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ABSTRACT

In this talk we consider the relationship between the conjectured uniqueness of the

Moonshine module V of Frenkel, Lepowsky and Meurman and Monstrous Moonshine, the

genus zero property for Thompson series discovered by Conway and Norton. We discuss

some evidence to support the uniqueness of V by considering possible alternative orhifold

constructions of V from a Leech lattice compactifled string. Within these constructions

we find a new relationship between the centralisers of the Monster group and the Con

way group generalising an observation made by Conway and Norton. We also relate the

uniqueness of V to Monstrous Moonshine and argue that given this uniqueness, then the

genus zero properties hold if and only if orbifolding V with respect to a monster element

reproduces ‘i) or the Leech theory.
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The Moonshine Module. The Moonshine module [1] of Frenkel, Lepowsky and Meur

man (FLM) is the first example of an orbifold CFT [2] and is constructed from a string

compactified to R24/.’L where A is the Leech lattice, the unique 24 dimensional even self-

dual lattice without roots i.e. A2 2 cf. [3]. The orbifolding is then based on the Z

reflection automorphism of A.

Let V’ denote the set of vertex operators {(z)} for the Leech lattice CFT which

forms a closed meromorphic operator product algebra (OPA) with central charge 24 [1.41

ó(z)ó(w) C(z — —hi—h, (w) +
... (1)

We will represent such an OPA schematically by . The i-ioop partition function

Z(T) = Tr(qL0) is a modular invariant and meromorphic function of with a uniclue

simple pole at q = e2 = 0 and is given by the unique (up to an additive constant)

modular invariant function J(r)

Z(r) = J(r) +24

1 . (2)
J(-i-)= —f- —744= - +0± 196834q±

q

The constant 24 reflects the existence of 24 massless (conformal weight 1) operators in this

theory. (r) = ql/24 fJ(1 — qfl) and E2(r) is the Eisenstein modular form of weight 4 [51.
The FLM Moonshine module [1] is an orbifold CFT based on the Z9 lattice reflec

tion automorphism : A —* —A for A A. lifts to a family of Z2 automorphisms of

V’ preserving (1) from which family one automorphism r is chosen. Defining the projec

tion 2r = (1 ± r)/2, the set of operators 2rVA then also form a closed meromorphic OPA

However, the corresponding partition function Trp(qL0) = 1(1 +
r

is not mod

ular invariant, employing standard notation for the world-sheet torus boundary conditions

e.g. [6]. Thus, under a modular transformation r —1/r, = 1/(r)
1 =

2’2(r/2) = 2’2q’2 ± ... where i(r) = [r(2r)/i(r)J24.Therefore the introduction of a

‘twisted’ sector with vacuum energy 1/2 and degeneracy 212 is necessary to form a mod

ular invariant theory [1,2]. The states of this sector are constructed from twisted vertex

operators V,- = {(z)} acting on the untwisted vacuum. Thus V’4’ is enlarged by Vr to

= V” EE Vr which forms a closed non-meromorphic OPA [1,7,8,9] where (schematicallv

(3)
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can also be lifted to an automorphism r of (3) where the operators of PrVr have integral

conformal weight. Then V P.V’ forms a closed meromorphic CPA, the FLM Moonshine

module [1]. The r projection ensures the absence of untwisted massless operators whereas

the twisted sector operators are all massive since the twisted vacuum energy is 1/2. Thus

the orbifold partition function is

Tr(qt0) = Pr + Pr = J(r) (4)
1 r

The absence of mass].ess operators in V sets the Moonshine module apart from other

CFTs. Usually such operators are present and form a closed Kac-Moody algebra. How

ever, the 196884 conformal weight 2 operators in V, including the energy-momentum

tensor T(z) can be used to define a closed non-associative commutative algebra. FLM

demonstrated [1] that this algebra is an affine version of the 196883 dimensional Griess

algebra [10] together with T(z). The automorphism group of the Griess algebra is the

Monster M. FLM showed that M is the automorphism group for the CPA of V where the

operators of V of a given conformal weight form a (reducible) representation of 1vI. This

demonstrates an observation of McKay and Thompson [11] that the coefficients of J(r)

are positive sums of dimensions of irreducible representations of ‘vI e.g. the coefficient of

q is 196884 = 1 + 196883, the sum of the trivial and adjoint representation.

We may identify an involution i e M, defined like a ‘fermion number’, under which

all untwisted (twisted) operators have eigenvalue +1(—1) where i also respects (3). The

centraliser of i can be found [1] to give C(iIM) = {g e Mig = gi} =224.Cof where

Co1 is the Conway simple group (the automorphism group Coo of A modulo the reflection

automorphism ), is an extra-special group and A.B denotes a group with normal

subgroup A with B = 4.B/A. This result is an essential part of the FLM construction

since M is generated by 2Jb24.Co1 and a second involution [10]. FLvI constructed .

which mixes the untwisted and twisted sectors, from a hidden triality symmetry [1,12] and

hence showed that the automorphism group of V is M.

The automorphisms i and r can be said to be dual’ to each other in the sense that

they are both automorp4aisms of V’ and that the subsets invariant under i and r, V’ and

V repectively, form meromorphic CPAs. In addition, we may ‘reorbifold’ V with respect

to z to reproduce VA. Thus
VI

2 2,.

(5)



where the horizontal arrows denote an orbifolding and the diagonal arrows a projection

[13].

Monstrous Moonshine. The operators of V of a given conformal weight form reducible

representations of M. The Thompson series T9(r) for g e M is defined by the trace

Tg(r) = Tr(gqL0) = +0 + [1 + (g)]q + ... (6)

which depends only on the conjugacy class of g where (g) is the character in the 196883

dimensional irreducible representation. Thus for i defined above, it is easy to show T(T) =

{(r)]’ + 24.

The Thompson series for the identity element is J(r) which is unique (up to a constant)

for the following reasons. Let F = H/P be the fundamental region where P = SL(2, Z)

is the full modular group and H is the upper half complex plane. Adding the point at

infinity, the compactification F is isomorphic to the Riemann sphere of genus zero where

the function J(T) realises this isomorphism. Such a function is called a hauptrnodul for the

genus zero modular group P. A modular invariant meromorphic function is a haup’tmodul

if and only if it possesses a unique simple pole. Once the location of this pole is specified,

this function is itself unique up to a constant cf. [5,14].

Based on experimental’ evidence, Conway and Norton [15] conjectured that each

T9(r) is a hauptmodul for a genus zero modular group Pg. This has recently been rigorously

demonstrated by Borcherds although the origin of the genus zero property remains obscure

[16]. In general, for g of order n, T9(r) is found to be invariant up to phases of order (at

most) h under Po(n)
= {(a

det = 1} where hjn and h124. Tg(r) is fixed by Pg with

P0(N) ç Pg C V(N) = {p SL(2,R)IpPo(N) = Po(N)p}, the normaliser of P0(N) in

SL(2,R) where N = nh. Furthermore, Pg is a genus zero modular group and T9(r) is

the corresponding hauptmodul with a simple pole at q = 0. Consider the elements of

prime order n = p. Apart from one class of order 3 with h = 3, we have h = 1 in each

case. Thus either Pg =Po(p) or Po(p)+, generated by Po(p) and the Fricke involution

—1/pr with = 1, the only non-trivial element of A/(p). Po(p) is of genus

zero when (p — 1)124 (p = 2,3,5,7, 13) where the hauptmodul is [(r)/(pr)]2d + 2d with

2d = 24/(p — 1). There is a class of M denoted by p— for each such prime with this

Thompson series e.g. the involution i belongs to the class 2—. Po(p)+ is of genus zero for

2 < p < 31 or p = 41,47,59,71, which constitute all the prime divisors of the order of f
- . . .-*
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[17]. Similarly, there is a class of iW, denoted by p+, for each such prime with Thompson

series fixed by Fo(p)+.

It is natural to interprete the Thompson series Tg(r) as a contribution to the partition

function for a further orbifolding of V with respect to g [18,14]. In particular, we expect

that under r — —1/r, Tg(r) transforms to the partition function for a g twisted sector

as follows:

Tg(r) g 1 = ,vgqE
+. (7)

1 g

where denotes a trace contribution to the orbifolding of V and Yg has vacuum energy

E and degeneracy Ng. For many classes of M, the method of construction of Vg is not

known. However, for certain elements discussed below and some others, a construction

can be given [14,13].

Consider now this orbifold picture of Tg(r) for the prime classes p+ and p—, although

the analysis given can be generalised to all classes [14,19,13]. Under a modular transforma

tion : r — we find g .+ g_d assuming that no extra global phase occurs
1

gC

[20] (such a phase corresponds to h 1 in the original Moonshine conjectures [14,13]).

For e I’o(p) with c 0 mod p we find : Tg(T) * Tg_d(T) Tg(r) since d and p are

relatively prime and Tg(r) is r0(p) invariant.

The genus zero property can be also understood as follows. Tg(r) always has a simple

pole at q = 0 (T = oG). The only other possible pole for Tg(T) is at r = 0 since the

fundamental region Fp = H/Fo(p) for Fo(p) has only these two cusp points [21]. From

(7), Tg(T) has a pole at r = 0 if and only if .Eg0 < 0. Thus Tg(r) is a hauptmodul for

r0(p) if and only if E 0. Also from (7), Tg(Wp(r)) = 1 (pr), so that Tg(r) is a
g

hauptmodul for ro(p)+ if and only if = —i/p and Ng 1.

For classes of type p1-, Tg(r) = 1 (pr) is a series in q with non-negative coefficients
g

since the RHS of (7) is the Vg partition function. For classes of type p—, Tg(r) has

coefficients of mixed sign. In general, all classes of M can be divided into two such types

i.e. classes with Thompson series invariant (or not invariant) under a Fricke involution

T — —1/Nr which are called Fricke (or non-Fricke) classes. There are a total of
- -. .,.‘
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121 Fricke classes all of which have non-negative coefficient Thompson series and. .51 non

Fricke classes with mixed sign coefficients for similar reasons to the prime ordered classes

described. This division of the classes of M will be important below.

The FLM Uniqueness Conjecture. FLM have conjectured that V is characteriseci

(up to isomorphism) as follows [1]: V is the unique meromorphic conformal field theory

with modular invariant partition function J(r) and central charge 24. This is analogous

to the uniqueness property of the Leech lattice as being the only even self-dual lattice in

24 dimensions without roots.

Let us now consider orbifold models based on other automorphisms a of the untwisted

Leech lattice theory V” lifted from automorphisms E Coo [19,22]. will be chosen so

that each model contains no massless operators, has a meromorphic OPA and is modular

invariant with partition function J(T) and hence, should reproduce Each a e Coo can

be parameterised as follows

det(x —
= fl(xk 1) (Sa)

kin

Zak =0 (Sb)

kin

with
kin kak = 24 where kin denotes that k divides n, the order of and {ak} are

integers. (8b) is imposed to ensure the absence of fixed points for so that no massless

operators in Y’ survive the 2a projection. For ri = p prime, we have a = —a1 = 2d where

(p — 1)2d = 24.

Since a is an OPA automorphism for VA, the a invariant subspace PaVA also forms

a closed meromorphic OPA. The partition function Trp(qL0) is not modular invariant.

as before, necessitatcng the introduction of sectors Va twisted by a. Thus under r —1/r

a
=

> 1 = D72 fl(r/k) = D1/2qE(1 + Q(q’)) (9)
1 Tla a kjn

with = FL i(kr) and Da = det(1 — a) where D/2 and =
— k are the

degeneracy and energy of the a twisted vacuum. Under r r + n, the a twisted partition

function is invariant up to a phase exp(2rinE). For modular consistency of the orbifold

partition function we must have nE = 0 mod 1 i.e. there is no global phase anomaly [20].
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In addition, if E > 0, then the a twisted sector does not reintroduce massless states. vVe

therefore restrict ourselves to Coo obeying [19]

Zak =0 (lOa)
kjn

E >0 (lOb)

nE =0 mod 1 (lOc)

There are a total of 38 classes of Co0 [23] that obey these constraints [19]. If we relax

condition (1Cc) then a further 13 classes of Co0 obey only (lOa-b) [24,13]. Each of these

13 classes is characterised by some h 1 where h124 with hjk for all a, 0. In all 51

cases the parameters {ak} obey ak = —ah/k and so = 1/nh which violates (1Cc)

for h 1.
a

is invariant up to phases of order h under Po(n) and is a hauptmodul

for Pa with P0(N) c Pa C A1(N), N = nh, where Pa is one of the genus zero modular

groups considered by Conway and Norton. Furthermore, since E > ,

a
cannot he

Fricke invariant and hence these 51 hauptmoduls are the 51 non-Fricke Monster group

hauptmoduls. Thus there is a correspondence between 51 classes {} of Co0 and the .31

non-Fricke classes of lvi. We will explicitly identify an element g E lvi of each such class

below.

Va with the partition function
1

of (9) has a standard construction [25]. Likewise,

Vak twisted sectors must be introduced for modular invariance and OPA closure. Then

the following intertwining non-meromorphic OPA should hold (schematically)

aiak ‘ ?kai+k (11)

with ak (z) e Apart from the original Z2 case, this OPA has only been rigorously

constructed in the prime ordered cases [22]. We will assume that it is true in general. We

therefore enlarge V’ by the introduction of Va to V’ = VA Va ‘ ... Va which forms

a closed non-meromorplic OPA. The projection Vrb = PaV’ then forms a meromorphic

OPA. (1Cc) is sufficient to guarantee the modular invariance of the corresponding partition

function. (lOb) can be also shown to be sufficient to ensure no massless operators appear

in PaVak [19,13]. Thus, for the 38 automorphisms obeying (lCa-c), the partition function

is modular invariant and is given by Zorb(T) = J(T). Therefore Vrb E according to the

FLM uniqueness conjecture. Let us now consider some evidence to support this.
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Let Mrb be the automorphism group of the OPA for Vrb where we expect M Mb.

We define a E M’rb of order n (which generalises the involution i in the original FLM

construction) under which all the operators of V are eigenstates with eigenvaluee2k/n.

a is also an automorphism of V’ and is ‘dual’ to the automorphism a where 2j =

and PjV’ = V’. Furthermore, we may reorbifold Vrb with respect to a to reproduce V

as before [13]

Pta Pa

a (12)
V 1a Vorb

Thus if Vrb E V, we can explicitly construct the twisted sectors V assumed earlier for

M. We may also compute the Thompson series for a E MQb by taking the trace over

‘“orb to obtain

T9(r) = Trva (jqLO) =
— a1 (13)a orb

which is the hauptmodul for the genus zero modular group Pa introduced earlier [19]. Thus

each a E Mrb dual to a has the same Thompson series as a corresponding non-Fricke

element of M e.g. for of prime order p, T(r) =[i7(r)/r(pr)]2d+ 2d = T_(r). Note

also, from (7), that Vj has vacuum energy E 0 and degeneracy —a1 > 0. (13) may

be generalised to the other 13 classes violating (lOc) where , of order n’ = ri/h, can be

employed to construct an orbifold with partition function J(r). Let g denote the lifting of

a where g = is dual to a, a lifting of all (for h = 1, gn = 1a). We may then compute

the Thompson series for g as a trace over Vrb to show that (13) again holds so that g

has the same Thompson series as a non-Fricke element of M [13].

We may also compute the centraliser C(gM) = {g e Mg’gg g}. For

the 38 classes with h = 1 this consists of automorphisms that do not mix the sectors

PaVak. For the other 13 automorphisms g, C(gIM) C C(ah IM). In general,

c e C’(aIiVIrb) must commute with a and therefore c is lifted from the automorphism

e = C(ajCo0)/ <a>. One can then show that [24,13]

C(gM) = (14)

where L = n.L, an extension of L = A/(1 — a)A by a cyclic group of order n. L arises

from the vaccum structure of Va where Da = LI. With Morb = M, (14) generalises

a a well-known observation of Conway and Norton concerning the 3 prime classes where
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C(p — i) p+2d.G and a = p— [15]. For the other 46 classes, there are 11 cases for
which (14) can be checked using the available information about these centralisers [15,26].

In general, the order of these groups agrees with (14) in each case supporting the very

likely validity of the result.

Both (13) and (14) support the conjecture that Vob E V. This can only be proved

by finding a generalised version of a in the FLM construction which mixes the untwisted

and twisted sectors [1,12] i.e. there should exist some permutation group E which mixes

the sectors of Vrb where C(gIM) and E generate M. In the prime cases p 2, has
been recently constructed and it has been rigorously shown that Mrb = M for p = 3 and
almost so for p = 5,7, 13 [22].

Monstrous Moonshine from the Uniqueness of V. Let us now assume that the

FLM Uniqueness conjecture is correct. We can then argue that Thompson series are

hauptmoduls if and only if orbifolding V with respect to elements of vI reproduces V or

1)”. Thus Monstrous Moonshine is intimately linked to the uniqueness of V.

From (12), orbifolding V with respect to the 38 non-Fricke elements a dual to a

reproduces VA. We may similarly consider the orbifolding of V with respect to theFricke
elements {f} with h = 1 which lead to a modular invariant theory VLb [14J3], given that

the operators Vfk can be constructed. Assuming that the Thompson series are haupt

moduls we find that Vb E V i.e. orbifolding V with respect to a Fricke automorphism

reproduces V again. Thus we have [13]

V +-L V (15)

For example, consider f an element of a prime class p+. Fricke invariance implies 1 E =
fk

Tj(r/p) = q_h/P+O+D(qh/P) so that there is a gap’ in the spectrum of Vfk and no massless

operators are reintroduced in orbifolding V°. Thus the modular invariant partition function

for VLb is J(T) and hence Vb E V. A similar argument can be made in the general case

[13].

The converse to the above also holds i.e. assuming that (15) is true for all auto

morphisms of M that define a modular consistent theory, then the Thompson series are

hauptmoduls. To see this, firstly consider an orbifolding with respect to a E M which

reproduces V”. a must be dual to one of the 38 automorphisms obeying (lOa-c) and has

non-Fricke invariant Thompson series (13) which is the hauptmodul for a genus zero group.
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Similarly, as discussed above, the other non-Fricke automorphisms can also he found with

a corresponding genus zero Thompson series. For the remaining Fricke classes of M we

provide an argument for f an element of prime order. We wish to show that
‘‘

has the

correct vacuum structure so that Tf(r) is a hauptmodul forr0(p)+. In the orbifolding

of yq with respect to f which reproduces let if E M be dual to f with eigenvectors

Vfk for eigenvaluee2r1k1n. Then it can be shown that TZf(T) = Tf(T) so that f is in the

same class as f. Furthermore, the centralisers obey C(fIM) C C(ifIM) with the necessary

equality only when the Vf vacuum is unique i.e. Nf = 1. Since the twisted sector Vj does

not reintroduce massless operators, the vacuum energy obeys either (a) E = —i/p or (b)

> 0. (a) is possible because the absence of massless operators in allows for a similar

‘gap’ in the spectrum of Vg. If (b) holds, then Tj(r) has a unique simple pole at q = 0

and must be a hauptmodul for r0(p) with (p — 1)124 and Tf(T) = {(r)/(pr)12d + 2d.

However, this is impossible since then = 0 with Nf = 2d from (7). Thus (15) implies

that Vf has vacuum structure = —1/f with Nf = 1 and hence, as described before,

Tf(r) is a hauptmodul for the genus zero group ro(p)± and f is of class p+. A similar

argument can be given for the other Fricke classes [13].
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