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Abstract: The pressure in the thermodynamic limit of a non-ideal Boson

gas whose Hamiltonian includes only diagonal and pairing terms can be

expressed as the infimum of a functional depending on two measures on

momentum space: a positive measure describing the particle density and
a complex measure describing the pair density. In this paper we examine
this variational problem with the object of determining when the model
exhibits Bose-Einstein condensation. In addition we show that if the

pairing term in the Hamiltonian is positive then it has no effect.

Resumé: Dans un modèle de gaz de Bosons en interaction dont l’hamil

tonien ne contient que des termes diagonaux et des termes de paires, la
limite thermodynamique de la pression est donnée par l’infimum d’une
fonctionnelle dépendant de deux mesures sur l’espace des impulsions: une
measure positive correspondant a la densité de particules et une mesure
complexe décrivant la densité de paires. Dans cet article, nous étudions
ce problème variationnel pour determiner quand le modèle exhibe une

condensation de Bose-Einstein. De plus, nous prouvons que si le terme
de paires dans l’hamiltonien est positif, ii est sans effet.
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§1. Introduction

Consider a system of identical hosons of mass m enclosed in a cube . C
d of volume V centred at the origin. If the particle interaction is defined by

a translation-invariant two-body potential e L2(P), then assuming periodic

boundary conditions, the Hamiltonian of the system in the second-quantized form

is given by:
1 -

(q)aqai_qakIak, (1.1)
q,k,kIEA*

where

(q) = I dx (x)ex,
JRd

a and aj are the boson creation and anihilation operators,

= (V) fdx a*(x)ei, ak = (V) fdx a(x)ethx,

= {2irs/Vl/d : s Z’} and T = kEA (k)Nk with Nk = aak and E(k) =

kU2/2m.

One of the most interesting questions in the study of boson systems is the

persistence of Bose-Einstein condensation in the presence of the interaction. For

the Hamiltonian (1.1) this problem has so far been intractable; for this reason

one is led to the study of model Hamiltonians which exhibit some fundamental

properties of the original Hamiltonian (1.1) and which are at the same time simple

enough so that they can be solved analytically. The only models which have been

studied fully so far are “diagonal models “, that is ones in which the Hamiltonian

can be expressed in terms of the occupation number operators Nk [1 - 6]. The

next step is to include “pairing” terms aak and akak. Let H’ be the “pair

Hamiltonian” [7 - 10], that is the part of H in (1.1) which can be expressed in

terms of diagonal and pairing terms; then H’ is given by

H = T + (0) aa,ak’ak + — k)a,aak’ak

k,k’ k,k’(±k)

1
(1.2)

+ (q)aqak_qa_kak.
k,q(±O)

Three types of scattering interactions are taken into account in (1.2): forward

scattering interaction: q = 0, exchange scattering interaction: q = — k (k’ ±k)

and pair scattering interaction: k’ = —k, similar to the interaction in the BCS
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model [11]. The restrictions in the sums are necessary to prevent duplication of

terms.

If only the forward scattering terms ares included in (1.2) the model reduces

to the mean-field model:

= T + 0)N(N — 1), (1.3)

where N = Nk; this model has been studied exhaustively [12].

Adding exchange scattering terms gives the Hamiltonian

(k’—k)Nk,Nk. (1.4)
— k.k’(k±k’)

If the constraint k ±k’ is dropped this model corresponds to the “perturbed

mean-field” model with Hamiltonian

=T+Z(k’—k)Nk’Nk, (1.5)
k

this model is the subject of [2] and [5].

The diagonal part of the “pair Hamiltonian”(1.2) is

T + (O)N(N 1) + (k — k’)NkNk’. (1.6)
k,k’(±k)

If the constraint k’ —k is removed, then (1.6) coincides with the “full diagonal

Hamiltonian”

= T + (O)N(N — 1) + (k
— k’)kNk’ , (1.7)

k,k’(k)

treated recently in [6].

Here we study a modified version of (1.2) which contains pair scattering terms;

more precisely, we consider the following pair Hamiltonian:

= v(k,k’)NkNk’ + u(k,k’)aaIka_k’ak’. (1.8)
k,k’EA k,k’EA

Below we impose conditions on the. u(k, k’) and v(k, Ic”) to ensure the existence of
the grand canonical pressure in the thermodynamic limit.

In the series of papers [2 - 6] in which the diagonal models mentioned above

were studied, the pressure in the thermodynamic limit was expressed as the supre

mum of a functional over the space of measure. The minimizing measure can be
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interpreted as the equilibrium distribution of the particles according to their mo

mentum; in particular an atom in the measure is interpreted as the occurrence-

of Bose-Einstein condensation. The main technical tool used in these papers was
raradhans Large devition theory; this was possible because of the commutative

nature of these models. These techniques were extended to non-commutative inho

mogeneous mean-field models by Cegla, Lewis and Raggio [13], Duffield and Pulé

[14, 15] and Raggio and Werner [16]. However and in all these cases the operators

involved in the Hamiltonian are bounded. In the model under investigation in

this paper the operators do not commute and moreover they are unbounded. We

again give a variational formula for the pressure; the proof of this formula will
be given in another paper. This time the variational formula is over two parame
ters: one parameter again describes the distribution of particles according to their
momentum while the new parameter describes the pair density.

We should mention here that some models intermediate between the diagonal

models and the pairing models have been studied; among these the best known is

Bogoliubov’s model [17, 18] which recently has been re-examined from the stability

point of view [19].

Let p,,V() be the pressure for the Boson gas with Hamiltonian given by

(1.8). Then we have the following variational formula for the pressure in the

thermodynamic limit p’() = limvpr”(,u):
For A C Rd let

vv(A) = (A fl A*) (1.9)

and let v be the limit of the measure ‘Iv as V tends to cc. Let M be the space
of complex bounded measures on R’ and M+ C M the set of positive bounded

measures. Let t : Rd ,S Rd be defined by t(k) = —k and for in E M let , E M be
defined by

= (m + m o t). (1.10)

F is the set of pairs (m, n), with m Ji and n ]‘vi satisfying:

(i) n = n o

(ii) ri is absolutely continuous with respect to ri;

(ii) if(k) = (k) then (k) 1;

(iv) if p(k)
= () (k)

(p(k) + p(-k))(k)J2 (p(k) + p(-k) +2) (1.11)

and

(p(k) + p(-k))2l(k)I2 p(k)p(-k)) + min(p(k), p(-k)). (1.12)

3



For k e Rd let

R(k) = {((k) +p(-k) +
- (p(k) +p(_k))2J(k)2}+{p(k)_p(_k)_1},

(1.13)

and for x 0 let

.s(x) = (1 + x)ln(1 + x) — xlnx; (1.14)

then
pUU(,LI) =

— inf E(m,n.). (1.15)
(m,n)EF

where

E(m,n) = f(e(k) — )m(clk) + ff v(k,k’)m(dk)m(dk’)

Rd

+ f f u(k, k’)n(dk)n(dk’) — f s(R(k))v(dk). (1.16)

RdxP Rd

The variational formula (1.15) will be proved elsewhere. Here we restrict ourselves

to the study of this variational formula. If (m, n) is a minimizer of 6, then we

can interpret m as the equilibrium density of particles and n as the equilibrium

density of pairs. We identify the presence of an atom with respect to ji in m as

the presence of a Bose-Einstein condensate. In examining the variational problem

we are interested mainly in determining when Bose-Einstein condensation occurs

and the value of ri when this happens.

If the kernel u is of positive type then since x s(x) is increasing it is clear
that for all allowed ri

E(m,n) > E(m,O), (1.17)

and therefore
pUV() =

— inf (m,0). (1.18)
mEM+

Now we have proved in [2, 5] that for the perturbed meanfield model with Hamil

tonian given by (1.6) the pressure pIF’(1j) is given by

pPMF() =
— inf EfF(m), (1.19)

mEM+

where

EPMF(m) (rn,0). (1.20)
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Thus if u is of positive type

pUV() = pPMF() (1.21)

This result can be proved more directly; this we shall do in Section 2. In Section

3 we shall study the variational problem (1.15) in general when u(k, k’) 0 for

all k, k’ e pd. in particular we shall prove the infimum is attained and that every

minimizer satisfies the Euler-Lagrange equations for the problem. In Section 4 we

shall study in detail the variational problem when u and v are constants.

§2. Positive u

In this section we consider the model with Hamiltonian defined in (1.8) in the

case when u is a positive definite kernel and give a direct proof of the assertion

(1.21). To be able to make use of the results in [2] we shall assume in this section

that v satisfies the following condition:

v : Rd x Rd —+ R is a bounded, continuous, positive definite function; there

exists a continuous, strictly positive, symmetric function v0 : R’ x Rd
_÷ R such

that for all in

f xRd
v(k, k’)m(dk)m(dk’) fd xRd

vo(k,

Proposition 1. If the kernel u is bounded and positive definite then

pUV() = pPMF()

for all 1u E R.

Proof: Since u is of positive type then clearly

HU H’ (2.1)

where HPMF’ is as in (1.5); thus for gu E R

(2.2)

and

limsupp7([L) lim PMF() PMF(1) (2.3)
V—+oo V*oo
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To prove the upper bound let a <0 and let

V1 {t Cb(Rd) : inf(E(k) — a — t(k)) > O}, (2.4)
kR

where Cb(Rd) is the space of continuous bounded functions on Pd; for t E V1 let

Ht = ((k) — a t(k))Nk. (2.5)
k EA

By convexity we have that

lntracee lntracee_t+
— ((H _Ht))t+a, (2.6)

Htwhere (A)+ = trace e’ A/trace e . Let

p(k; t, a) = (exp 3((k) — t(k) — a) — 1)’, (2.7)

then

(Nk)t+a = p(k;t,a) (2.8)

and

(NkNk’)t+a = p(k’t,a)p(k’;t,a) if k (2.9)

= p(k;t,a)(2p(k;t,a) + 1). (2.10)

Weaisohaveforkk’ andk—k’

L

The first term in the right hand of the inequality (2.6) can be computed to give

in trace =
— fpd

ln(1 — e_t_)vv(dk)

(2.12)

= f(E(k) - )vv(dk) - s(p(k; t, a))vv(dk).

To compute H’’)+ we write H’ in the form

= Z€k) —)Nk +v(k,k)N

+ v(k, k’)NkNk’ + 0)(N — N0)
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+(u(k, —k) + u(k, k))NkN_k + bbkb_kIbk; (2.13)
kO kk’

using (2.8), (2.9), (2.10) and (2.11) we then get

= f(E(k) —)p(k;t,a)vv(dk)+

9 f fd d
v(k, k’)p(k; t, a)p(k’; t, a)vv(dk)vv(dk’) + , (2.14)

where

CV = I v(k, k)p(k; t, a)(p(k; t, a) + 1)v(dk) + u(0, O)p(O; t, a)

+ f {u(k, k) + u(k, —k)}p(k; t, a)p(—k; t,a)vv(dk). (2.15)

Finally

(Ht)t+a
= fRd(e(k) — t(k) — a)p(k;t,a)vv(dk). (2.16)

Putting (2.12), (2.14) and (2.16) into (2.6) we obtain

pV 1 d(
— t(k) — a)p(k; t, a)VV(dk) —

fRd
( — e _t(k)_a)v(dk) +

(2.17)

and thus since cv is bounded,

liminfp f( — t(k)— a)p(k; t, a)(dk) — fR ln(1 —e_t_v(dk)

—— pMF(m ),
(2.18)

where mta(dk) = p(k; t, a)z(dk). It was proved in [2, Theorem 1] that for each

m e M+ there is a sequence {t} in V1 such that

TPMF(rn) ‘PMF() (2.19)

Therefore from (2.18) we get

1iminfp7 — inf pMF(m)=p(It);
mEM÷

thus combining this with (2.2) we obtain

pUV = liminfp’ =
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§3. The general variational problem

If m is a complex measure on pd bounded or unbounded and w : Rd x Rd C

we shall write (wm)(k) for fRd w(k, k’)m(dk’); also if f: Rd
— C we shall denote

the measure f(k)rri(dk) by frn. If f : Rd
_÷ C and m is a complex measure on Rd

we shall write (m, f) for IRd f(k)rn(dk). With this notation we have

1 1 1
E(rn, ri) = (rn,

—

j) + (rn, vrn) + (n, uñ) — (v, s o R). (3.1)

We shall make the following assumptions on u and v:

Al. u is symmetric and u(k, k’) 0 for all k, k’ Rd

A2. v is a bounded, continuous, positive definite function; there is a numberS> 0
such that (rn, (v + ü)rn) SmW2 for all m E M, where

(k, k’) = {u(k, k’) + u(k, —k’) + u(—k, k’) + u(—k, —k’)};

A3. there is a constant C < s such that for all k Rd (IuIv)(k) C,

A4. (vjuzi)<oc.

Under the conditions (Al - A4) we have that:

Proposition 2. The functional E’i : F —p R is bounded below.

Proof: For (m,n) E F,

(th, Iujth) ((I2th, IulIJ2))((th, ulth))4,

by the Schwarz inequality.

From (Al) and (A2) we get (rn(v—üj)in) 0 and therefore (th, Ith) = (rn, ülm)
(rn,vm); and so

(, uñ) ((II2th, IuHI2th)) ((m, vm)) .

Thus

(rri,vm) + (n,uñ) (mvm)
— I(n,un)I

{((mvm)) - ((I2th, IIJI2th))}((m,vm);

using the inequality x
—
y .(x — y)x’ we then get

(m,vm) + (n,un) {(m,vm)
- (l thjuHj th)}.
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But by (ii) and (iv) we have
27

‘ + rn;

thus
(I2th, uILI2r) (ruth) + 2(, Iu) + (i/, zii)

<(rn, Iirn) + 2CUm + (u, fujii).

Therefore

(m,vm) + (n, uñ)> {(rn(v + ñ)m)
- 2CHmH

-

(v, uv)}

{SWrnW - 2KHrnI - C}.

ow let a <0, then

n) = (rn, 6 — a) + (a
— )WmW + (rn, vm) + (n, uñ) — (v, s o R)

s o R) + {6UmII2 - 2(I( +
- a)WmII - C.

Let
(A + a)2

inf {6WrnU2 — 2(K +
— a)IImU;6 mEM+

then since s is increasing

(3.2)

where 1(m) = (m, e — a) — (v, s o p).

Since

inf 1(m) = — I ln(1 — e)v(dk) > —a
mEM+ /3 JRd

E is bounded below.

We now make an additional assumption A5 which allows us to prove that the

infimum of E, is attained in F:

A5. There is a compact set B C Rd satisfying t(B) = B such u(x,y) < 0 for

(x,y) E B x B and u(x,y)= 0 for(x,y) B x B.

Proposition 3. There exists (m*,n*) F such that

v(m*,Ti*) inf (m,n).
(rn, n) E F
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Proof: Let M be equipped with the narrow topology that is the weakest topology

for which the mappings in -* (rn, f) are continuous for all f E Cb(Rd). Let a <0

and let

V = {(f,g) e V1 x Cb(Rd):

inf((e(k) - a - f(k))(E(k) - a - f(-k)) - g(k) + g(-k)12)> 0}.
kER

Define C : V —* by

C(f,g) = f{(k) - a f(k) + E(k) - 21n(1 -

where

E(k) = -{((k) - a - f(k) - f(_k))2 - Ig(k) g(_k)2}

and

E+(k)=E(k)+(f(k)-f(-k)).

For (m,n) e M x M let

I(m,n) = sup {(in,f) + (n,) + (n,g) — C(f,g)};
(f,g)ED

then for (m,n) F, I(m,rz) = cx and for (m,n) e F

I(m,n) f((k) — a)m(dk) — (v,s oR). (3:3)

Since I is the supremum of a family of functions which are continuous in the
product topology on M+ x M, I is lower semi-continuous in the product topology.
Now m (in, vm) is continuous and n —* (ri, ‘uñ) is lower semi-continuous in the

product topology (see [2]) and therefore if we define

= (a — )lImIl + (m,vrn) + (n,uh) + I(m,n) (3.4)

for (m, ii) E M+ x M then E,,, is lower semi-continuous; clearly ri) =

for (m, n) F and for (m, n) F the definition coincides with (1.16).

Let e0 = inf(m,n)EM+x/f v(in,TZ) = inf(rn,n)EF e(m, n). Then e0 E(0, 0)
0; if ej = 0 then there is nothing to prove. Suppose e0 < 0; we can find a se

quence {(rnr, r)} in M+ xM such that (v(inr, flr) <0 and limrc v(mr,Tir) =

e0. Since E, is lower semi-continuous it is sufficient to prove that {(mr, 12r)} has
a convergent subsequence. Since (Irir, uIrirI) S (rir, Uflr) we can assume that each
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r’r is a positive measure; also because of assumption A5 and the fact that s is an

increasing function we can assume that each rrzr has support in B.

By the inequality (3.2)

I(mr) —A;

but it was proved in [2, Theorem 3] (see also [6]) that I has compact level sets in

M+; therefore {mr} has a convergent subsequence {mr3 } in M+. Now

= r(B) = lB
2 )} {r(B)}

<{v(B) + thr(B)}{iir(B)}

by inequality (1.11).

Therefore

1 {v(B) + rn }

and since B is compact and mr3 1 converges, {Wr. I} is uniformly bounded. But

r3 (BC) = 0 and so rir3 has a convergent subsequence. Thus we have proved that

(rnr, nr) has a convergent subsequence.

In the following proposition we collect together the properties of minimizers of E

which we shall need. If m e we shall denote its singular part in the Lebesgue

decomposition with respect to v by m3.

Proposition 4. Let (m,n) E F be a minimizer of,, then

(i) p(k) > 0, ti-a.e.

(ii) (p(k) + p(-k))I(k)j <p(k) + p(-k) +1 u-a.e.

(iii) a(k) = 0 u-a.e. for k E BC.

(iv) I(k)I = 1 th3-a.e. for k e B.

(v) Either (k) = 0 th-a.e. for k B or I(k)I > 0 ii-a.e. for k E B.

(vi) Ifm8(B) > 0 then o(k) > 0 v-a.e. for k E B.

Proof: (i) By (1.12) we have that if p(k) = 0 on a set of non-zero v-measure

then o-(k) = 0 and therefore R(k) = p(k) = 0 on this set; since .s’(O) = oo this

value of E(m, n) can be decreased (see [2] Lemma 5.2)

(ii) By (1.11) (p(k)+p(-k))2(k)2<(p(k)+p(-k))(p(k)+p(-k)+2) = (p(k)+

p(k)+1)2—1.

(iii) follows from the fact that s is increasing.
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(iv) We know that o(1c) 1; (ii, s o R) is unchanged if o is changed on a set of

zero v-measure. Now

(n, un) =

- ff j(k)!J(k’)II(k, k’) cos((k) - (k’))th(dk)(dk’),

BxB

where a(k) = arg (k). Therefore cr(k) = const th-a.e. and o(k) = 1 Tk9 - a,e.

forkEB.

(v) Let A = {k E B : u(k) = O}; note that th3(A) = 0 since o(k) = 1 iii3

- a.e. for k E B. Let à(k) = u(k) + 1A(k) where 0 < < 1 and

= 4(p(k) + p(—k)); let ñ(dk) = à(k)th(clk), then

E(m, ) -
n)

=

ff (k)u(k, k’)(k’)v(dk)v(dk’)

AxA -

-

v(dk)
p(k)p(-k) f th(dk’)u(k, k’)II(k’)I

A p(k) B\A

+ IA -

where R(k) = {((k) + )2 (k)2Ià(k)I2} + (p(k) - p(-k) - 1).

Since s is concave we have for /c A

(s(R(k)) s((k))) <‘(R(k) - (k))s’(R(k))

<R(k) - (k) = 2p(k)p(-k)
<(k)

- R(k) R(k)(R(k) + R(k) - p(k) + p(-k) +1) -

since R(k) = p(k) for k e A, R(k) — p(k) + p(—k) > 0 and 1(k) — p(k) +
.p(—k) > 0. Therefore

f(s(R(k)) - s((k)))v(dk) ImW

and thus

E(m, n)
—

n) IA v(dk)
fB\A

m(dk’)u(k, k’)H(k’) + o(E2).

‘fA
P(:_k)v(dk)fB\A(dkf)Iu(k,k!)ItJ(k/)I 0, (rn,ñ) <E(m,n) if

is sufficiently small contradicting the assumption that m is a minimizer; therefore

IA (dk)fth’)Ju(kk’)II(k’)I =
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Therefore either ii(A) = 0 or fri(B \ A) = 0

(vi) fn3(B) =i3(B \ A); therefore if th8(B) > 0 then th3(B \ A) > 0 and so by

(v) (A) =0.

We shall now give a set of Euler-Lagrange equations for the variational prob

lem under consideration. It is convenient to a introduce a new variable c where

c(k) = (k)o(k); we know that we can assume the c(k) > 0 i-a.e. in B and

c(k)2 < ,6(k)( + ,6(k)) z-’-a.e. Since we can also assume that (k) = 1 ñi3-a.e.

our variational problem is equivalent to minimizing the following functional:

E(m,c)
= fR) —i)m(dk) + (m,vm)

+ ff c(k)u(k, k’)3(k’)(dk)v(dk’)
- BxB

+ ff c(k)u(k, k’)v(clk)th3(dk’)
2 BxB

+ ff 6(k)u(k,k’)v(dk)i3(dk’)
BxB

+ ff u(k,k’)th3(dk)’th3(dk’) — f s(R(k))v(dk),

where

R(k) {((k) + )2
- c(k)I2} + (p(k) - p(-k) - 1).

By varying ma, m3 and c we obtain the following Euler-Lagrange equations. Let

L(m, k) = f(k) — — (vm)(k), (3.5)

E(k) = {[L(m,k) + L(m, -k)]2 - (un)(k) + (un)(_k)2} (3.6)

and

E(k) = E(k) ± [L(m, k) - L(m, -k)]; (3.7)

then we have:

Proposition 5. If(m, n) is a minimizer of then (m, n) satisfies the following

Euler-Lagrange equations:

2p(k) + 1 =
[L(mk+L(m_k)

+i] coth E(k)

+
i] coth çE(k) v-a.e.; (3.8)
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if0,forkeB

(k)13(k) — lcoth -E+(k)+coth -E(k)
(un)(k) + (un)(-k) - 8 E(k)

V a.e.

and

L(m,k) + {(un)(k) + (un)(-k) + (iiñ)(k) + (uñ)(-k)} 0 m-a.e. (3.10)

We note that if (m, ri) is a minimizer of then as a consequence of the

Euler-Lagrange equations we have:

pUV
= (m,vm) + (ñ,un) — f ln(1 —

eE+)v(dk). (3.11)

§4. The variational problem with u and v constant

We shall now study the variational problem in the special case when

(1) v(k,k’)=a>O

(2) B={k:lkJ<r}
(3)

u(k k’) = 1 —
if (k, k’) e B x B,

0 otherwise,

where 0 <y <a.

It is clear in this case that if m is a minimizer of E and m3 0 then m3 is
concentrated at k = 0, that is Im3I = m{0}. Equations (3.8) and (3.9) now

become

p(k) =
[((k) -+aW7n)

cothE(k) 1] (4.1)

and if a 0 for k E B

(k)p(k) — cothE(k)
42

7fn(dk) - E(k)

where

E2(k) = (c(k) - + aIImI)2 - 72(f n(dk))2

= (e(k) — + aj!mlI)2 for k B.

Here (3.10) becomes

alimil - =7f n(dk) if m{0} 0. (4.4)

14



From (4.1) it is clear that

e(k) — t + aUmH 0 — a.e.;

letting k —* 0 we get amW — ,u 0. Also from (4.3) we see that for k B

7fn(dk) <e(k) —+ctjmj

and again letting k - 0 we get

7fn(dk) <am -.

We introduce new variables x y > 0, where x = aUrnI — t and y = ‘ f ri(dk).

In terms of x and y

E(k) = f ((e(k) + x)2 — 2) for k e B
l(k)+x forkB

and equations (4.1) and (4.2) can be re-written as

p(k) = coth E(k) 1] (4.5)

1 E(k)
u(k)p(k) = ycoth

E(k)
fork B. (4.6).

Equation (4.4) implies that x = y if m0 m{0} 0.

Consider the case when Trio = 0. In this case we can integrate (4.5) to get

a
fRd [‘ cothE(k) _i] v(dk) (4.7)

and integrating (4.5) we get if y 0

a = L E(k)
coth E(k)v(dk), (4.8)

where a = > 1. Let Pc I e)—1
v(dk). It is straightforward to check that if

,u <apc then the equation .

x+= J [coth _i] v(dk)

15



has a unique solution x(t); then

m(dk) = [coth
+ x())

- i] (clk),

is a solution of the Euler-Lagrange equations.

Let us consider now the case when rn.0 0. In this case x = y and we know

from Proposition 4 (vi) that g 0. Letting

E(k) = f (((k) + x)2 — x2) for k B
forkB

and integrating equations (4.5) and (4.6) we now get

— am0 = )af coth(k) — v(dk) (4.10)

ax—am0
=a f cothv(dk). (4.11)

x 2 JBE(k) a

Equivalently

(a—1)x-=a 1 1—
e(k)

coth v(dk)
“ J 9

(4.12)

—a i(dk)
JBC e(E(k)+1)

— 1

and

mo = (x+)- fd coth(k) _i] v(dk). (4.13)

Therefore, the Euler-Lagrange equations have a solution with m0 > 0 if and only

if (4.12) has a solution with the right-hand side of (4.13) strictly positive.

The expression (3.13) for the pressure now becomes:

pUV()
= (x + )2

— IyI2 — ln(1 — e)v(dk).

E(k) is the spectrum of the elementary excitations of the model; we note that if
m0 = 0 then it is possible that x > y and

lim E(k) = (x2 — 2)
> 0,

k—*0

16



while if m $ 0 then x = y and

E(k) = E(k) (2e(k)x)

for small k. This means that in our model with the interaction defined by u(k, k’)

and v(k k’) as in (1.8). the occurrence of Bose-Einstein condensation produces a

phonon spectrum for small k, while the absence of condensation creates a gap. It

was observed in [8, 20, 21] that for the pair Hamiltonian (1.2) there is a gap in

the spectrum. However in contrast with our model, in this case the gap appears

when Bose-Einstein condensation occurs and various attempts were made to rectify

this unphysical behaviour of the model (1.2) [10, 22-26]. Our model is thus more

satisfactory from the physical point of view; this is achieved at a price, namely a

deformation of the original interaction (1.2) to the model (1.8) and a particular

choice of the kernels u(k, k’) and v(k, k’).

To study the problem further we shall make the following definitions

I(x,y) = )af
E(k)

cothE(k)v(dk) x > y >0, (4.14)

12(x, y) = a f coth E(k) — i] v(dk) x y > 0. (4.15)

Let xi(y; c) be the solution of Ii(x,y) = o as an equation in x for the values of

y for which it exists (xi(y,) exists for all c) and similarly let x2(y;jL) be the

solution of 12(x, y) = x + [L for the values of y and for which it exists. The

properties of I, 12, x1 and x2 are given in the appendix.

Let Ii(x) = Ii(x,x) and 12(x) =12(x,x); let o = sup>0(I2(x) — x). Since

12(0) = apc, /o apc. Finally let

A(x) = af [i
— coth

E(k)]
v(dk) — af

e(k)±1)
— v(dk). (4.16)

x i— A(x) is strictly increasing and strictly concave; A’(O) = , A(0) = UPc and

A(x) — i-aK as x —p co where K = v(B).

Consider the equation (see figure 1)

(a — 1)x — = 4(x). (4.17)

/2 > apc this equation has a unique solution. For a> 1, let u1(a) be the unique

value of 1i —aK <i <ape such that (4.17) has a unique solution. Then for fixed

a, we have the following:

(i) if/2 > apc, (4.17) has a unique solution,

17



m(dk) = mcYo + p(k)v(dk)

= m6o + e*(k)p*(k)i4dk)

p(k)
1 IE(k)+X*coth!4E(k,s*)_1]
: [E(k,xs)

• : :

• (ii) if apc p > pi(a), (4.17) has two solutions,

(iii) if p <pi(a), (4.17) has no solutions.

We remark that if x is a solution of (4.17). then by (4.13) .r corresponds to

a solution of the Euler-Lagrange equations if

X+p_I2(X*)0.

Let i(a) be the solution of x(y,a) = y that is the value of .r (ory) when xi(y,a)

hits x = y. Then Ii(t(a)) = a and therefore at x = .ti(a). (x) = 1; but

41±(x) <0 and therefore <0 so that a ‘—‘ .Ij(a) is decreasing. Also as a —‘ 0,

ti(a) —, cc and as a —e cc, ti(a) —b 0.

Ifs satisfies 12(5) = £ + p, then .r <Ii(a) implies that 4(s) > (a — 1)x — p
and x > ii(a) implies that A(s) <(a — 1)s — p. This follows from the identity

(4.18)

and the fact that Ii is decreasing.

We now solve the variational problem in some regions of the a-p plane; we
have not been able to exhaust the a-p plane, however our results give an indication
of what can occur. In figure 2 we have labeled the regions of the a-p plane we can
deal with. parRegion A: p > P0. This is the simplest case. We have in this case
thatforailx>0

since y ‘— 12(5, y) is decreasing; therefore x + p — 12(5, y) has no solution for any

y. On the other hand if x’ is the unique solution of (4.17) then

>0;

this means that 8, has a unique minimizer (in, n) where

(4.19)

where • • • • •

(4.20)

and • •

(4.21)6(k)p(k)=x cothj3E(k,x).
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Before we examine the other regions we make some general remarks. For each

a > 1 there is a unique value of t such that

A((a)) — (a — 1)1(a) +‘ = 0:

let i2(a) be this value of t. Note that Atl(a) p2(a) < ,uo. The shape of the

curve p2(a) is given in figure 2. Let i > t2(cto) and let (a1, [1), (a2, t) with

1. a1 2 < oo be the endpoints of the segment parallel to the a-axis which

is contained in t t2(a) and contains the point (co. pt). Let Xu = 1(a1) and

XL = i (a2); since both rr and i satisfy

I2(X) = .r +

if XL < x < Xu then I2(X) < X + t (figure 3). Also since a1 < a0 < a2,

XL < i(a) < Xu and thus

A(Xu) — (a
— l)1u +t <0< A(i) — (a — l)XL +i.

Therefore there is a solution of

— (a — 1)X* +t = 0,

satisfying XL <x <xu and thus

X* +t — 12(X) >0.

This means that there is a solution of the Euler-Lagrange equations of the form

(4.19).

Region B: We have seen that above that in this region there is a solution of the

Euler-Lagrange equations with rn0 > 0. Here a2 = c so that XL = 0 and for

x < xrj, 12(x) < x + ,u; therefore since Xi(y,a) and X2(y,u) are increasing they

never intersect. Since for i > apc a solution with y = 0 and m0 = 0 is not possible,

the situation is as in region A.

Region C: Similar arguments show that there is a unique solution of the Euler

Lagrange equations with ii ü and rn0 = 0.

Regions D, E, F: Again the above argument shows that there is a solution of

the Euler-Lagrange equations with m0 0 but we cannot exclude other solutions.

Region G: If ,u < bLi(a) then A(x) = (a — 1)x — t has no solutions and therefore

there is no solution with m0 0. In general we cannot determine whether n = 0.
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Region H: Here ,u < [t3(a) where [13(a) is the value ofz which satisfies 1(a) =

x9(O,,u). Since (a) < 12(0,/i),x1(g.a) and x2(y,z) cannot intersect. Therefore

the Euler-Lagrange equations have only one solution with a = 0.
Finally we remark that if a < 12(0. t) + aK + ii then

I1(x1(O,a).O)=a<1.2(0,/i)±ctK±/i=I2(I2(0,t)O)+aK=Ii(x2(O,/i),0).

‘Therefore xi(O, a) > r9(O,[L), and so li(g, a) and x2(y, ,u) cross and the Euler-

Lagrange equations have a solution with a 0. It is possible to check that in

this region the solution with a = 0 does not correspond to a minimizer. As

— —aK. Q(L) —* 1, therefore if ciK > 1 it is possible to satisfy ao(L) <a <

x2(O.i) + aK +

Concluding Remarks:

(a) The presence of Bose-Einstein condensation m0 0 causes abnormal

pairing a 0 (the Hamiltonia.n (1.8) is gauge invariant). In this case there is no

gap in the spectrum and we expect both the one-particle and two-particle reduced

density matrices to display off-diagonal long-range order (ODLRO).

(b) There is a region where m0 = 0 while a 0; in this case we expect

ODLRO to occur in the two-particle reduced density matrices but not in the one-

particle reduced density matrices. There is the possibility of a gap in the spectrum

of excitations.

(c) For small (region H) we do not expect ODLR.O and the model (1.8) is
equivalent to (1.5); there is no gap in the spectrum.

The possibility of “two-stage” condensation, that is. condensation in the one-
particle and two-particle states was discussed in [27); there the model displays a
similar behaviour.
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