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Abstract: The pressure in the thermodynamic limit of a non-ideal Boson
gas whose Hamiltonian includes only diagonal and pairing terms can be
expressed as the infimum of a functional depending on two measures on
momentum space: a positive measure describing the particle density and
a complex measure describing the pair density. In this paper we examine
this variational problem with the object of determining when the model
exhibits Bose-Einstein condensation. In addition we show that if the

pairing term in the Hamiltonian is positive then it has no effect.

Resumé: Dans un modéle de gaz de Bosons en interaction dont I’hamil-
tonien ne contient que des termes diagonaux et des termes de paires, la
limite thermodynamique de la pression est donnée par l'infimum d’une
fonctionnelle dépendant de deux mesures sur l'espace des impulsions: une
measure positive correspondant & la densité de particules et une mesure
complexe décrivant la densité de paires. Dans cet article, nous étudions
ce probléme variationnel pour déterminer quand le modeéle exhibe une
condensation de Bose-Einstein. De plus, nous prouvons que si le terme
de paires dans ’hamiltonien est positif, il est sans effet.
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§1. Introduction

Consider a system of identical bosons of mass m enclosed in a cube A C

R? of volume V centred at the origin. If the particle interaction is defined by

a translation-invariant two-body potential ® € L?(RY), then assuming periodic

boundary conditions, the Hamiltonian of the system in the second-quantized form
is given by: |

H=T+ -21? > ®q)ary, ok _ oxax, (1.1)

g,k k' EA*

where

é(q)zfﬂdda; &(r)e™t*,

aj and ai are the boson creation and anihilation operators,

ay = (V)“% /cl:z: a*(z)e'*®, ar = (V)“% /dx a(z)e” T,
A A
A* = {2ns/VHe 5 € 7% and T = Y ke~ €(B)Ng with Np = afar and €(k) =
&1 /2m.

One of the most interesting questions in the study of boson systems is the
persistence of Bose-Einstein condensation in the presence of the interaction. For
the Hamiltonian (1.1) this problem has so far been intractable; for this reason
one is led to the study of model Hamiltonians which exhibit some fundamental
properties of the original Hamiltonian (1.1) and which are at the same time simple
enough so that they can be solved analytically. The only models which have been
studied fully so far are “diagonal models ”, that is ones in which the Hamiltonian
can be expressed in terms of the occupation number operators Ny [1 - 6]. The
next step is to include “pairing” terms aja*, and ara_x. Let HP be the “pair
Hamiltonian” [7 - 10], that is the part of H in (1.1) which can be expressed in

terms of diagonal and pairing terms; then HF is given by

1 F * % 1 % * ok
HP =T+ -Q-VZ@(O) arapapar + 3V Z O(k' — k)ay arar ax
k,k! k&' (#xk)
1 (1.2)
to7 2 B0k, aliga-kak.
- kyq(#£0)

Three types of scattering interactions are taken into account in (1.2): forward
scattering interaction: ¢ = 0, exchange scattering interaction: ¢ = &'~k (k' # +k)

~ and pair scattering interaction: k' = —#k, similar to the interaction in the BCS

1



model [11]. The restrictions in the sums are necessary to prevent duplication of
terms. |

If only the forward scattering terms ares included in (1.2) the model reduces
to the mean-field model: -

HME T4 iv@(O)N(N —1), (1.3)

where N = ), . \. Ni; this model has been studied exhaustively [12].

Adding exchange scattering terms gives the Hamiltonian

. 1 .
HS =T+ 5 > B(K — k)Ny Ny (1.4)
ko k' (ks£k!)

If the constraint & # £k’ is dropped this model corresponds to the “perturbed

mean-field” model with Hamiltonian

HEME T+—E<I> ' — k)N Ng, (1.5)
kK

this model is the subject of [2] and [5].
The diagonal part of the “pair Hamiltonian”(1.2) is

1 ) 1 . ,
HP _T+7<I>(O)N(Z\/ -+ 5y > ®(k — k') Np Ny (1.6)
k k! (#+k)

If the constraint k&’ # —k is removed, then (1.6) coincides with the “full diagonal

Hamiltonian”

1 - 1 =
— — —_— “, /
HFD T + 9_@(0) N( N — 1) -+ 2 k k,E( k:b(k k )AVL—N,C, , (1.7)

treated recently in [6].
Here we study a modified version of (1.2) which contains pair scattering terms;

more precisely, we consider the following pair Hamiltonian:

1 * %
H* =T+ — v(k,E" )Ny N + 57 Z u(k,k"agal pa_prag.  (1.8)
k,k'€A* k,k'€A*

Below we impose conditions on the u(k, k') and v(k, k') to ensure the existence of:
the grand canonical pressure in the fhermodynamic limit.

In the series of papers [2 - 6] in which the diagonal models mentioned above
were studied, the pressure in the thermodynamic limit was expressed as the supre-

mum of a functional over the space of measure. The minimizing measure can be
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interpreted as the equilibrium distribution of the particles according to their mo-
mentum; in particular an atom in the measure is interpreted as the occurrence.
of Bose-Einstein condensation. The main technical tool used in these papers was
Varadhan’s Large deviation theory; this was possible because of the commutative
nature of these models. These techniques were extended to non-commutative inho-
mogeneous mean-field models by Cegta, Lewis and Raggio [13], Duffield and Pulé
[14, 15] and Raggio and Werner [16]. However and in all these cases the operators
involved in the Hamiltonian are bounded. In the model under investigation in
this paper the operators do not commute and moreover they are unbounded. We
again give a variational formula for the pressure; the proof of this formula will
be given in another paper. This time the variational formula is over two parame-
ters: one parameter again describes the distribution of particles according to their
momentum while the new parameter describes the pair density.

We should mention here that some models intermediate between the diagonal
models and the pairing models have been studied; among these the best known is
Bogoliubov’s model [17, 18] which recently has been re-examined from the stability
point of view [19].

Let py’(u) be the pressure for the Boson gas with Hamiltonian given by
(1.8). Then we have the following variational formula for the pressure in the
thermodynamic limit p*¥(¢) = limy e 37 (1):

For A C R? let

w(4) = HANA) (19)

and let v be the limit of the measure vy as V tends to co. Let M be the space
of complex bounded measures on R? and My C M the set of positive bounded
measures. Let ¢t : R? — R? be defined by (k) = —k and for m € M let 7 € M be
defined by

m = %-(m—;;mot). (1.10)

F' is the set of pairs (m,n), with m € M} and n € M satisfying:
(i)n=not;

(ii) n is absolutely continuous with respect to m;

(i) if o(k) = 42 (k) then |o(k)| < 1;

(iv) if p(k) = (42) (k)

(p(k) + p(=k)o(B)2 < (o(k) + p(—k) +2) (1.11)

and

%(é(k) + p(=k))*|o(k)]* < p(k)p(=k)) + min(p(k), o(=F)). (1.12)

3



For k € RY, let

() = { 008) + o)+ 11 = L(008) + =8Pl b +5 (k) —p(—)-13,

4
(1.13)
and for z > 0 let
s(z)=(14z)ln(l +z) —zlnz; (1.14)
then
Y = — f &r ,n). 1.15
P == inf €k (m.n) (115)
where

55v(m,n)=/(e(k) m(dk) // (e, &y (dk)m(dk")

R* R?xR*

1
+3 / / u(k, E"\n(dk)n(dk") - % / s(R(k))v(dk). (1.16)
Rd XRd Rd
The variational formula (1.15) will be proved elsewhere. Here we restrict ourselves

to the study of this variational formula. If (m,n) is a minimizer of £¥ , then we

uv?

can interpret m as the equilibrium density of particles and n as the equilibrium

density of pairs. We identify the presence of an atom with respect to v in m as

the presence of a Bose-Einstein condensate. In examining the variational problem

we are interested mainly in determining when Bose-Einstein condensation occurs
and the value of n when this happens.

If the kernel u is of positive type then since z — s(z) is increasing it is clear

that for all allowed n

gl (m,n) > EX,(m,0), | (1.17)
and therefore
nuv —_ I
p ' (p) = mlenAf:IJrg »(m, 0). (1.18)

Now we have proved in [2, 5] that for the perturbed meanfield model with Hamil-

tonian given by (1.6) the pressure pPME () is given by
p"ME () = _m{znzvfu Eprr(m), . (1~19)
where
Epprr(m) = E,(m,0). (1.20)



Thus if u is of positive type

p*(p) ="M (u). (1.21)

This result can be proved more directly; this we shall do in Section 2. In Section
3 we shall study the variational problem (1.13) in general when u(k, k") < 0 for
all k, k' € RY: in particular we shall prove the infimum is attained and that every
minimizer satisfies the Euler-Lagrange equations for the problem. In Section 4 we

shall study in detail the variational problem when v and v are constants.

§2. Positive u

In this section we consider the model with Hamiltonian defined in (1.8) in the
case when u is a positive definite kernel and give a direct proof of the assertion
(1.21). To be able to make use of the results in [2] we shall assume in this section
that v satisfies the following condition:

v: R x RY = R is a bounded, continuous, positive definite function; there
exists a continuous, strictly positive, symmetric function vo : R x R? — R such
that for all m € My

/RdXRd v(k, k" Ym(dk)m(dk') > /R“ e vo(k, k" )Ym(dk)m(dk").

X

Proposition 1. If the kernel u is bounded and positive definite then

p* (1) = p"MF (n)
for all p € R.
Proof: Since u is of positive type then clearly
H" > [JPMF (2.1)
where HPMF ig as in (1.5); thus for y € R
P <pEF (), e
and
lim suppi* (1) < Jim ppE () = pPHME (). (2.3)
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To prove the upper bound let o < 0 and let

D, = {t € C*(R%) : kinﬁgd(e(k) —a—tk) >0}, (2.4)'
. S

where Cb(Rd) is the space of continuous bounded functions on R?; for ¢t € D; let

B = 3 (e(k) —a - (k) V. (2.5)
keA

By convexity we have that

uv 1 t 4o
,.8_V— lntracee PH"" > Wln traceeSH T _ %((Hu” — H Y4, (2.6)

where (A)i+o = trace e'ﬂHHaA/ trace ePH T et

plkt, ) = (exp B(e(k) — 1(k) — a) — 1), (2.7)

then
(Ne)era = plkit, ) (2.8)

and
(NeNg)iva = plk't,@)p(k's t Q) if k # K, (2.9)
<Nk2->t+a =p(k;taa)(2p(k;t7a) +1) (210)

We also have for k # k' and k # —K'
(bEbr kb_kbrr)e4e = 0. (2.11)

The first term in the right hand of the inequality (2.6) can be computed to give

l t4a 1 . .
— Intracee ™ PH " = = JIn(1— e A=tk =a)y 0 (dk)
pv p /R 1 (2.12)
= [t = tar) = 5 [ stolhstoaov (@)

To compute %(H"”)H_a we write H*? in the form

CHY =) (e(k) = )Nk + 2 > L o(k KNG
k - k

1 - 1 )
— 5 u(k,k Dt — NZ-N
+57 k;’ v(k, ) NeNi + 5u(0,0)(Ng — No)



+— (u(k,—k)w(k,k))Nuv_k+—— > brbT pboibi; (2.13)

k#£0 k#k'
e

using (2.8), (2.9), (2.10) and (2.11) we then get

%(Huv)Ha = /d(e(k) —u)p(k;t, a)vy(dk)+

%//dxﬂd v(k, k") p(k;t, a)p(k'st, a)vy (dk)vy (dk") + CVV, (2.14)

where

cv = é‘/d v(k,k)p(k;t, a)(p(k;t, a) + Lvv(dk) + «é—u(0,0)p(O;t,a)
1

T3 /R" {u(k, k) + u(k, =k)}p(k; t, a)p(—Fk; t, a)vv(dk). (2.15)

Finally
H) o = /d(dk) ~ (k) — a)p(k: t, o)vv (dk). (2.16)

Putting (2.12), (2.14) and (2.16) into (2.6) we obtain

p;t,vzﬁ% (1 —t(k) — a)p(k;t, a)vy(dk) — = / In(1 eﬁ(f(k)“t(k)“a)z/v(dk)%-%
(2.17)

and thus since cy is bounded,

1

3 ln(l — eﬁ(f(k)—t(k)—a)y(dk)

lim inf p3” _Ad(,u—~t(k)—~a)p(k;t,a) v(dk) —

Voo
= —Epprp(m"),
| (2.18)
where m»%(dk) = p(k;t,a)v(dk). It was proved in [2, Theorem 1] that for each
m € My there is a sequence {t,} in D; such that

n—oo

Therefore from (2.18) we get

hmmfpv > — inf &by p(m) =p"ME (u);

meM4

thus comblnmg this with (2.2) we obtain

p** =liminfpy” = p"MF (u). O



§3. The general variational problem

| If m is a complex measure on Rd, bounded or unbounded and w : R xR* — C
we shall write (wm)(k) for fRd w(k, k" ym(dk"); also if f: R* — C we shall denote
the measure f(k)m(dk) by fm. If f : R* = C and m is a complex measure on R
we shall write (m, f) for fHd f(k)m(dk). With this notation we have

1

EL (myn) = (m,e—u) + =(m,om) + =(n,un) — B(y,s o R). (3.1)

o] —
N =

We shall make the following assumptions on u and v:

Al. u is symmetric and u(k, k') < 0 for all k, k' € R?,
A2. v is a bounded, continuous, positive definite function; there is a number § > 0
such that (m, (v 4+ @)m) > §||m||? for all m € My, where

ik, K) = %{u(k, B + ulk, k') + u(—k, k) + u(—=k, —k)};

A3. there is a constant C < oo such that for all k € R? (Ju|v)(k) < C,
Ad. (v, |ulv) < 0.

Under the conditions (Al - A4) we have that:

Proposition 2. The functional £¥, : F — R is bounded below.
Proof: For (m,n) € F,

[(n, um)| < (o, [ulom) < (o, |ullo]Pm)) (7, [uln))?,

by the Schwarz inequality.
From (A1) and (A2) we get (m(v—|i|)m) > 0 and therefore (n, [u|m) = (m, [d|m)

(m,vm); and so

IA

|, um)| < ({lof*m, [ullo[*)) 2 ((m, vm)) 3.

Thus
(m,vm) K+ (n,un) > (mvm) — |(n,un)|

> {({mvm)) = ({|o|?m, Jullo[*m)) 2 }((m, vm);

-1

using the inequality =3 — y3 > 1(z —y)z~! we then get



But by (ii) and (iv) we have

|o|?ri < v+

thus :
(lol*m, lullo ) < (mlulm) + 2(m, [ulv) + (v, [u]v)
< (m,|u|m) +2C||m|| + (v, |u|v).
Therefore
(m,om) + {n,um) > 3 {{m(o + @)m) — 2C|ml| = (1 ul»)}
> S {8lmll? - 2K - C}.

Now let a < 0, then

1

1 1
Eu(m,n) = (m, e —a) + (a = p)[m|| + 5(m,vm) + 3

g

> (m,e—a) = (5 0 B) + 3 {8|mil? — 2(K + 4 — @)]m]| -

g

Let
K+ u—a)?

4=l < inf {Sm]? = 2(K + p — ) ||m;

0 T meEM4

then since s is increasing

El(m,n) > I(m)+ A

where I(m) = (m,e — a) — %(z/,s o p).
Since

mienAfJ+ I(m) = _%/Rd In(1 — e BB =, (dk) > —o

& 1s bounded below.

(n,un) — =(v,s o R)

C.

o .

We now make an additional assumption A5 which allows us to prove that the

infimum of &%, is attained in F:

A5. There is a compact set B C R¢ satisfying t(B) = B such u(z,y) < 0 for

(z,y) € Bx B and u(z,y) =0 for (z,y) ¢ B x B.

Proposition 3. There exists (m*,n*) € F such that

EX (m*,n*) = (mig)feFEﬁv(m, n).
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Proof: Let M be equipped with the narrow topology that is the weakest topology
for which the mappings in — (m, f) are continuous for all f € C*(R?). Let o < 0
and let

D={(f.9) € D xC"(RY):
,Lingd((é(k) — o — f(k))(e(k) — a = f(=k)) = lg(k) + g(—k)|*) > O}.
k€ .

Define C : D — R by
C(f.9) =5 [ {e(k) = a = f(k) + Bk) = 21n(1 = 5+ ) o ah)
where

B(k) = —{(e(k) ~ & = 5 £(k) = 5 F(=k))* = lg(k) + g(~R)*}?

and

Ep(k) = E(k) + = (f(k) = f(=k)).

[N

For (m,n) € My x M let

I(m,n) = sup {(m,f) +(n.g) + (n,9) = C(f,9)};
(£9)€D

then for (m,n) ¢ F, I(m,n) = oo and for (m,n) € F

1
I(m,n) = /d(e(k) — a)m(dk) — b—(u, so R). (3.3)
Since I is the supremum of a family of functions which are continuous in the
product topology on My x M, I is lower semi-continuous in the product topology.
Now m +— (m,vm) is continuous and n + (n,un) is lower semi-continuous in the

product topology (see [2]) and therefore if we define

(n,un) + I(m,n) (3.4)

B

£8,(mym) = (o= )ml] + 3 {m,vm) +

for (m,n) € My x M then £, is lower semi-continuous; clearly £ (m,n) = oo
for (m,n) ¢ F and for (m,n) € F the definition coincides with (1.16).

Let eo = inf(m nyemy xm ELy(m,n) = inf(n nyer E(m,n). Then o < EX4,(0,0)
=0;ifeg =0 thén there is nothing to prove. Suppose o < 0; we can find a se-
quence {(m,,n.)} in M4 x M such that (E£,(m,,n,) < 0and lim,—eo €4, (my,n,) =
eo. Since E£¥, is lower semi-continuous it is sufficient to prove that {(m,,n,)} has

a convergent subsequence. Since (|n,|,u|n.|) < (n,,un,) we can assume that each
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n, is a positive measure; also because of assumption A5 and the fact that s is an
increasing function we can assume that each m, has support in B.
By the inequality (3.2)
I(m,) < —4;

but it was proved in [2, Theorem 3] (see also [6]) that I has compact level sets in

M. therefore {m,} has a convergent subsequence {m,,} in M. Now

1

el =nr(B) = [ an(byme(at) < { / ar(m?mr(dk)}%{mrw)}f

< {u(B) + m.(B)} 2 {r.(B)}

[

by inequality (1.11).
Therefore

| < {v(B) + [lm-, I}

“nra

and since B is compact and ||m..,|| converges, {||n,, ||} is uniformly bounded. But
nr, (B°®) =0 and so n,, has a convergent subsequence. Thus we have proved that

(my,n,) has a convergent subsequence.

O

In the following proposition we collect together the properties of minimizers of £#,
which we shall need. If m € M, we shall denote its singular part in the Lebesgue

decomposition with respect to v by ms.

Proposition 4. Let (m,n) € F be a minimizer of £¥, then
(i) p(k) >0, v-a.e.
(ii) (p(k) + p(—k)lo (k)] < p(k) + p(~F) + 1 v-ae.
(iii) o(k) = 0 v-a.e. for k € B°.
(iv) |lo(k)| =1 ms-a.e. fork € B.
(v) Either o(k) = 0 m-a.e. for k € B or |o(k)| > 0 v-a.e. for k € B.
(vi) If mg(B) > 0 then |o(k)| > 0 v-a.e. for k € B.

Proof: (i) By (1.12) we have that if p(k) = 0 on a set of non-zero v-measure
then o(k) = 0 and therefore R(k) = p(k) = 0 on this set; since s'(0) = oo this

value of £(m,n) can be decreased (see [2] Lemma 5.2)

(it) By (1.11) (p(k) +p(=k))*|o(k)[* < (p(k) +p(—F))(p(k) + p(—k) +2) = (p(k) +

p(—=k)+1)% - 1.

(iil) follows from the fact that s is increasing.
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(iv) We know that |o(k)| < 1; (v,s 0 R) is unchanged if ¢ is changed on a set of

zero v-measure. Now

= [ [ 1o®ioteute, ) cos(a(k) - a(k')yin(akyin(ar'),

BxB

where (k) = arg o(k). Therefore a(k) = const m-a.e. and |o(k)| = 1 1, - a.e.
for k € B.

(v) Let A = {k € B : o(k) = 0}; note that ms(A) = 0 since |o(k)| = 1 m,
-a.e for k € B. Let (k) = o(k) + el (k)X p(g()f)(—k) where 0 < € < 1 and
(k) = L(p(k) + p(=k); let A(dk) = 5(k)rin(dF), then

EX (m,R) — / / (k)u(k, k) (dk)u(dk)
AXA
v(dk)———— ) m(dk")|u(k, k")|lo (k)|
B\A

+3 / B)) — s(B(k)))v(dF),

where R(k) = {(3(k) + })? = 3(k)2[5(k)[2}% + §(p(k) — p(—Fk) — 1).

Since s is concave we have for k € A

G(R) = s(R(E)) < 57RO = R(K)S'(R(V)
R(k) - R(k) _ e p(k)p(—k) S
~  BR(k) BR(k)(R(k) + R(k) — p(k) + p(=k) + 1) ~

since R(k) = p(k) for k € A, R(k) — Lp(k) + 1p(=k) > 0 and R(k) — Lp(k) +
1p(=k) > 0. Therefore

3 [ (R = s(RENIMaE) < Sl
and thus

£8(m, 2) — EX(m,n) < —¢ /A v(dk) fB SR CRINSTE ] +O(e).

1f [, YEORED ) [ m(dkfulk, K lo(k)] # 0, €4, (m,a) < E8,(m,n) if ¢

is sufficiently small contradicting the assumption that m is a minimizer; therefore

[y [ ke k)] =
- Ja p(k) B\A



Therefore either v(4) =0 or m(B\ A) =0
(vi) my(B) = (B \ A); therefore if ma(B) > 0 then ms(B\ A) > 0 and so by.’
(v) v(4) = 0.

O

We shall now give a set of Euler-Lagrange equations for the variational prob-
lem under consideration. It is convenient to a introduce a new variable ¢ where
c(k) = p(k)|o(k)|; we know that we can assume the c¢(k) > 0 v-a.e. in B and
c(k)? < p(k)(3 + p(k)) v-a.e. Since we can also assume that |o(k)| = 1 m,-a.e.

our variational problem is equivalent to minimizing the following functional:

E(m,c) ( (k) — p)ym(dk) + 1(m,vm)
1 Ne(EN v (diw(dk!
+ 5/‘/B>(Bc(k)u(k,k ye(k"v(dk)v(dk")
1

n 5//BXBc(k)u(k,k’)u(dk)ﬁ?s(dk')
+_//BXB &(k)uk, k) u(dk)rig(dR')

45 [ty ey - 5 [ R wlE)

where
R(k)={(ﬁ(k)+%)2-| ()} + 5 ( (k) = p(—Fk) —1).

By varying ma, m, and ¢ we obtain the following Euler-Lagrange equations. Let

Lim, k) = e(k) - — (vm)(K), (35)
B(k) = S {IL(m, ) + Lm, ~K)J? ~ |(un)(k) + (un) (~R)F}E  (3.6)

and )
Bx(k) = B(K) & 1[L(m, k) — L(m, ~k)}; (3.7)

then we have:

Proposition 5. If (m,n) is a minimizer of £¥, then (m,n) satisfies the following

Euler-Lagrange equations:

20(k)+1= é— {L(m,k)é;é()m,»—k) +~1} coth §E+(k)
1 [L(m, k) + L(m, ~k) 8 ’ |
3 [ SE(R) } coth —-2-E..(k) v—a.e.; (3.8)



ifo 20, fork € B

__o(k)j(k) _ lcoth SE.(k)+ coth SE_(k) (3.9)

and

L(m,k) + %{(un)(k) + (un)(—k) + (un)(k) + (un)(=k)} =0 my—a.e. (3.10)

We note that if (m,n) is a minimizer of £¥ then as a consequence of the

Euler-Lagrange equations we have:

%(ﬁ,un) ~ % e In(1 — e PE+B))y(dk). (3.11)

§4. The variational problem with v and v constant

We shall now study the variational problem in the special case when
(1) v(k,k")=a>0
(2) B={k: |kl <r}
(3)
o ) =y if(k,k'") € Bx B,
u(k, B) = {0 otherwise,
where 0 < v < a.
It is clear in this case that if m is a minimizer of £#, and m; # 0 then m, is
concentrated at £ = 0, that is ||ms|]| = m{0}. Equations (3.8) and (3.9) now

become

p(k) = % [(G(k) "E"‘(:)“”m”) coth gE(k) - 1} | (4.1)

and if 0 #0 for k € B
o(k)p(k) _ % coth ZE(k)

TTndE) ~ Bk (42)
where
B = (k) = ) = / n(dk)) .
o = (e(k) — p + a|jm||)? for k ¢ B;
- Here (3.10) becomes | |
allml — =~ / n(dk) if m{0} # 0. (4.4)
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From (4.1) it is clear that
ek)—p+allm|| =20 v— ae;

letting & — 0 we get a||m|| — u > 0. Also from (4.3) we see that for £ € B
v [ nldt) < elk) = s+ alm]
and again letting k — 0 we get

v/n(dk) < afjm| -

We introduce new variables ¢ > y > 0, where z = a||m|| — x and y = v [ n(dk).

In terms of z and y

((e( —y®): forkeB
B(k) = {e(k)—{-”c for k ¢ B
and equations (4.1) and (4.2) can be re-written as
1 Jelk)+= I}
p(k) = 5 {—EW oth = E(k) ; (4.5)
k k—l th(k)f k € B. 4.6
o(k)plk) = gy coth e, for ke B (46)

Equation (4.4) implies that z = y if mg = m{0} # 0.

Consider the case when mg = 0. In this case we can integrate (4.5) to get

: a e(k I} |
a:+,u:§/d 1: (E)(k) coth = E(L ) — 1| v(dk) (4.7) |

and integrating (4.5) we get if y # 0

o= g / E(lk coth gE(k)z/(dk), (4.8)

‘where a = 5> 1. Let p. = f M,,, -v(dk). It is straxghtforward to check that if
@< ape then the equation '

a

:r—l—u.—:%/ﬂd [cothﬁw—l v(dk)

15



has a unique solution z(u); then

m(dk) = % cothﬁw — 1| v(dk), (4.9)

n=20

is a solution of the Euler-Lagrange equations.
Let us consider now the case when mg # 0. In this case z = y and we know

from Proposition 4 (vi) that y # 0. Letting

=y [ ((elk)+ )2 —22)% forkeB
E(k)—{e<k)+$ for k ¢ B

and integrating equations (4.5) and (4.6) we now get

T4+ pu—amg= %a/ ) [E(g)(:)z cothﬁ-g-(k) - l:l v(dk) (4.10)
ar —amg 1 1 E
— = 5&/1; mcothﬁ—;u(dk). (4.11)

Equivalently

1 e(k) E(k)
(a=1z—p= SG/B l:l - ER) coth 6—5——} v(dk)

e

(4.12)
- a/Bc m-l-y(dk) |
and
mo= 2z +w -3 [ [% coth 2 (k) - 1} V(dk).  (413)

Therefore, the Euler-Lagrange equations have a solution with mg > 0 if and only
if (4.12) has a solution with the right-hand side of (4.13) strictly positive.
The expression (3.13) for the pressure now becomes:
d
uv 1 2 L, 1 R —BE(k)
P () =s-(z+p)" — =" — 3 In(1 — ™% )u(dk).
| a v g : .
E(k) is the spectrum of the elementary excitations of the model; we note that if
mo = 0 then it is possible that z > y and

lim E(k) = (2*® - yz)% > 0,
k—0

16



while if mg # 0 then z =y and
E(k) = E(k) ~ (2¢e(k)x)?

for small k. This means that in our model with the interaction defined by u(k, k")
and v(k, k") as in (1.8), the occurrence of Bose-Einstein condensation produces a
phonon spectrum for small k., while the absence of condensation creates a gap. It
was observed in [8, 20, 21] that for the pair Hamiltonian (1.2) there is a gap in
the spectrum. However, in contrast with our model, in this case the gap appears
when Bose-Einstein condensation occurs and various attempts were made to rectify
this unphysical behaviour of the model (1.2) [10, 22-26]. Our model is thus more
satisfactory from the physical point of view; this is achieved at a price, namely a
deformation of the original interaction (1.2) to the model (1.8) and a particular
choice of the kernels u(k,k’) and v(k,k").
To study the problem further we shall make the following definitions

_ /E(lk coth— (R)v(dk) >y >0, (4.14)

2

-

Liz,y) = ~a /d[i(-é—(-];)—cth E(k)=1|v(dk) z>y>0. (4.15)

Let z1(y; @) be the solution of I;(z,y) = a as an equation in x for the values of
y for which it exists (z1(y,a) exists for all «) and similarly let z,(y;u) be the
solution of Ir(z,y) = z + p for the values of y and p for which it exists. The
properties of Iy, I, 1 and z, are given in the appendix. o

Let I;(z) = I,(z,z) and L(z) = L(z,z); let po = sup_.po(~ (z) — z). Since
L,(0) = ape, po > ape. Finally let

._a

1 e(k) BE (k) L

z — A(z) is strictly increasing and strictly concave; A’(0) = oo, A(0) = —ap. and
A(z) — 2aK as z — oo where K = v(B).

Consider the equation (see figure 1)
(a = 1)z —pu = A(x). (4.17)

If u > ap. this equation has a unique solution. For a > 1, let y3(«) be the unique
value of p —2aK < p < ap. such that (4.17) has a unique solution. Then for fixed
a, we have the following:

(1) if 4 > ape, (4.17) has a unique solution,

17



(i1) if ape = p > py(a), (4.17) has two solutions,
(iii) if o < pi(e), (4.17) has no solutions.
We remark that if 2% is a solution of (4.17). then by (4.13) #* corresponds to

a solution of the Euler-Lagrange equations if
4= L(x") > 0.

Let 7 () be the solution of ((y.a) = y that is the value of v (or y) when r;(y, )

hits © = y. Then fl(i‘l(af)) = « and therefore at @ = 21(a), %(‘r)g—g = 1. but
%(r) < 0 and therefore % < 0 so that o — () is decreasing. Also as a — 0,

T1(a) — >c and as @ — >0, I1(a) — 0.
If v satisfies [h(z) = ¢ + i, then v < &y (o) implies that A(z) > (e — 1)z — p
and z > 7 (o) implies that A(x¢) < (o — 1) — . This follows from the identity

Ale) = 2h(2) = L(x) (4.18)

and the fact that I, is decreasing.

We now solve the variational problem in some regions of the a-y plane; we
have not been able to exhaust the a-u plane, however our results give an indication
of what can occur. In figure 2 we have labeled the regions of the «-u plane we can
deal with. parRegion A: p > pg. This is the simplest case. We have in this case
that for all z > 0

c4+p—Liz,y)>c+p—Lz)>p—p >0,

since y — I3(z,y) is decreasing; therefore z + 1 — I>(, y) has no solution for any

y. On the other hand if z* is the unique solution of (4.17) then

l x ro H— Ho
a - a

> 0:

this means that £&#

# has a unique minimizer (m*, n*) where

m*(dk) = mgdo + p*(k)v(dk)

, (4.19)
n*(dk) = mgdo + o™ (k)p*(k)v(dk)
where :
ey Llelhk)+ 27 1o~ . '
and - .
o*(k)p*(k) = s2* coth S3E(k,2"). (4.21)
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Before we examine the other regions we make some general remarks. For each

a > 1 there is a unique value of u such that

let po(a) be this value of u. Note that pi(a) < pa(a) < po. The shape of the
curve po(a) is given in figure 2. Let u > pa(ag) and let (o, p), (ag,p) with
1 < a; € as < oo be the endpoints of the segment parallel to the a-axis which
is contained in p > pa(a) and contains the point (ag.u). Let zy = &1(ap) and

rp = Z1(a); since both ¢ and v satisfy
Lx) =0+,

if r; < z < zy then jg(l‘) < @+ p (figure 3). Also since oy < ap < ag,

rr < Z1(a) < ry and thus
Alzv) —(a=1Lzy +p <0< A(agp) = (a=1)vr +p.
Therefore there is a solution z* of
A@®) = (a—=1)z" +p =0,
satisfying z; < z* < zp and thus
* +u—L(z*) > 0.

This means that there is a solution of the Euler-Lagrange equations of the form
(4.19).

Region B: We have seen that above that in this region there is a solution of the
Euler-Lagrange equations with mg > 0. Here a; = oo so that z; = 0 and for
z < zy, .fg(:c) < x + p; therefore since vy (y. ) and ra(y, ) are increasing they
never intersect. Since for 4 > ap. a solution with y = 0 and mg = 0 is not possible,
the situation is as in region A.

Region C: Similar arguments show that there is a unique solution of the Euler-
Lagrange equations with n # 0 and mg = 0. _ |
Regions D, E, F: Again the above argurhent shows that there is a solution of
the Euler-Lagrange equations with mg # 0 but we cannot exclude other solutions.
Region G: If 4 < py(a) then A(z) = (o — 1)z — p has no solutions and therefore

there is no solution with mg # 0. In general we cannot determine whether n = 0.
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Region H: Here yu < p3(a) where p3(a) is the value of 4 which satisfies z;(a) =
z9(0, ). Since Z1(a) < z2(0, ), 21(y. ) and x2(y, u) cannot intersect. Therefore
the Euler-Lagrange equations have only one solution with n = 0.

Finally we remark that if o < 22(0, 1) + al\’ + 1, then

Li{(z1(0,0),0) = a < 22(0, ) + aly + p = L(x2(0,1).0) + alk’ = I1(z2(0, 1), 0).

Therefore 21(0,a) > x2(0, 1), and so ry(y,a) and z2(y, i) cross and the Euler-
Lagrange equations have a solution with n # 0. It is possible to check that in
this region the solution with n = 0 does not correspond to a minimizer. As
“w— —%a[f, ao(p) — 1, therefore if %a[x' > 1 1t is possible to satisfy ag(p) < a <
z2(0, 1) + alk’ + p.

Concluding Remarks:

(a) The presence of Bose-Einstein condensation mgp # 0 causes abnormal
pairing n # 0 (the Hamiltonian (1.8) is gauge invariant). In this case there is no
gap in the spectrum and we expect both the one-particle and two-particle reduced
density matrices to display off-diagonal long-range order (ODLRO).

(b) There is a region where mg = 0 while n # 0; in this case we expect
ODLRO to occur in the two-particle reduced density matrices but not in the one-
particle reduced density matrices. There is the possibility of a gap in the spectrum
of excitations.

(c) For small x4 (region H) we do not expect ODLRO and the model (1.8) is
equivalent to (1.5); there is no gap in the spectrum.

The possibility of “two-stage” condensation, that is, condensation in the one-
particle and two-particle states was discussed in [27]; there the model displays a

similar behaviour.
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