T_{g}(\tau) \rightarrow T_{g^{-d}}(\tau)=T_{g}(\tau)$ since $d$ and $p$ are relatively prime and $T_{g}(\tau)$ is $\Gamma_{0}(p)$ invariant.

The genus zero property can be also understood as follows. $T_{g}(\tau)$ always has a simple pole at $q=0(\tau=\infty)$. The only other possible pole for $T_{g}(\tau)$ is at $\tau=0$ since the fundamental region $\mathcal{F}_{p}=H / \Gamma_{0}(p)$ for $\Gamma_{0}(p)$ has only these two cusp points [21]. From (7), $T_{g}(\tau)$ has a pole at $\tau=0$ if and only if $E_{g}^{0}<0$. Thus $T_{g}(\tau)$ is a hauptmodul for $\Gamma_{0}(p)$ if and only if $E_{g}^{0} \geq 0$. Also from (7), $T_{g}\left(W_{p}(\tau)\right)=1 \square^{q}(p \tau)$, so that $T_{g}(\tau)$ is a hauptmodul for $\Gamma_{0}(p)+$ if and only if $E_{g}^{0}=-1 / p$ and $N_{g}=1$.

For classes of type $p \neq, T_{g}(\tau)=1 \square^{q}(p \tau)$ is a series in $q$ with non-negative coefficients $g$ since the RHS of (7) is the $\mathcal{V}_{g}$ partition function. For classes of type $p-, T_{g}(\tau)$ has coefficients of mixed sign. In general, all classes of $M$ can be divided into two such types i.e. classes with Thompson series invariant (or not invariant) under a Fricke involution $W_{N}: \tau \rightarrow-1 / N \tau$ which are called Fricke (or non-Fricke) classes. There are a total of

121 Fricke classes all of which have non-negative coefficient Thompson series and 51 nonFricke classes with mixed sign coefficients for similar reasons to the prime ordered classes described. This division of the classes of $M$ will be important below.

The FLM Uniqueness Conjecture. FLM have conjectured that $\mathcal{V}^{n}$ is characterised (up to isomorphism) as follows [1]: $\mathcal{V}^{\mathfrak{a}}$ is the unique meromorphic conformal field theory with modular invariant partition function $J(\tau)$ and central charge 24. This is analogous to the uniqueness property of the Leech lattice as being the only even self-dual lattice in 24 dimensions without roots.

Let us now consider orbifold models based on other automorphisms $a$ of the untwisted Leech lattice theory $\mathcal{V}^{\Lambda}$ lifted from automorphisms $\bar{a} \in \mathrm{Co}_{0}[19,22]$. $\bar{a}$ will be chosen so that each model contains no massless operators, has a meromorphic OPA and is modular invariant with partition function $J(\tau)$ and hence, should reproduce $\mathcal{V}^{\not}$. Each $\bar{a} \in \mathrm{Co}_{0}$ can be parameterised as follows

$$
\begin{align*}
\operatorname{det}(x-\bar{a}) & =\prod_{k \mid n}\left(x^{k}-1\right)^{a_{k}}  \tag{8a}\\
\sum_{k \mid n} a_{k} & =0 \tag{8b}
\end{align*}
$$

with $\sum_{k \mid n} k a_{k}=24$ where $k \mid n$ denotes that $k$ divides $n$, the order of $\bar{a}$ and $\left\{a_{k}\right\}$ are integers. (8b) is imposed to ensure the absence of fixed points for $\bar{a}$ so that no massless operators in $\mathcal{V}^{\wedge}$ survive the $\mathcal{P}_{a}$ projection. For $n=p$ prime, we have $a_{p}=-a_{1}=2 d$ where $(p-1) 2 d=24$.

Since $a$ is an OPA automorphism for $\mathcal{V}^{A}$, the $a$ invariant subspace $\mathcal{P}_{a} \mathcal{V}^{A}$ also forms a closed meromorphic OPA. The partition function $\operatorname{Tr}_{\mathcal{P}_{a} \nu^{\wedge}}\left(q^{L_{0}}\right)$ is not modular invariant, as before, necessitating the introduction of sectors $\mathcal{V}_{a}$ twisted by $a$. Thus under $\tau \rightarrow-1 / \tau$

$$
\begin{equation*}
a \square_{1}=\frac{1}{\eta_{\bar{a}}(\tau)} \rightarrow 1 \square_{a}=D_{a}^{1 / 2} \prod_{k \mid n} \eta(\tau / k)^{-a_{k}}=D_{a}^{1 / 2} q^{E_{0}^{a}}\left(1+O\left(q^{1 / n}\right)\right) \tag{9}
\end{equation*}
$$

with $\eta_{\bar{a}}(\tau)=\prod_{k} \eta(k \tau)^{a_{k}}$ and $D_{a}=\operatorname{det}(1-\bar{a})$ where $D_{a}^{1 / 2}$ and $E_{0}^{a}=-\frac{1}{24} \sum_{k} \frac{a_{k}}{k}$ are the degeneracy and energy of the $a$ twisted vacuum. Under $\tau \rightarrow \tau+n$, the $a$ twisted partition function is invariant up to a phase $\exp \left(2 \pi i n E_{0}^{a}\right)$. For modular consistency of the orbifold partition function we must have $n E_{0}^{a}=0 \bmod 1$ i.e. there is no global phase anomaly [20].

In addition, if $E_{0}^{a}>0$, then the $a$ twisted sector does not reintroduce massless states. We therefore restrict ourselves to $\bar{a} \in \mathrm{Co}_{0}$ obeying [19]

$$
\begin{align*}
\sum_{k \mid n} a_{k} & =0  \tag{10a}\\
E_{0}^{a} & >0  \tag{10b}\\
n E_{0}^{a} & =0 \bmod 1 \tag{10c}
\end{align*}
$$

There are a total of 38 classes of $\mathrm{Co}_{0}$ [23] that obey these constraints [19]. If we relax condition (10c) then a further 13 classes of $\mathrm{Co}_{0}$ obey only (10a-b) [24,13]. Each of these 13 classes is characterised by some $h \neq 1$ where $h \mid 24$ with $h \mid k$ for all $a_{k} \neq 0$. In all 51 cases the parameters $\left\{a_{k}\right\}$ obey $a_{k}=-a_{n h / k}$ and so $E_{0}^{a}=1 / n h$ which violates (10c)
 for $\Gamma_{a}$ with $\Gamma_{0}(N) \subseteq \Gamma_{a} \subset \mathcal{N}(N), N=n h$, where $\Gamma_{a}$ is one of the genus zero modular groups considered by Conway and Norton. Furthermore, since $E_{0}^{a}>0,{ }^{a} \square_{1}$ cannot be Fricke invariant and hence these 51 hauptmoduls are the 51 non-Fricke Monster group hauptmoduls. Thus there is a correspondence between 51 classes $\{\bar{a}\}$ of $\mathrm{Co}_{0}$ and the 51 non-Fricke classes of $M$. We will explicitly identify an element $g_{n} \in M$ of each such class below.
$\mathcal{V}_{a}$ with the partition function ${ }^{1} \square_{a}$ of (9) has a standard construction [25]. Likewise, $\mathcal{V}_{a^{k}}$ twisted sectors must be introduced for modular invariance and OPA closure. Then the following intertwining non-meromorphic OPA should hold (schematically)

$$
\begin{equation*}
\psi_{a^{j}} \psi_{a^{k}} \sim \psi_{a^{j+k}} \tag{11}
\end{equation*}
$$

with $\psi_{a^{k}}(z) \in \mathcal{V}_{a^{k}}$. Apart from the original $Z_{2}$ case, this OPA has only been rigorously constructed in the prime ordered cases [22]. We will assume that it is true in general. We therefore enlarge $\mathcal{V}^{\Lambda}$ by the introduction of $\mathcal{V}_{a^{k}}$ to $\mathcal{V}^{\prime}=\mathcal{V}^{A} \oplus \mathcal{V}_{a} \oplus \ldots \oplus \mathcal{V}_{a^{n-1}}$ which forms a closed non-meromorphic OPA. The projection $\mathcal{V}_{\text {orb }}^{a}=\mathcal{P}_{a} \mathcal{V}^{\prime}$ then forms a meromorphic OPA. (10c) is sufficient to guarantee the modular invariance of the corresponding partition function. (10b) can be also shown to be sufficient to ensure no massless operators appear in $\mathcal{P}_{a} \mathcal{V}_{a^{k}}[19,13]$. Thus, for the 38 automorphisms obeying ( $10 \mathrm{a}-\mathrm{c}$ ), the partition function is modular invariant and is given by $Z_{\text {orb }}(\tau)=J(\tau)$. Therefore $\mathcal{V}_{\text {orb }}^{a} \equiv \mathcal{V}^{\mathfrak{a}}$ according to the FLM uniqueness conjecture. Let us now consider some evidence to support this.

Let $M_{o r b}^{a}$ be the automorphism group of the OPA for $\mathcal{V}_{\text {orb }}^{a}$ where we expect $M=M_{o \mathrm{rb}}^{a}$. We define $i_{a} \in M_{\text {orb }}^{a}$ of order $n$ (which generalises the involution $i$ in the original FLM construction) under which all the operators of $\mathcal{V}_{a^{k}}$ are eigenstates with eigenvalue $e^{2 \pi i k / n}$. $i_{a}$ is also an automorphism of $\mathcal{V}^{\prime}$ and is 'dual' to the automorphism $a$ where $\mathcal{P}_{a} \mathcal{V}^{\prime}=\mathcal{V}_{\text {orb }}^{a}$ and $\mathcal{P}_{i_{a}} \mathcal{V}^{\prime}=\mathcal{V}^{\Lambda}$. Furthermore, we may reorbifold $\mathcal{V}_{\text {orb }}^{a}$ with respect to $i_{a}$ to reproduce $\mathcal{V} \cdot \overline{ }$ as before [13]


Thus if $\mathcal{V}_{\text {orb }}^{a} \equiv \mathcal{V}^{\natural}$, we can explicitly construct the twisted sectors $\mathcal{V}_{i_{a}^{k}}$ assumed earlier for $i_{a} \in M$. We may also compute the Thompson series for $i_{a} \in M_{\text {orb }}^{a}$ by taking the trace over $\mathcal{V}_{\text {orb }}^{a}$ to obtain

$$
\begin{equation*}
T_{i_{a}}^{\mathrm{orb}}(\tau)=\operatorname{Tr}_{\stackrel{\mathrm{orb}}{a}}\left(i_{a} q^{L_{0}}\right)=\frac{1}{\eta_{\bar{a}}(\tau)}-a_{1} \tag{13}
\end{equation*}
$$

which is the hauptmodul for the genus zero modular group $\Gamma_{a}$ introduced earlier [19]. Thus each $i_{a} \in M_{\text {orb }}^{a}$ dual to $a$ has the same Thompson series as a corresponding non-Fricke element of $M$ e.g. for $\bar{a}$ of prime order $p, T_{i_{a}}^{\circ \mathrm{rb}}(\tau)=[\eta(\tau) / \eta(p \tau)]^{2 d}+2 d=T_{p-}(\tau)$. Note also, from (7), that $\mathcal{V}_{i_{a}}$ has vacuum energy $E_{0}^{i_{a}}=0$ and degeneracy $-a_{1}>0$. (13) may be generalised to the other 13 classes violating (10c) where $\bar{a}^{h}$, of order $n^{\prime}=n / h$, can be employed to construct an orbifold with partition function $J(\tau)$. Let $g_{n}$ denote the lifting of $\bar{a}$ where $g_{n}^{h}=i_{a^{h}}$ is dual to $a^{h}$, a lifting of $\bar{a}^{h}$ (for $h=1, g_{n}=i_{a}$ ). We may then compute the Thompson series for $g_{n}$ as a trace over $\mathcal{V}_{\text {orb }}^{a^{b}}$ to show that (13) again holds so that $g_{n}$ has the same Thompson series as a non-Fricke element of $M$ [13].

We may also compute the centraliser $C\left(g_{n} \mid M_{\text {orb }}^{a^{h}}\right)=\left\{g \in \mathcal{V}_{\text {orb }}^{a^{h}} \mid g_{n}^{-1} g g_{n}=g\right\}$. For the 38 classes with $h=1$ this consists of automorphisms that do not mix the sectors $\mathcal{P}_{a} \mathcal{V}_{a^{k}}$. For the other 13 automorphisms $g_{n}, C\left(g_{n} \mid M_{\text {orb }}^{a^{h}}\right) \subset C\left(i_{a^{n}} \mid M M_{\text {orb }}^{a^{h}}\right)$. In general, $c \in C\left(i_{a} \mid M_{\text {orb }}^{a}\right)$ must commute with $a$ and therefore $c$ is lifted from the automorphism $\bar{c} \in G_{n}=C\left(\bar{a} \mid \mathrm{Co}_{0}\right) /\langle\bar{a}\rangle$. One can then show that $[24,13]$

$$
\begin{equation*}
C\left(g_{n} \mid M_{\mathrm{orb}}^{a^{h}}\right)=\hat{L}_{\bar{a}} \cdot G_{n} \tag{14}
\end{equation*}
$$

where $\hat{L}_{\bar{a}}=n . L_{\bar{a}}$, an extension of $L_{\bar{a}}=\Lambda /(1-\bar{a}) \Lambda$ by a cyclic group of order $n$. $\hat{L}_{\bar{a}}$ arises from the vaccum structure of $\mathcal{V}_{a}$ where $D_{a}=\left|L_{\bar{a}}\right|$. With $M_{o \mathrm{rb}}^{a}=M$, (14) generalises a a well-known observation of Conway and Norton concerning the 5 prime classes where
$C(p-\mid M)=p_{+}^{1+2 d} \cdot G_{p}$ and $i_{a}=p-[15]$. For the other 46 classes, there are 11 cases for which (14) can be checked using the available information about these centralisers [15,26]. In general, the order of these groups agrees with (14) in each case supporting the very likely validity of the result.

Both (13) and (14) support the conjecture that $\mathcal{V}_{\text {orb }}^{a} \equiv \mathcal{V}^{\dot{a}}$. This can only be proved by finding a generalised version of $\sigma$ in the FLM construction which mixes the untwisted and twisted sectors $[1,12]$ i.e. there should exist some permutation group $\Sigma_{n}$ which mixes the sectors of $\mathcal{V}_{\text {orb }}^{a}$ where $C\left(g_{n} \mid M\right)$ and $\Sigma_{n}$ generate $M$. In the prime cases $p \neq 2, \Sigma_{p}$ has been recently constructed and it has been rigorously shown that $M_{o \mathrm{rb}}^{a}=M$ for $p=3$ and almost so for $p=5,7,13$ [22].

Monstrous Moonshine from the Uniqueness of $\mathcal{V}^{\mathfrak{b}}$. Let us now assume that the FLM Uniqueness conjecture is correct. We can then argue that Thompson series are hauptmoduls if and only if orbifolding $\mathcal{V}^{\natural}$ with respect to elements of $M$ reproduces $\mathcal{V}^{a}$ or $\mathcal{V}^{\Lambda}$. Thus Monstrous Moonshine is intimately linked to the uniqueness of $\mathcal{V}^{\natural}$.

From (12), orbifolding $\mathcal{V}^{a}$ with respect to the 38 non-Fricke elements $i_{a}$ dual to $a$ reproduces $\mathcal{V}^{\Lambda}$. We may similarly consider the orbifolding of $\mathcal{V}^{\natural}$ with respect to the Fricke elements $\{f\}$ with $h=1$ which lead to a modular invariant theory $\mathcal{V}_{\text {orb }}^{f}[14,13]$, given that the operators $\mathcal{V}_{f^{k}}$ can be constructed. Assuming that the Thompson series are hauptmoduls we find that $\mathcal{V}_{\text {orb }}^{f} \equiv \mathcal{V}^{\text {b }}$ i.e. orbifolding $\mathcal{V}^{\natural}$ with respect to a Fricke automorphism reproduces $\mathcal{V}^{\natural}$ again. Thus we have [13]

$$
\begin{equation*}
\mathcal{V}^{A} \stackrel{a}{\stackrel{a}{i_{a}}} \mathcal{V}^{\mathfrak{a}} \stackrel{f}{\longleftrightarrow} \mathcal{V}^{\mathfrak{a}} \tag{15}
\end{equation*}
$$

For example, consider $f$ an element of a prime class $p+$. Fricke invariance implies $1 \square_{f^{k}}^{3}=$ $T_{f}(\tau / p)=q^{-1 / p}+0+\dot{O}\left(q^{1 / p}\right)$ so that there is a 'gap' in the spectrum of $\mathcal{V}_{f^{k}}$ and no massless operators are reintroduced in orbifolding $\mathcal{V}^{d}$. Thus the modular invariant partition function for $\mathcal{V}_{\text {orb }}^{f}$ is $J(\tau)$ and hence $\mathcal{V}_{\text {orb }}^{f} \equiv \mathcal{V}^{\natural}$. A similar argument can be made in the general case [13].

The converse to the above also holds i.e. assuming that (15) is true for all automorphisms of $M$ that define a modular consistent theory, then the Thompson series are hauptmoduls. To see this, firstly consider an orbifolding with respect to $i_{a} \in M$ which reproduces $\mathcal{V}^{A}$. $i_{a}$ must be dual to one of the 38 automorphisms obeying ( $10 \mathrm{a}-\mathrm{c}$ ) and has non-Fricke invariant Thompson series (13) which is the hauptmodul for a genus zero group.

Similarly, as discussed above, the other non-Fricke automorphisms can also be found with a corresponding genus zero Thompson series. For the remaining Fricke classes of $M$ we provide an argument for $f$ an element of prime order. We wish to show that $\mathcal{V}_{f}$ has the correct vacuum structure so that $T_{f}(\tau)$ is a hauptmodul for $\Gamma_{0}(p)+$. In the orbifolding of $\mathcal{V}^{\natural}$ with respect to $f$ which reproduces $\mathcal{V}^{\natural}$, let $i_{f} \in M$ be dual to $f$ with eigenvectors $\mathcal{V}_{f^{k}}$ for eigenvalue $e^{2 \pi i k / n}$. Then it can be shown that $T_{i_{f}}(\tau)=T_{f}(\tau)$ so that $i_{f}$ is in the same class as $f$. Furthermore, the centralisers obey $C(f \mid M) \subseteq C\left(i_{f} \mid M\right)$ with the necessary equality only when the $\mathcal{V}_{f}$ vacuum is unique i.e. $N_{f}=1$. Since the twisted sector $\mathcal{V}_{f}$ does not reintroduce massless operators, the vacuum energy obeys either (a) $E_{f}^{0}=-1 / p$ or (b) $E_{f}^{0}>0$. (a) is possible because the absence of massless operators in $\mathcal{V}^{\natural}$ allows for a similar 'gap' in the spectrum of $\mathcal{V}_{g}$. If (b) holds, then $T_{f}(\tau)$ has a unique simple pole at $q=0$ and must be a hauptmodul for $\Gamma_{0}(p)$ with $(p-1) \mid 24$ and $T_{f}(\tau)=[\eta(\tau) / \eta(p \tau)]^{2 d}+2 d$. However, this is impossible since then $E_{f}^{0}=0$ with $N_{f}=2 d$ from (7). Thus (15) implies that $\mathcal{V}_{f}$ has vacuum structure $E_{f}^{0}=-1 / f$ with $N_{f}=1$ and hence, as described before, $T_{f}(\tau)$ is a hauptmodul for the genus zero group $\Gamma_{0}(p)+$ and $f$ is of class $p+$. A similar argument can be given for the other Fricke classes [13].

## References

[1] Frenkel, I., Lepowsky, J. and Meurman, A., Proc.Natl.Acad.Sci.USA 81 (1984) 3256; J.Lepowsky et al. (eds.), Vertex operators in mathematics and physics, (Springer Verlag, New York, 1985); Vertex operator algebras and the monster, (Academic Press. New York, 1988).
[2] Dixon, L., Harvey, J.A., Vafa, C., and Witten, E., Nucl.Phys. B261 (1985) 678; Nucl.Phys. B274 (1986) 285.
[3] Conway, J.H. and Sloane, N.J.A., Sphere packings, lattices and groups, (Springer Verlag, New York, 1988).
[4] Goddard, P., Proceedings of the CIRM Luminy conference, 1988, (World Scientific. Singapore, 1989).
[5] Serre, J-P., A course in arithmetic, (Springer Verlag, New York, 1970).
[6] Ginsparg, P., Les Houches, Session XLIX, 1988, "Fields, strings and critical phenomena", ed. E. Brezin and J. Zinn-Justin, Elsevier Science Publishers (1989).
[7] Dixon, L., Friedan, D., Martinec, E. and Shenker, S., Nucl.Phys. B282 (1987) 13.
[8] Corrigan, E. and Hollowood, T.J., Nucl.Phys. B304 (1988) 77.
[9] Dolan, L., Goddard, P. and Montague, P., Nucl.Phys. B338 (1990) 529.
[10] Griess, R., Inv.Math. 68 (1982) 1.
[11] Thompson, J.G., Bull.London Math.Soc. 11 (1979) 347.
[12] Dolan, L., Goddard, P. and Montague, P., Phys.Lett. B236 (1990) 165.
[13] Tuite, M.P., DIAS preprint 1992, in preparation.
[14] Tuite, M.P., Commun.Math.Phys. 146 (1992) 277.
[15] Conway, J.H. and Norton, S.P., Bull.London.Math.Soc. 11 (1979) 308.
[16] Borcherds, R., Univ. Cambridge DPMMS preprint 1989.
[17] Ogg, A., Bull.Soc.Math.France 102 (1974) 449.
[18] Dixon, L. Ginsparg, P. and Harvey, J.A., Comm.Math.Phys. 119 (1988) 285.
[19] Tuite, M.P., DIAS-STP-90-30, To appear in Commun.Math.Phys..
[20] Vafa, C., Nucl.Phys. B273 (1986) 592.
[21] Gunning, R.C., Lectures on modular forms, (Princeton University Press, Princeton, 1962).
[22] Dong, C. and Mason, G., U.C.Santa Cruz Preprint 1992.
[23] Kondo, T., J.Math.Soc.Japan 37 (1985) 337.
[24] Tuite, M.P., DIAS-STP-91-25 Aug 1991.
[25] Lepowsky, J., Proc.Natl.Acad.Sci.USA 82 (1985) 8295; Kac, V. and Peterson, D., Proceedings of the Argonne symposium on anomolies, geometry, topology, 1985 (World Scientific, Singapore, 1985).; Corrigan, E. and Hollowood, T.J., Nucl.Phys. B303 (1988) 135.
[26] Wilson, R., J.Alg. 85 (1983) 144.

